ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1121 by chuckv, Mon Feb 26 04:45:42 2007 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1779 by gezelter, Mon Aug 20 17:51:39 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
79 <
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
87 <      std::vector<Component*> components = simParams->getComponents();
88 <      
89 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
90 <        molStamp = (*i)->getMoleculeStamp();
91 <        nMolWithSameStamp = (*i)->getNMol();
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
94 <
95 <        //calculate atoms in molecules
96 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
97 <
98 <        //calculate atoms in cutoff groups
99 <        int nAtomsInGroups = 0;
100 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 <        
102 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 <          cgStamp = molStamp->getCutoffGroupStamp(j);
104 <          nAtomsInGroups += cgStamp->getNMembers();
105 <        }
106 <
107 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 <
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
114 <        
115 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
116 <          rbStamp = molStamp->getRigidBodyStamp(j);
117 <          nAtomsInRigidBodies += rbStamp->getNMembers();
118 <        }
119 <
120 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
122 <        
123 <      }
124 <
125 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 <      //group therefore the total number of cutoff groups in the system is
144 <      //equal to the total number of atoms minus number of atoms belong to
145 <      //cutoff group defined in meta-data file plus the number of cutoff
146 <      //groups defined in meta-data file
147 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148 <
149 <      //every free atom (atom does not belong to rigid bodies) is an
150 <      //integrable object therefore the total number of integrable objects
151 <      //in the system is equal to the total number of atoms minus number of
152 <      //atoms belong to rigid body defined in meta-data file plus the number
153 <      //of rigid bodies defined in meta-data file
154 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 <                                                + nGlobalRigidBodies_;
156 <  
157 <      nGlobalMols_ = molStampIds_.size();
158 <
159 < #ifdef IS_MPI    
160 <      molToProcMap_.resize(nGlobalMols_);
161 < #endif
162 <
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93 >      molStamp = (*i)->getMoleculeStamp();
94 >      nMolWithSameStamp = (*i)->getNMol();
95 >      
96 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
97 >      
98 >      //calculate atoms in molecules
99 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 >      
101 >      //calculate atoms in cutoff groups
102 >      int nAtomsInGroups = 0;
103 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 >      
105 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 >        cgStamp = molStamp->getCutoffGroupStamp(j);
107 >        nAtomsInGroups += cgStamp->getNMembers();
108 >      }
109 >      
110 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 >      
112 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 >      
114 >      //calculate atoms in rigid bodies
115 >      int nAtomsInRigidBodies = 0;
116 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 >      
118 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
119 >        rbStamp = molStamp->getRigidBodyStamp(j);
120 >        nAtomsInRigidBodies += rbStamp->getNMembers();
121 >      }
122 >      
123 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 >      
126      }
127 +    
128 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
129 +    //group therefore the total number of cutoff groups in the system is
130 +    //equal to the total number of atoms minus number of atoms belong to
131 +    //cutoff group defined in meta-data file plus the number of cutoff
132 +    //groups defined in meta-data file
133  
134 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 +    
136 +    //every free atom (atom does not belong to rigid bodies) is an
137 +    //integrable object therefore the total number of integrable objects
138 +    //in the system is equal to the total number of atoms minus number of
139 +    //atoms belong to rigid body defined in meta-data file plus the number
140 +    //of rigid bodies defined in meta-data file
141 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 +      + nGlobalRigidBodies_;
143 +    
144 +    nGlobalMols_ = molStampIds_.size();
145 +    molToProcMap_.resize(nGlobalMols_);
146 +  }
147 +  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 174 | Line 157 | namespace oopse {
157      delete forceField_;
158    }
159  
177  int SimInfo::getNGlobalConstraints() {
178    int nGlobalConstraints;
179 #ifdef IS_MPI
180    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181                  MPI_COMM_WORLD);    
182 #else
183    nGlobalConstraints =  nConstraints_;
184 #endif
185    return nGlobalConstraints;
186  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 222 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 236 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
239
240
214    }    
215  
216          
# Line 253 | Line 226 | namespace oopse {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232 >    vector<Atom*>::iterator k;
233 >
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
277            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
273   #else
274      ndf_ = ndf_local;
275 +    nGlobalFluctuatingCharges_ = nfq_local;
276   #endif
277  
278      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 301 | Line 289 | namespace oopse {
289   #endif
290      return fdf_;
291    }
292 +  
293 +  unsigned int SimInfo::getNLocalCutoffGroups(){
294 +    int nLocalCutoffAtoms = 0;
295 +    Molecule* mol;
296 +    MoleculeIterator mi;
297 +    CutoffGroup* cg;
298 +    Molecule::CutoffGroupIterator ci;
299      
300 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
301 +      
302 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
303 +           cg = mol->nextCutoffGroup(ci)) {
304 +        nLocalCutoffAtoms += cg->getNumAtom();
305 +        
306 +      }        
307 +    }
308 +    
309 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
310 +  }
311 +    
312    void SimInfo::calcNdfRaw() {
313      int ndfRaw_local;
314  
315      MoleculeIterator i;
316 <    std::vector<StuntDouble*>::iterator j;
316 >    vector<StuntDouble*>::iterator j;
317      Molecule* mol;
318 <    StuntDouble* integrableObject;
318 >    StuntDouble* sd;
319  
320      // Raw degrees of freedom that we have to set
321      ndfRaw_local = 0;
322      
323      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
317      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
318           integrableObject = mol->nextIntegrableObject(j)) {
324  
325 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
326 +           sd = mol->nextIntegrableObject(j)) {
327 +
328          ndfRaw_local += 3;
329  
330 <        if (integrableObject->isDirectional()) {
331 <          if (integrableObject->isLinear()) {
330 >        if (sd->isDirectional()) {
331 >          if (sd->isLinear()) {
332              ndfRaw_local += 2;
333            } else {
334              ndfRaw_local += 3;
# Line 353 | Line 361 | namespace oopse {
361  
362    }
363  
364 <  void SimInfo::addExcludePairs(Molecule* mol) {
365 <    std::vector<Bond*>::iterator bondIter;
366 <    std::vector<Bend*>::iterator bendIter;
367 <    std::vector<Torsion*>::iterator torsionIter;
364 >  void SimInfo::addInteractionPairs(Molecule* mol) {
365 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
366 >    vector<Bond*>::iterator bondIter;
367 >    vector<Bend*>::iterator bendIter;
368 >    vector<Torsion*>::iterator torsionIter;
369 >    vector<Inversion*>::iterator inversionIter;
370      Bond* bond;
371      Bend* bend;
372      Torsion* torsion;
373 +    Inversion* inversion;
374      int a;
375      int b;
376      int c;
377      int d;
378  
379 <    std::map<int, std::set<int> > atomGroups;
379 >    // atomGroups can be used to add special interaction maps between
380 >    // groups of atoms that are in two separate rigid bodies.
381 >    // However, most site-site interactions between two rigid bodies
382 >    // are probably not special, just the ones between the physically
383 >    // bonded atoms.  Interactions *within* a single rigid body should
384 >    // always be excluded.  These are done at the bottom of this
385 >    // function.
386  
387 +    map<int, set<int> > atomGroups;
388      Molecule::RigidBodyIterator rbIter;
389      RigidBody* rb;
390      Molecule::IntegrableObjectIterator ii;
391 <    StuntDouble* integrableObject;
391 >    StuntDouble* sd;
392      
393 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
394 <           integrableObject = mol->nextIntegrableObject(ii)) {
395 <
396 <      if (integrableObject->isRigidBody()) {
397 <          rb = static_cast<RigidBody*>(integrableObject);
398 <          std::vector<Atom*> atoms = rb->getAtoms();
399 <          std::set<int> rigidAtoms;
400 <          for (int i = 0; i < atoms.size(); ++i) {
401 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
402 <          }
403 <          for (int i = 0; i < atoms.size(); ++i) {
404 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
405 <          }      
393 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
394 >         sd = mol->nextIntegrableObject(ii)) {
395 >      
396 >      if (sd->isRigidBody()) {
397 >        rb = static_cast<RigidBody*>(sd);
398 >        vector<Atom*> atoms = rb->getAtoms();
399 >        set<int> rigidAtoms;
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
402 >        }
403 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
404 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
405 >        }      
406        } else {
407 <        std::set<int> oneAtomSet;
408 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
409 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >        set<int> oneAtomSet;
408 >        oneAtomSet.insert(sd->getGlobalIndex());
409 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
410        }
411      }  
412 +          
413 +    for (bond= mol->beginBond(bondIter); bond != NULL;
414 +         bond = mol->nextBond(bondIter)) {
415  
395    
396    
397    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
416        a = bond->getAtomA()->getGlobalIndex();
417 <      b = bond->getAtomB()->getGlobalIndex();        
418 <      exclude_.addPair(a, b);
417 >      b = bond->getAtomB()->getGlobalIndex();  
418 >    
419 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
420 >        oneTwoInteractions_.addPair(a, b);
421 >      } else {
422 >        excludedInteractions_.addPair(a, b);
423 >      }
424      }
425  
426 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
426 >    for (bend= mol->beginBend(bendIter); bend != NULL;
427 >         bend = mol->nextBend(bendIter)) {
428 >
429        a = bend->getAtomA()->getGlobalIndex();
430        b = bend->getAtomB()->getGlobalIndex();        
431        c = bend->getAtomC()->getGlobalIndex();
407      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410
411      exclude_.addPairs(rigidSetA, rigidSetB);
412      exclude_.addPairs(rigidSetA, rigidSetC);
413      exclude_.addPairs(rigidSetB, rigidSetC);
432        
433 <      //exclude_.addPair(a, b);
434 <      //exclude_.addPair(a, c);
435 <      //exclude_.addPair(b, c);        
433 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
434 >        oneTwoInteractions_.addPair(a, b);      
435 >        oneTwoInteractions_.addPair(b, c);
436 >      } else {
437 >        excludedInteractions_.addPair(a, b);
438 >        excludedInteractions_.addPair(b, c);
439 >      }
440 >
441 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
442 >        oneThreeInteractions_.addPair(a, c);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, c);
445 >      }
446      }
447  
448 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
448 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
449 >         torsion = mol->nextTorsion(torsionIter)) {
450 >
451        a = torsion->getAtomA()->getGlobalIndex();
452        b = torsion->getAtomB()->getGlobalIndex();        
453        c = torsion->getAtomC()->getGlobalIndex();        
454 <      d = torsion->getAtomD()->getGlobalIndex();        
425 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
454 >      d = torsion->getAtomD()->getGlobalIndex();      
455  
456 <      exclude_.addPairs(rigidSetA, rigidSetB);
457 <      exclude_.addPairs(rigidSetA, rigidSetC);
458 <      exclude_.addPairs(rigidSetA, rigidSetD);
459 <      exclude_.addPairs(rigidSetB, rigidSetC);
460 <      exclude_.addPairs(rigidSetB, rigidSetD);
461 <      exclude_.addPairs(rigidSetC, rigidSetD);
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(b, c);
459 >        oneTwoInteractions_.addPair(c, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(b, c);
463 >        excludedInteractions_.addPair(c, d);
464 >      }
465  
466 <      /*
467 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
468 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
469 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
470 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
471 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
472 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
473 <        
474 <      
475 <      exclude_.addPair(a, b);
476 <      exclude_.addPair(a, c);
477 <      exclude_.addPair(a, d);
478 <      exclude_.addPair(b, c);
450 <      exclude_.addPair(b, d);
451 <      exclude_.addPair(c, d);        
452 <      */
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(a, c);      
468 >        oneThreeInteractions_.addPair(b, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(a, c);
471 >        excludedInteractions_.addPair(b, d);
472 >      }
473 >
474 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
475 >        oneFourInteractions_.addPair(a, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(a, d);
478 >      }
479      }
480  
481 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
482 <      std::vector<Atom*> atoms = rb->getAtoms();
483 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
484 <        for (int j = i + 1; j < atoms.size(); ++j) {
481 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
482 >         inversion = mol->nextInversion(inversionIter)) {
483 >
484 >      a = inversion->getAtomA()->getGlobalIndex();
485 >      b = inversion->getAtomB()->getGlobalIndex();        
486 >      c = inversion->getAtomC()->getGlobalIndex();        
487 >      d = inversion->getAtomD()->getGlobalIndex();        
488 >
489 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
490 >        oneTwoInteractions_.addPair(a, b);      
491 >        oneTwoInteractions_.addPair(a, c);
492 >        oneTwoInteractions_.addPair(a, d);
493 >      } else {
494 >        excludedInteractions_.addPair(a, b);
495 >        excludedInteractions_.addPair(a, c);
496 >        excludedInteractions_.addPair(a, d);
497 >      }
498 >
499 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
500 >        oneThreeInteractions_.addPair(b, c);    
501 >        oneThreeInteractions_.addPair(b, d);    
502 >        oneThreeInteractions_.addPair(c, d);      
503 >      } else {
504 >        excludedInteractions_.addPair(b, c);
505 >        excludedInteractions_.addPair(b, d);
506 >        excludedInteractions_.addPair(c, d);
507 >      }
508 >    }
509 >
510 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
511 >         rb = mol->nextRigidBody(rbIter)) {
512 >      vector<Atom*> atoms = rb->getAtoms();
513 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
514 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
515            a = atoms[i]->getGlobalIndex();
516            b = atoms[j]->getGlobalIndex();
517 <          exclude_.addPair(a, b);
517 >          excludedInteractions_.addPair(a, b);
518          }
519        }
520      }        
521  
522    }
523  
524 <  void SimInfo::removeExcludePairs(Molecule* mol) {
525 <    std::vector<Bond*>::iterator bondIter;
526 <    std::vector<Bend*>::iterator bendIter;
527 <    std::vector<Torsion*>::iterator torsionIter;
524 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
525 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
526 >    vector<Bond*>::iterator bondIter;
527 >    vector<Bend*>::iterator bendIter;
528 >    vector<Torsion*>::iterator torsionIter;
529 >    vector<Inversion*>::iterator inversionIter;
530      Bond* bond;
531      Bend* bend;
532      Torsion* torsion;
533 +    Inversion* inversion;
534      int a;
535      int b;
536      int c;
537      int d;
538  
539 <    std::map<int, std::set<int> > atomGroups;
481 <
539 >    map<int, set<int> > atomGroups;
540      Molecule::RigidBodyIterator rbIter;
541      RigidBody* rb;
542      Molecule::IntegrableObjectIterator ii;
543 <    StuntDouble* integrableObject;
543 >    StuntDouble* sd;
544      
545 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
546 <           integrableObject = mol->nextIntegrableObject(ii)) {
547 <
548 <      if (integrableObject->isRigidBody()) {
549 <          rb = static_cast<RigidBody*>(integrableObject);
550 <          std::vector<Atom*> atoms = rb->getAtoms();
551 <          std::set<int> rigidAtoms;
552 <          for (int i = 0; i < atoms.size(); ++i) {
553 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
554 <          }
555 <          for (int i = 0; i < atoms.size(); ++i) {
556 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
557 <          }      
545 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
546 >         sd = mol->nextIntegrableObject(ii)) {
547 >      
548 >      if (sd->isRigidBody()) {
549 >        rb = static_cast<RigidBody*>(sd);
550 >        vector<Atom*> atoms = rb->getAtoms();
551 >        set<int> rigidAtoms;
552 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
553 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
554 >        }
555 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
556 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
557 >        }      
558        } else {
559 <        std::set<int> oneAtomSet;
560 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
561 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        set<int> oneAtomSet;
560 >        oneAtomSet.insert(sd->getGlobalIndex());
561 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
562        }
563      }  
564  
565 <    
566 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
565 >    for (bond= mol->beginBond(bondIter); bond != NULL;
566 >         bond = mol->nextBond(bondIter)) {
567 >      
568        a = bond->getAtomA()->getGlobalIndex();
569 <      b = bond->getAtomB()->getGlobalIndex();        
570 <      exclude_.removePair(a, b);
569 >      b = bond->getAtomB()->getGlobalIndex();  
570 >    
571 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
572 >        oneTwoInteractions_.removePair(a, b);
573 >      } else {
574 >        excludedInteractions_.removePair(a, b);
575 >      }
576      }
577  
578 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
578 >    for (bend= mol->beginBend(bendIter); bend != NULL;
579 >         bend = mol->nextBend(bendIter)) {
580 >
581        a = bend->getAtomA()->getGlobalIndex();
582        b = bend->getAtomB()->getGlobalIndex();        
583        c = bend->getAtomC()->getGlobalIndex();
518
519      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522
523      exclude_.removePairs(rigidSetA, rigidSetB);
524      exclude_.removePairs(rigidSetA, rigidSetC);
525      exclude_.removePairs(rigidSetB, rigidSetC);
584        
585 <      //exclude_.removePair(a, b);
586 <      //exclude_.removePair(a, c);
587 <      //exclude_.removePair(b, c);        
585 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
586 >        oneTwoInteractions_.removePair(a, b);      
587 >        oneTwoInteractions_.removePair(b, c);
588 >      } else {
589 >        excludedInteractions_.removePair(a, b);
590 >        excludedInteractions_.removePair(b, c);
591 >      }
592 >
593 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
594 >        oneThreeInteractions_.removePair(a, c);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >      }
598      }
599  
600 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
600 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
601 >         torsion = mol->nextTorsion(torsionIter)) {
602 >
603        a = torsion->getAtomA()->getGlobalIndex();
604        b = torsion->getAtomB()->getGlobalIndex();        
605        c = torsion->getAtomC()->getGlobalIndex();        
606 <      d = torsion->getAtomD()->getGlobalIndex();        
606 >      d = torsion->getAtomD()->getGlobalIndex();      
607 >  
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(b, c);
611 >        oneTwoInteractions_.removePair(c, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(b, c);
615 >        excludedInteractions_.removePair(c, d);
616 >      }
617  
618 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
619 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
620 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
621 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(a, c);      
620 >        oneThreeInteractions_.removePair(b, d);      
621 >      } else {
622 >        excludedInteractions_.removePair(a, c);
623 >        excludedInteractions_.removePair(b, d);
624 >      }
625  
626 <      exclude_.removePairs(rigidSetA, rigidSetB);
627 <      exclude_.removePairs(rigidSetA, rigidSetC);
628 <      exclude_.removePairs(rigidSetA, rigidSetD);
629 <      exclude_.removePairs(rigidSetB, rigidSetC);
630 <      exclude_.removePairs(rigidSetB, rigidSetD);
631 <      exclude_.removePairs(rigidSetC, rigidSetD);
626 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
627 >        oneFourInteractions_.removePair(a, d);      
628 >      } else {
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631 >    }
632  
633 <      /*
634 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
633 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
634 >         inversion = mol->nextInversion(inversionIter)) {
635  
636 <      
637 <      exclude_.removePair(a, b);
638 <      exclude_.removePair(a, c);
639 <      exclude_.removePair(a, d);
640 <      exclude_.removePair(b, c);
641 <      exclude_.removePair(b, d);
642 <      exclude_.removePair(c, d);        
643 <      */
636 >      a = inversion->getAtomA()->getGlobalIndex();
637 >      b = inversion->getAtomB()->getGlobalIndex();        
638 >      c = inversion->getAtomC()->getGlobalIndex();        
639 >      d = inversion->getAtomD()->getGlobalIndex();        
640 >
641 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
642 >        oneTwoInteractions_.removePair(a, b);      
643 >        oneTwoInteractions_.removePair(a, c);
644 >        oneTwoInteractions_.removePair(a, d);
645 >      } else {
646 >        excludedInteractions_.removePair(a, b);
647 >        excludedInteractions_.removePair(a, c);
648 >        excludedInteractions_.removePair(a, d);
649 >      }
650 >
651 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
652 >        oneThreeInteractions_.removePair(b, c);    
653 >        oneThreeInteractions_.removePair(b, d);    
654 >        oneThreeInteractions_.removePair(c, d);      
655 >      } else {
656 >        excludedInteractions_.removePair(b, c);
657 >        excludedInteractions_.removePair(b, d);
658 >        excludedInteractions_.removePair(c, d);
659 >      }
660      }
661  
662 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
663 <      std::vector<Atom*> atoms = rb->getAtoms();
664 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
665 <        for (int j = i + 1; j < atoms.size(); ++j) {
662 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
663 >         rb = mol->nextRigidBody(rbIter)) {
664 >      vector<Atom*> atoms = rb->getAtoms();
665 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
666 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
667            a = atoms[i]->getGlobalIndex();
668            b = atoms[j]->getGlobalIndex();
669 <          exclude_.removePair(a, b);
669 >          excludedInteractions_.removePair(a, b);
670          }
671        }
672      }        
673 <
673 >    
674    }
675 <
676 <
675 >  
676 >  
677    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
678      int curStampId;
679 <
679 >    
680      //index from 0
681      curStampId = moleculeStamps_.size();
682  
# Line 589 | Line 684 | namespace oopse {
684      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
685    }
686  
592  void SimInfo::update() {
687  
688 <    setupSimType();
689 <
690 < #ifdef IS_MPI
691 <    setupFortranParallel();
692 < #endif
693 <
694 <    setupFortranSim();
695 <
696 <    //setup fortran force field
603 <    /** @deprecate */    
604 <    int isError = 0;
605 <    
606 <    setupCutoff();
607 <    
608 <    setupElectrostaticSummationMethod( isError );
609 <    setupSwitchingFunction();
610 <    setupAccumulateBoxDipole();
611 <
612 <    if(isError){
613 <      sprintf( painCave.errMsg,
614 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
615 <      painCave.isFatal = 1;
616 <      simError();
617 <    }
618 <
688 >  /**
689 >   * update
690 >   *
691 >   *  Performs the global checks and variable settings after the
692 >   *  objects have been created.
693 >   *
694 >   */
695 >  void SimInfo::update() {  
696 >    setupSimVariables();
697      calcNdf();
698      calcNdfRaw();
699      calcNdfTrans();
622
623    fortranInitialized_ = true;
700    }
701 <
702 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
701 >  
702 >  /**
703 >   * getSimulatedAtomTypes
704 >   *
705 >   * Returns an STL set of AtomType* that are actually present in this
706 >   * simulation.  Must query all processors to assemble this information.
707 >   *
708 >   */
709 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
710      SimInfo::MoleculeIterator mi;
711      Molecule* mol;
712      Molecule::AtomIterator ai;
713      Atom* atom;
714 <    std::set<AtomType*> atomTypes;
715 <
714 >    set<AtomType*> atomTypes;
715 >    
716      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
717 <
718 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
717 >      for(atom = mol->beginAtom(ai); atom != NULL;
718 >          atom = mol->nextAtom(ai)) {
719          atomTypes.insert(atom->getAtomType());
720 <      }
721 <        
722 <    }
720 >      }      
721 >    }    
722 >    
723 > #ifdef IS_MPI
724  
725 <    return atomTypes;        
726 <  }
643 <
644 <  void SimInfo::setupSimType() {
645 <    std::set<AtomType*>::iterator i;
646 <    std::set<AtomType*> atomTypes;
647 <    atomTypes = getUniqueAtomTypes();
725 >    // loop over the found atom types on this processor, and add their
726 >    // numerical idents to a vector:
727      
728 <    int useLennardJones = 0;
729 <    int useElectrostatic = 0;
730 <    int useEAM = 0;
731 <    int useSC = 0;
653 <    int useCharge = 0;
654 <    int useDirectional = 0;
655 <    int useDipole = 0;
656 <    int useGayBerne = 0;
657 <    int useSticky = 0;
658 <    int useStickyPower = 0;
659 <    int useShape = 0;
660 <    int useFLARB = 0; //it is not in AtomType yet
661 <    int useDirectionalAtom = 0;    
662 <    int useElectrostatics = 0;
663 <    //usePBC and useRF are from simParams
664 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 <    int useRF;
666 <    int useSF;
667 <    int useSP;
668 <    int useBoxDipole;
669 <    std::string myMethod;
728 >    vector<int> foundTypes;
729 >    set<AtomType*>::iterator i;
730 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
731 >      foundTypes.push_back( (*i)->getIdent() );
732  
733 <    // set the useRF logical
734 <    useRF = 0;
673 <    useSF = 0;
674 <    useSP = 0;
733 >    // count_local holds the number of found types on this processor
734 >    int count_local = foundTypes.size();
735  
736 +    int nproc = MPI::COMM_WORLD.Get_size();
737  
738 <    if (simParams_->haveElectrostaticSummationMethod()) {
739 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
740 <      toUpper(myMethod);
741 <      if (myMethod == "REACTION_FIELD"){
681 <        useRF = 1;
682 <      } else if (myMethod == "SHIFTED_FORCE"){
683 <        useSF = 1;
684 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 <        useSP = 1;
686 <      }
687 <    }
688 <    
689 <    if (simParams_->haveAccumulateBoxDipole())
690 <      if (simParams_->getAccumulateBoxDipole())
691 <        useBoxDipole = 1;
738 >    // we need arrays to hold the counts and displacement vectors for
739 >    // all processors
740 >    vector<int> counts(nproc, 0);
741 >    vector<int> disps(nproc, 0);
742  
743 <    //loop over all of the atom types
744 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
745 <      useLennardJones |= (*i)->isLennardJones();
746 <      useElectrostatic |= (*i)->isElectrostatic();
747 <      useEAM |= (*i)->isEAM();
748 <      useSC |= (*i)->isSC();
749 <      useCharge |= (*i)->isCharge();
750 <      useDirectional |= (*i)->isDirectional();
751 <      useDipole |= (*i)->isDipole();
752 <      useGayBerne |= (*i)->isGayBerne();
703 <      useSticky |= (*i)->isSticky();
704 <      useStickyPower |= (*i)->isStickyPower();
705 <      useShape |= (*i)->isShape();
743 >    // fill the counts array
744 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
745 >                              1, MPI::INT);
746 >  
747 >    // use the processor counts to compute the displacement array
748 >    disps[0] = 0;    
749 >    int totalCount = counts[0];
750 >    for (int iproc = 1; iproc < nproc; iproc++) {
751 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
752 >      totalCount += counts[iproc];
753      }
754  
755 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
756 <      useDirectionalAtom = 1;
757 <    }
755 >    // we need a (possibly redundant) set of all found types:
756 >    vector<int> ftGlobal(totalCount);
757 >    
758 >    // now spray out the foundTypes to all the other processors:    
759 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
760 >                               &ftGlobal[0], &counts[0], &disps[0],
761 >                               MPI::INT);
762  
763 <    if (useCharge || useDipole) {
713 <      useElectrostatics = 1;
714 <    }
763 >    vector<int>::iterator j;
764  
765 < #ifdef IS_MPI    
766 <    int temp;
765 >    // foundIdents is a stl set, so inserting an already found ident
766 >    // will have no effect.
767 >    set<int> foundIdents;
768  
769 <    temp = usePBC;
770 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
770 >      foundIdents.insert((*j));
771 >    
772 >    // now iterate over the foundIdents and get the actual atom types
773 >    // that correspond to these:
774 >    set<int>::iterator it;
775 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
776 >      atomTypes.insert( forceField_->getAtomType((*it)) );
777 >
778 > #endif
779  
780 <    temp = useDirectionalAtom;
781 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
780 >    return atomTypes;        
781 >  }
782  
783 <    temp = useLennardJones;
784 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
785 <
786 <    temp = useElectrostatics;
787 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783 >  void SimInfo::setupSimVariables() {
784 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
786 >    // parameter is true
787 >    calcBoxDipole_ = false;
788 >    if ( simParams_->haveAccumulateBoxDipole() )
789 >      if ( simParams_->getAccumulateBoxDipole() ) {
790 >        calcBoxDipole_ = true;      
791 >      }
792 >    
793 >    set<AtomType*>::iterator i;
794 >    set<AtomType*> atomTypes;
795 >    atomTypes = getSimulatedAtomTypes();    
796 >    bool usesElectrostatic = false;
797 >    bool usesMetallic = false;
798 >    bool usesDirectional = false;
799 >    bool usesFluctuatingCharges =  false;
800 >    //loop over all of the atom types
801 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
802 >      usesElectrostatic |= (*i)->isElectrostatic();
803 >      usesMetallic |= (*i)->isMetal();
804 >      usesDirectional |= (*i)->isDirectional();
805 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
806 >    }
807  
808 <    temp = useCharge;
809 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 > #ifdef IS_MPI
809 >    bool temp;
810 >    temp = usesDirectional;
811 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
812 >                              MPI::LOR);
813 >        
814 >    temp = usesMetallic;
815 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
816 >                              MPI::LOR);
817 >    
818 >    temp = usesElectrostatic;
819 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
820 >                              MPI::LOR);
821  
822 <    temp = useDipole;
823 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
822 >    temp = usesFluctuatingCharges;
823 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
824 >                              MPI::LOR);
825 > #else
826  
827 <    temp = useSticky;
828 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 >    usesDirectionalAtoms_ = usesDirectional;
828 >    usesMetallicAtoms_ = usesMetallic;
829 >    usesElectrostaticAtoms_ = usesElectrostatic;
830 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
831  
832 <    temp = useStickyPower;
741 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 > #endif
833      
834 <    temp = useGayBerne;
835 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
834 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
835 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
836 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
837 >  }
838  
746    temp = useEAM;
747    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839  
840 <    temp = useSC;
841 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
840 >  vector<int> SimInfo::getGlobalAtomIndices() {
841 >    SimInfo::MoleculeIterator mi;
842 >    Molecule* mol;
843 >    Molecule::AtomIterator ai;
844 >    Atom* atom;
845 >
846 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
847      
848 <    temp = useShape;
849 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
848 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
849 >      
850 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
851 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
852 >      }
853 >    }
854 >    return GlobalAtomIndices;
855 >  }
856  
755    temp = useFLARB;
756    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
857  
858 <    temp = useRF;
859 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
858 >  vector<int> SimInfo::getGlobalGroupIndices() {
859 >    SimInfo::MoleculeIterator mi;
860 >    Molecule* mol;
861 >    Molecule::CutoffGroupIterator ci;
862 >    CutoffGroup* cg;
863  
864 <    temp = useSF;
865 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
866 <
867 <    temp = useSP;
868 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
869 <
870 <    temp = useBoxDipole;
871 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
872 <
873 < #endif
874 <
875 <    fInfo_.SIM_uses_PBC = usePBC;    
773 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
774 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
775 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
776 <    fInfo_.SIM_uses_Charges = useCharge;
777 <    fInfo_.SIM_uses_Dipoles = useDipole;
778 <    fInfo_.SIM_uses_Sticky = useSticky;
779 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
780 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
781 <    fInfo_.SIM_uses_EAM = useEAM;
782 <    fInfo_.SIM_uses_SC = useSC;
783 <    fInfo_.SIM_uses_Shapes = useShape;
784 <    fInfo_.SIM_uses_FLARB = useFLARB;
785 <    fInfo_.SIM_uses_RF = useRF;
786 <    fInfo_.SIM_uses_SF = useSF;
787 <    fInfo_.SIM_uses_SP = useSP;
788 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
864 >    vector<int> GlobalGroupIndices;
865 >    
866 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
867 >      
868 >      //local index of cutoff group is trivial, it only depends on the
869 >      //order of travesing
870 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
871 >           cg = mol->nextCutoffGroup(ci)) {
872 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
873 >      }        
874 >    }
875 >    return GlobalGroupIndices;
876    }
877  
791  void SimInfo::setupFortranSim() {
792    int isError;
793    int nExclude;
794    std::vector<int> fortranGlobalGroupMembership;
795    
796    nExclude = exclude_.getSize();
797    isError = 0;
878  
879 <    //globalGroupMembership_ is filled by SimCreator    
880 <    for (int i = 0; i < nGlobalAtoms_; i++) {
801 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
802 <    }
879 >  void SimInfo::prepareTopology() {
880 >    int nExclude, nOneTwo, nOneThree, nOneFour;
881  
882      //calculate mass ratio of cutoff group
805    std::vector<RealType> mfact;
883      SimInfo::MoleculeIterator mi;
884      Molecule* mol;
885      Molecule::CutoffGroupIterator ci;
# Line 811 | Line 888 | namespace oopse {
888      Atom* atom;
889      RealType totalMass;
890  
891 <    //to avoid memory reallocation, reserve enough space for mfact
892 <    mfact.reserve(getNCutoffGroups());
891 >    /**
892 >     * The mass factor is the relative mass of an atom to the total
893 >     * mass of the cutoff group it belongs to.  By default, all atoms
894 >     * are their own cutoff groups, and therefore have mass factors of
895 >     * 1.  We need some special handling for massless atoms, which
896 >     * will be treated as carrying the entire mass of the cutoff
897 >     * group.
898 >     */
899 >    massFactors_.clear();
900 >    massFactors_.resize(getNAtoms(), 1.0);
901      
902      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
903 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
903 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
904 >           cg = mol->nextCutoffGroup(ci)) {
905  
906          totalMass = cg->getMass();
907          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908            // Check for massless groups - set mfact to 1 if true
909 <          if (totalMass != 0)
910 <            mfact.push_back(atom->getMass()/totalMass);
909 >          if (totalMass != 0)
910 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
911            else
912 <            mfact.push_back( 1.0 );
912 >            massFactors_[atom->getLocalIndex()] = 1.0;
913          }
828
914        }      
915      }
916  
917 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
833 <    std::vector<int> identArray;
917 >    // Build the identArray_
918  
919 <    //to avoid memory reallocation, reserve enough space identArray
920 <    identArray.reserve(getNAtoms());
837 <    
919 >    identArray_.clear();
920 >    identArray_.reserve(getNAtoms());    
921      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
922        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
923 <        identArray.push_back(atom->getIdent());
923 >        identArray_.push_back(atom->getIdent());
924        }
925      }    
843
844    //fill molMembershipArray
845    //molMembershipArray is filled by SimCreator    
846    std::vector<int> molMembershipArray(nGlobalAtoms_);
847    for (int i = 0; i < nGlobalAtoms_; i++) {
848      molMembershipArray[i] = globalMolMembership_[i] + 1;
849    }
926      
927 <    //setup fortran simulation
852 <    int nGlobalExcludes = 0;
853 <    int* globalExcludes = NULL;
854 <    int* excludeList = exclude_.getExcludeList();
855 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
856 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
927 >    //scan topology
928  
929 <    if( isError ){
929 >    nExclude = excludedInteractions_.getSize();
930 >    nOneTwo = oneTwoInteractions_.getSize();
931 >    nOneThree = oneThreeInteractions_.getSize();
932 >    nOneFour = oneFourInteractions_.getSize();
933  
934 <      sprintf( painCave.errMsg,
935 <               "There was an error setting the simulation information in fortran.\n" );
936 <      painCave.isFatal = 1;
937 <      painCave.severity = OOPSE_ERROR;
865 <      simError();
866 <    }
867 <
868 < #ifdef IS_MPI
869 <    sprintf( checkPointMsg,
870 <             "succesfully sent the simulation information to fortran.\n");
871 <    MPIcheckPoint();
872 < #endif // is_mpi
873 <
874 <    // Setup number of neighbors in neighbor list if present
875 <    if (simParams_->haveNeighborListNeighbors()) {
876 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
877 <      setNeighbors(&nlistNeighbors);
878 <    }
879 <  
880 <
881 <  }
882 <
883 <
884 < #ifdef IS_MPI
885 <  void SimInfo::setupFortranParallel() {
886 <    
887 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
888 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 <    std::vector<int> localToGlobalCutoffGroupIndex;
890 <    SimInfo::MoleculeIterator mi;
891 <    Molecule::AtomIterator ai;
892 <    Molecule::CutoffGroupIterator ci;
893 <    Molecule* mol;
894 <    Atom* atom;
895 <    CutoffGroup* cg;
896 <    mpiSimData parallelData;
897 <    int isError;
898 <
899 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
900 <
901 <      //local index(index in DataStorge) of atom is important
902 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
903 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
904 <      }
905 <
906 <      //local index of cutoff group is trivial, it only depends on the order of travesing
907 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
908 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
909 <      }        
910 <        
911 <    }
912 <
913 <    //fill up mpiSimData struct
914 <    parallelData.nMolGlobal = getNGlobalMolecules();
915 <    parallelData.nMolLocal = getNMolecules();
916 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
917 <    parallelData.nAtomsLocal = getNAtoms();
918 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
919 <    parallelData.nGroupsLocal = getNCutoffGroups();
920 <    parallelData.myNode = worldRank;
921 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
922 <
923 <    //pass mpiSimData struct and index arrays to fortran
924 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
925 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
926 <                    &localToGlobalCutoffGroupIndex[0], &isError);
927 <
928 <    if (isError) {
929 <      sprintf(painCave.errMsg,
930 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
931 <      painCave.isFatal = 1;
932 <      simError();
933 <    }
934 <
935 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
936 <    MPIcheckPoint();
937 <
938 <
939 <  }
940 <
941 < #endif
942 <
943 <  void SimInfo::setupCutoff() {          
944 <    
945 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
946 <
947 <    // Check the cutoff policy
948 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
949 <
950 <    std::string myPolicy;
951 <    if (forceFieldOptions_.haveCutoffPolicy()){
952 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
953 <    }else if (simParams_->haveCutoffPolicy()) {
954 <      myPolicy = simParams_->getCutoffPolicy();
955 <    }
956 <
957 <    if (!myPolicy.empty()){
958 <      toUpper(myPolicy);
959 <      if (myPolicy == "MIX") {
960 <        cp = MIX_CUTOFF_POLICY;
961 <      } else {
962 <        if (myPolicy == "MAX") {
963 <          cp = MAX_CUTOFF_POLICY;
964 <        } else {
965 <          if (myPolicy == "TRADITIONAL") {            
966 <            cp = TRADITIONAL_CUTOFF_POLICY;
967 <          } else {
968 <            // throw error        
969 <            sprintf( painCave.errMsg,
970 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
971 <            painCave.isFatal = 1;
972 <            simError();
973 <          }    
974 <        }          
975 <      }
976 <    }          
977 <    notifyFortranCutoffPolicy(&cp);
978 <
979 <    // Check the Skin Thickness for neighborlists
980 <    RealType skin;
981 <    if (simParams_->haveSkinThickness()) {
982 <      skin = simParams_->getSkinThickness();
983 <      notifyFortranSkinThickness(&skin);
984 <    }            
985 <        
986 <    // Check if the cutoff was set explicitly:
987 <    if (simParams_->haveCutoffRadius()) {
988 <      rcut_ = simParams_->getCutoffRadius();
989 <      if (simParams_->haveSwitchingRadius()) {
990 <        rsw_  = simParams_->getSwitchingRadius();
991 <      } else {
992 <        if (fInfo_.SIM_uses_Charges |
993 <            fInfo_.SIM_uses_Dipoles |
994 <            fInfo_.SIM_uses_RF) {
995 <          
996 <          rsw_ = 0.85 * rcut_;
997 <          sprintf(painCave.errMsg,
998 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
999 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1000 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1001 <        painCave.isFatal = 0;
1002 <        simError();
1003 <        } else {
1004 <          rsw_ = rcut_;
1005 <          sprintf(painCave.errMsg,
1006 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1008 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 <          painCave.isFatal = 0;
1010 <          simError();
1011 <        }
1012 <      }
1013 <      
1014 <      notifyFortranCutoffs(&rcut_, &rsw_);
1015 <      
1016 <    } else {
1017 <      
1018 <      // For electrostatic atoms, we'll assume a large safe value:
1019 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1020 <        sprintf(painCave.errMsg,
1021 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1022 <                "\tOOPSE will use a default value of 15.0 angstroms"
1023 <                "\tfor the cutoffRadius.\n");
1024 <        painCave.isFatal = 0;
1025 <        simError();
1026 <        rcut_ = 15.0;
1027 <      
1028 <        if (simParams_->haveElectrostaticSummationMethod()) {
1029 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1030 <          toUpper(myMethod);
1031 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1032 <            if (simParams_->haveSwitchingRadius()){
1033 <              sprintf(painCave.errMsg,
1034 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1035 <                      "\teven though the electrostaticSummationMethod was\n"
1036 <                      "\tset to %s\n", myMethod.c_str());
1037 <              painCave.isFatal = 1;
1038 <              simError();            
1039 <            }
1040 <          }
1041 <        }
1042 <      
1043 <        if (simParams_->haveSwitchingRadius()){
1044 <          rsw_ = simParams_->getSwitchingRadius();
1045 <        } else {        
1046 <          sprintf(painCave.errMsg,
1047 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1048 <                  "\tOOPSE will use a default value of\n"
1049 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1050 <          painCave.isFatal = 0;
1051 <          simError();
1052 <          rsw_ = 0.85 * rcut_;
1053 <        }
1054 <        notifyFortranCutoffs(&rcut_, &rsw_);
1055 <      } else {
1056 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1057 <        // We'll punt and let fortran figure out the cutoffs later.
1058 <        
1059 <        notifyFortranYouAreOnYourOwn();
1060 <
1061 <      }
1062 <    }
1063 <  }
1064 <
1065 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1066 <    
1067 <    int errorOut;
1068 <    int esm =  NONE;
1069 <    int sm = UNDAMPED;
1070 <    RealType alphaVal;
1071 <    RealType dielectric;
1072 <    
1073 <    errorOut = isError;
1074 <
1075 <    if (simParams_->haveElectrostaticSummationMethod()) {
1076 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1077 <      toUpper(myMethod);
1078 <      if (myMethod == "NONE") {
1079 <        esm = NONE;
1080 <      } else {
1081 <        if (myMethod == "SWITCHING_FUNCTION") {
1082 <          esm = SWITCHING_FUNCTION;
1083 <        } else {
1084 <          if (myMethod == "SHIFTED_POTENTIAL") {
1085 <            esm = SHIFTED_POTENTIAL;
1086 <          } else {
1087 <            if (myMethod == "SHIFTED_FORCE") {            
1088 <              esm = SHIFTED_FORCE;
1089 <            } else {
1090 <              if (myMethod == "REACTION_FIELD") {
1091 <                esm = REACTION_FIELD;
1092 <                dielectric = simParams_->getDielectric();
1093 <                if (!simParams_->haveDielectric()) {
1094 <                  // throw warning
1095 <                  sprintf( painCave.errMsg,
1096 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1097 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1098 <                  painCave.isFatal = 0;
1099 <                  simError();
1100 <                }
1101 <              } else {
1102 <                // throw error        
1103 <                sprintf( painCave.errMsg,
1104 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1105 <                         "\t(Input file specified %s .)\n"
1106 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1107 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1108 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1109 <                painCave.isFatal = 1;
1110 <                simError();
1111 <              }    
1112 <            }          
1113 <          }
1114 <        }
1115 <      }
1116 <    }
1117 <    
1118 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1119 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1120 <      toUpper(myScreen);
1121 <      if (myScreen == "UNDAMPED") {
1122 <        sm = UNDAMPED;
1123 <      } else {
1124 <        if (myScreen == "DAMPED") {
1125 <          sm = DAMPED;
1126 <          if (!simParams_->haveDampingAlpha()) {
1127 <            // first set a cutoff dependent alpha value
1128 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1129 <            alphaVal = 0.5125 - rcut_* 0.025;
1130 <            // for values rcut > 20.5, alpha is zero
1131 <            if (alphaVal < 0) alphaVal = 0;
934 >    int* excludeList = excludedInteractions_.getPairList();
935 >    int* oneTwoList = oneTwoInteractions_.getPairList();
936 >    int* oneThreeList = oneThreeInteractions_.getPairList();
937 >    int* oneFourList = oneFourInteractions_.getPairList();
938  
939 <            // throw warning
1134 <            sprintf( painCave.errMsg,
1135 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1136 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1137 <            painCave.isFatal = 0;
1138 <            simError();
1139 <          } else {
1140 <            alphaVal = simParams_->getDampingAlpha();
1141 <          }
1142 <          
1143 <        } else {
1144 <          // throw error        
1145 <          sprintf( painCave.errMsg,
1146 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1147 <                   "\t(Input file specified %s .)\n"
1148 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1149 <                   "or \"damped\".\n", myScreen.c_str() );
1150 <          painCave.isFatal = 1;
1151 <          simError();
1152 <        }
1153 <      }
1154 <    }
1155 <    
1156 <    // let's pass some summation method variables to fortran
1157 <    setElectrostaticSummationMethod( &esm );
1158 <    setFortranElectrostaticMethod( &esm );
1159 <    setScreeningMethod( &sm );
1160 <    setDampingAlpha( &alphaVal );
1161 <    setReactionFieldDielectric( &dielectric );
1162 <    initFortranFF( &errorOut );
939 >    topologyDone_ = true;
940    }
941  
1165  void SimInfo::setupSwitchingFunction() {    
1166    int ft = CUBIC;
1167
1168    if (simParams_->haveSwitchingFunctionType()) {
1169      std::string funcType = simParams_->getSwitchingFunctionType();
1170      toUpper(funcType);
1171      if (funcType == "CUBIC") {
1172        ft = CUBIC;
1173      } else {
1174        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1175          ft = FIFTH_ORDER_POLY;
1176        } else {
1177          // throw error        
1178          sprintf( painCave.errMsg,
1179                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1180          painCave.isFatal = 1;
1181          simError();
1182        }          
1183      }
1184    }
1185
1186    // send switching function notification to switcheroo
1187    setFunctionType(&ft);
1188
1189  }
1190
1191  void SimInfo::setupAccumulateBoxDipole() {    
1192
1193    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1194    if ( simParams_->haveAccumulateBoxDipole() )
1195      if ( simParams_->getAccumulateBoxDipole() ) {
1196        setAccumulateBoxDipole();
1197        calcBoxDipole_ = true;
1198      }
1199
1200  }
1201
942    void SimInfo::addProperty(GenericData* genData) {
943      properties_.addProperty(genData);  
944    }
945  
946 <  void SimInfo::removeProperty(const std::string& propName) {
946 >  void SimInfo::removeProperty(const string& propName) {
947      properties_.removeProperty(propName);  
948    }
949  
# Line 1211 | Line 951 | namespace oopse {
951      properties_.clearProperties();
952    }
953  
954 <  std::vector<std::string> SimInfo::getPropertyNames() {
954 >  vector<string> SimInfo::getPropertyNames() {
955      return properties_.getPropertyNames();  
956    }
957        
958 <  std::vector<GenericData*> SimInfo::getProperties() {
958 >  vector<GenericData*> SimInfo::getProperties() {
959      return properties_.getProperties();
960    }
961  
962 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963      return properties_.getPropertyByName(propName);
964    }
965  
# Line 1233 | Line 973 | namespace oopse {
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
984 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
985 >           atom = mol->nextAtom(atomIter)) {
986          atom->setSnapshotManager(sman_);
987        }
988          
989 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
990 >           rb = mol->nextRigidBody(rbIter)) {
991          rb->setSnapshotManager(sman_);
992        }
993 +
994 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
995 +           cg = mol->nextCutoffGroup(cgIter)) {
996 +        cg->setSnapshotManager(sman_);
997 +      }
998      }    
999      
1000    }
1001  
1253  Vector3d SimInfo::getComVel(){
1254    SimInfo::MoleculeIterator i;
1255    Molecule* mol;
1002  
1003 <    Vector3d comVel(0.0);
1258 <    RealType totalMass = 0.0;
1259 <    
1260 <
1261 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1262 <      RealType mass = mol->getMass();
1263 <      totalMass += mass;
1264 <      comVel += mass * mol->getComVel();
1265 <    }  
1003 >  ostream& operator <<(ostream& o, SimInfo& info) {
1004  
1267 #ifdef IS_MPI
1268    RealType tmpMass = totalMass;
1269    Vector3d tmpComVel(comVel);    
1270    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1272 #endif
1273
1274    comVel /= totalMass;
1275
1276    return comVel;
1277  }
1278
1279  Vector3d SimInfo::getCom(){
1280    SimInfo::MoleculeIterator i;
1281    Molecule* mol;
1282
1283    Vector3d com(0.0);
1284    RealType totalMass = 0.0;
1285    
1286    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1287      RealType mass = mol->getMass();
1288      totalMass += mass;
1289      com += mass * mol->getCom();
1290    }  
1291
1292 #ifdef IS_MPI
1293    RealType tmpMass = totalMass;
1294    Vector3d tmpCom(com);    
1295    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 #endif
1298
1299    com /= totalMass;
1300
1301    return com;
1302
1303  }        
1304
1305  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1306
1005      return o;
1006    }
1007    
1008 <  
1311 <   /*
1312 <   Returns center of mass and center of mass velocity in one function call.
1313 <   */
1314 <  
1315 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1316 <      SimInfo::MoleculeIterator i;
1317 <      Molecule* mol;
1318 <      
1319 <    
1320 <      RealType totalMass = 0.0;
1321 <    
1322 <
1323 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1324 <         RealType mass = mol->getMass();
1325 <         totalMass += mass;
1326 <         com += mass * mol->getCom();
1327 <         comVel += mass * mol->getComVel();          
1328 <      }  
1329 <      
1330 < #ifdef IS_MPI
1331 <      RealType tmpMass = totalMass;
1332 <      Vector3d tmpCom(com);  
1333 <      Vector3d tmpComVel(comVel);
1334 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1337 < #endif
1338 <      
1339 <      com /= totalMass;
1340 <      comVel /= totalMass;
1341 <   }        
1342 <  
1343 <   /*
1344 <   Return intertia tensor for entire system and angular momentum Vector.
1345 <
1346 <
1347 <       [  Ixx -Ixy  -Ixz ]
1348 <  J =| -Iyx  Iyy  -Iyz |
1349 <       [ -Izx -Iyz   Izz ]
1350 <    */
1351 <
1352 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1353 <      
1354 <
1355 <      RealType xx = 0.0;
1356 <      RealType yy = 0.0;
1357 <      RealType zz = 0.0;
1358 <      RealType xy = 0.0;
1359 <      RealType xz = 0.0;
1360 <      RealType yz = 0.0;
1361 <      Vector3d com(0.0);
1362 <      Vector3d comVel(0.0);
1363 <      
1364 <      getComAll(com, comVel);
1365 <      
1366 <      SimInfo::MoleculeIterator i;
1367 <      Molecule* mol;
1368 <      
1369 <      Vector3d thisq(0.0);
1370 <      Vector3d thisv(0.0);
1371 <
1372 <      RealType thisMass = 0.0;
1373 <    
1374 <      
1375 <      
1376 <  
1377 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1378 <        
1379 <         thisq = mol->getCom()-com;
1380 <         thisv = mol->getComVel()-comVel;
1381 <         thisMass = mol->getMass();
1382 <         // Compute moment of intertia coefficients.
1383 <         xx += thisq[0]*thisq[0]*thisMass;
1384 <         yy += thisq[1]*thisq[1]*thisMass;
1385 <         zz += thisq[2]*thisq[2]*thisMass;
1386 <        
1387 <         // compute products of intertia
1388 <         xy += thisq[0]*thisq[1]*thisMass;
1389 <         xz += thisq[0]*thisq[2]*thisMass;
1390 <         yz += thisq[1]*thisq[2]*thisMass;
1391 <            
1392 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1393 <            
1394 <      }  
1395 <      
1396 <      
1397 <      inertiaTensor(0,0) = yy + zz;
1398 <      inertiaTensor(0,1) = -xy;
1399 <      inertiaTensor(0,2) = -xz;
1400 <      inertiaTensor(1,0) = -xy;
1401 <      inertiaTensor(1,1) = xx + zz;
1402 <      inertiaTensor(1,2) = -yz;
1403 <      inertiaTensor(2,0) = -xz;
1404 <      inertiaTensor(2,1) = -yz;
1405 <      inertiaTensor(2,2) = xx + yy;
1406 <      
1407 < #ifdef IS_MPI
1408 <      Mat3x3d tmpI(inertiaTensor);
1409 <      Vector3d tmpAngMom;
1410 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1412 < #endif
1413 <              
1414 <      return;
1415 <   }
1416 <
1417 <   //Returns the angular momentum of the system
1418 <   Vector3d SimInfo::getAngularMomentum(){
1419 <      
1420 <      Vector3d com(0.0);
1421 <      Vector3d comVel(0.0);
1422 <      Vector3d angularMomentum(0.0);
1423 <      
1424 <      getComAll(com,comVel);
1425 <      
1426 <      SimInfo::MoleculeIterator i;
1427 <      Molecule* mol;
1428 <      
1429 <      Vector3d thisr(0.0);
1430 <      Vector3d thisp(0.0);
1431 <      
1432 <      RealType thisMass;
1433 <      
1434 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1435 <        thisMass = mol->getMass();
1436 <        thisr = mol->getCom()-com;
1437 <        thisp = (mol->getComVel()-comVel)*thisMass;
1438 <        
1439 <        angularMomentum += cross( thisr, thisp );
1440 <        
1441 <      }  
1442 <      
1443 < #ifdef IS_MPI
1444 <      Vector3d tmpAngMom;
1445 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1446 < #endif
1447 <      
1448 <      return angularMomentum;
1449 <   }
1450 <  
1008 >  
1009    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1010 <    return IOIndexToIntegrableObject.at(index);
1010 >    if (index >= IOIndexToIntegrableObject.size()) {
1011 >      sprintf(painCave.errMsg,
1012 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1013 >              "\tindex exceeds number of known objects!\n");
1014 >      painCave.isFatal = 1;
1015 >      simError();
1016 >      return NULL;
1017 >    } else
1018 >      return IOIndexToIntegrableObject.at(index);
1019    }
1020    
1021 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1021 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1022      IOIndexToIntegrableObject= v;
1023    }
1024  
1025 <  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1026 <     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1027 <     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1028 <     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1029 <  */
1030 <  void SimInfo::getGyrationalVolume(RealType &volume){
1031 <    Mat3x3d intTensor;
1032 <    RealType det;
1033 <    Vector3d dummyAngMom;
1468 <    RealType sysconstants;
1469 <    RealType geomCnst;
1470 <
1471 <    geomCnst = 3.0/2.0;
1472 <    /* Get the inertial tensor and angular momentum for free*/
1473 <    getInertiaTensor(intTensor,dummyAngMom);
1474 <    
1475 <    det = intTensor.determinant();
1476 <    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1477 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1478 <    return;
1025 >  int SimInfo::getNGlobalConstraints() {
1026 >    int nGlobalConstraints;
1027 > #ifdef IS_MPI
1028 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1029 >                  MPI_COMM_WORLD);    
1030 > #else
1031 >    nGlobalConstraints =  nConstraints_;
1032 > #endif
1033 >    return nGlobalConstraints;
1034    }
1035  
1036 <  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1482 <    Mat3x3d intTensor;
1483 <    Vector3d dummyAngMom;
1484 <    RealType sysconstants;
1485 <    RealType geomCnst;
1036 > }//end namespace OpenMD
1037  
1487    geomCnst = 3.0/2.0;
1488    /* Get the inertial tensor and angular momentum for free*/
1489    getInertiaTensor(intTensor,dummyAngMom);
1490    
1491    detI = intTensor.determinant();
1492    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1493    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1494    return;
1495  }
1496 /*
1497   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1498      assert( v.size() == nAtoms_ + nRigidBodies_);
1499      sdByGlobalIndex_ = v;
1500    }
1501
1502    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1503      //assert(index < nAtoms_ + nRigidBodies_);
1504      return sdByGlobalIndex_.at(index);
1505    }  
1506 */  
1507 }//end namespace oopse
1508

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1121 by chuckv, Mon Feb 26 04:45:42 2007 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1779 by gezelter, Mon Aug 20 17:51:39 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines