1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SimInfo.cpp |
45 |
* @author tlin |
46 |
* @date 11/02/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include <set> |
52 |
#include <map> |
53 |
|
54 |
#include "brains/SimInfo.hpp" |
55 |
#include "math/Vector3.hpp" |
56 |
#include "primitives/Molecule.hpp" |
57 |
#include "primitives/StuntDouble.hpp" |
58 |
#include "utils/MemoryUtils.hpp" |
59 |
#include "utils/simError.h" |
60 |
#include "selection/SelectionManager.hpp" |
61 |
#include "io/ForceFieldOptions.hpp" |
62 |
#include "brains/ForceField.hpp" |
63 |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
#ifdef IS_MPI |
65 |
#include <mpi.h> |
66 |
#endif |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
forceField_(ff), simParams_(simParams), |
73 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
81 |
MoleculeStamp* molStamp; |
82 |
int nMolWithSameStamp; |
83 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
CutoffGroupStamp* cgStamp; |
86 |
RigidBodyStamp* rbStamp; |
87 |
int nRigidAtoms = 0; |
88 |
|
89 |
vector<Component*> components = simParams->getComponents(); |
90 |
|
91 |
for (vector<Component*>::iterator i = components.begin(); |
92 |
i !=components.end(); ++i) { |
93 |
molStamp = (*i)->getMoleculeStamp(); |
94 |
nMolWithSameStamp = (*i)->getNMol(); |
95 |
|
96 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
97 |
|
98 |
//calculate atoms in molecules |
99 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
100 |
|
101 |
//calculate atoms in cutoff groups |
102 |
int nAtomsInGroups = 0; |
103 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
104 |
|
105 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
106 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
107 |
nAtomsInGroups += cgStamp->getNMembers(); |
108 |
} |
109 |
|
110 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
111 |
|
112 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
113 |
|
114 |
//calculate atoms in rigid bodies |
115 |
int nAtomsInRigidBodies = 0; |
116 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 |
|
118 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 |
rbStamp = molStamp->getRigidBodyStamp(j); |
120 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 |
} |
122 |
|
123 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 |
|
126 |
} |
127 |
|
128 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
129 |
//group therefore the total number of cutoff groups in the system is |
130 |
//equal to the total number of atoms minus number of atoms belong to |
131 |
//cutoff group defined in meta-data file plus the number of cutoff |
132 |
//groups defined in meta-data file |
133 |
|
134 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
135 |
|
136 |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
//integrable object therefore the total number of integrable objects |
138 |
//in the system is equal to the total number of atoms minus number of |
139 |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
//of rigid bodies defined in meta-data file |
141 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
+ nGlobalRigidBodies_; |
143 |
|
144 |
nGlobalMols_ = molStampIds_.size(); |
145 |
molToProcMap_.resize(nGlobalMols_); |
146 |
} |
147 |
|
148 |
SimInfo::~SimInfo() { |
149 |
map<int, Molecule*>::iterator i; |
150 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
151 |
delete i->second; |
152 |
} |
153 |
molecules_.clear(); |
154 |
|
155 |
delete sman_; |
156 |
delete simParams_; |
157 |
delete forceField_; |
158 |
} |
159 |
|
160 |
|
161 |
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
MoleculeIterator i; |
163 |
|
164 |
i = molecules_.find(mol->getGlobalIndex()); |
165 |
if (i == molecules_.end() ) { |
166 |
|
167 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
168 |
|
169 |
nAtoms_ += mol->getNAtoms(); |
170 |
nBonds_ += mol->getNBonds(); |
171 |
nBends_ += mol->getNBends(); |
172 |
nTorsions_ += mol->getNTorsions(); |
173 |
nInversions_ += mol->getNInversions(); |
174 |
nRigidBodies_ += mol->getNRigidBodies(); |
175 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
nConstraints_ += mol->getNConstraintPairs(); |
178 |
|
179 |
addInteractionPairs(mol); |
180 |
|
181 |
return true; |
182 |
} else { |
183 |
return false; |
184 |
} |
185 |
} |
186 |
|
187 |
bool SimInfo::removeMolecule(Molecule* mol) { |
188 |
MoleculeIterator i; |
189 |
i = molecules_.find(mol->getGlobalIndex()); |
190 |
|
191 |
if (i != molecules_.end() ) { |
192 |
|
193 |
assert(mol == i->second); |
194 |
|
195 |
nAtoms_ -= mol->getNAtoms(); |
196 |
nBonds_ -= mol->getNBonds(); |
197 |
nBends_ -= mol->getNBends(); |
198 |
nTorsions_ -= mol->getNTorsions(); |
199 |
nInversions_ -= mol->getNInversions(); |
200 |
nRigidBodies_ -= mol->getNRigidBodies(); |
201 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
202 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
203 |
nConstraints_ -= mol->getNConstraintPairs(); |
204 |
|
205 |
removeInteractionPairs(mol); |
206 |
molecules_.erase(mol->getGlobalIndex()); |
207 |
|
208 |
delete mol; |
209 |
|
210 |
return true; |
211 |
} else { |
212 |
return false; |
213 |
} |
214 |
} |
215 |
|
216 |
|
217 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
218 |
i = molecules_.begin(); |
219 |
return i == molecules_.end() ? NULL : i->second; |
220 |
} |
221 |
|
222 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
223 |
++i; |
224 |
return i == molecules_.end() ? NULL : i->second; |
225 |
} |
226 |
|
227 |
|
228 |
void SimInfo::calcNdf() { |
229 |
int ndf_local, nfq_local; |
230 |
MoleculeIterator i; |
231 |
vector<StuntDouble*>::iterator j; |
232 |
vector<Atom*>::iterator k; |
233 |
|
234 |
Molecule* mol; |
235 |
StuntDouble* sd; |
236 |
Atom* atom; |
237 |
|
238 |
ndf_local = 0; |
239 |
nfq_local = 0; |
240 |
|
241 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
242 |
|
243 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 |
sd = mol->nextIntegrableObject(j)) { |
245 |
|
246 |
ndf_local += 3; |
247 |
|
248 |
if (sd->isDirectional()) { |
249 |
if (sd->isLinear()) { |
250 |
ndf_local += 2; |
251 |
} else { |
252 |
ndf_local += 3; |
253 |
} |
254 |
} |
255 |
} |
256 |
|
257 |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 |
atom = mol->nextFluctuatingCharge(k)) { |
259 |
if (atom->isFluctuatingCharge()) { |
260 |
nfq_local++; |
261 |
} |
262 |
} |
263 |
} |
264 |
|
265 |
ndfLocal_ = ndf_local; |
266 |
|
267 |
// n_constraints is local, so subtract them on each processor |
268 |
ndf_local -= nConstraints_; |
269 |
|
270 |
#ifdef IS_MPI |
271 |
MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 |
MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 |
MPI::INT, MPI::SUM); |
274 |
#else |
275 |
ndf_ = ndf_local; |
276 |
nGlobalFluctuatingCharges_ = nfq_local; |
277 |
#endif |
278 |
|
279 |
// nZconstraints_ is global, as are the 3 COM translations for the |
280 |
// entire system: |
281 |
ndf_ = ndf_ - 3 - nZconstraint_; |
282 |
|
283 |
} |
284 |
|
285 |
int SimInfo::getFdf() { |
286 |
#ifdef IS_MPI |
287 |
MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 |
#else |
289 |
fdf_ = fdf_local; |
290 |
#endif |
291 |
return fdf_; |
292 |
} |
293 |
|
294 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
295 |
int nLocalCutoffAtoms = 0; |
296 |
Molecule* mol; |
297 |
MoleculeIterator mi; |
298 |
CutoffGroup* cg; |
299 |
Molecule::CutoffGroupIterator ci; |
300 |
|
301 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
302 |
|
303 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
304 |
cg = mol->nextCutoffGroup(ci)) { |
305 |
nLocalCutoffAtoms += cg->getNumAtom(); |
306 |
|
307 |
} |
308 |
} |
309 |
|
310 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
311 |
} |
312 |
|
313 |
void SimInfo::calcNdfRaw() { |
314 |
int ndfRaw_local; |
315 |
|
316 |
MoleculeIterator i; |
317 |
vector<StuntDouble*>::iterator j; |
318 |
Molecule* mol; |
319 |
StuntDouble* sd; |
320 |
|
321 |
// Raw degrees of freedom that we have to set |
322 |
ndfRaw_local = 0; |
323 |
|
324 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
325 |
|
326 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 |
sd = mol->nextIntegrableObject(j)) { |
328 |
|
329 |
ndfRaw_local += 3; |
330 |
|
331 |
if (sd->isDirectional()) { |
332 |
if (sd->isLinear()) { |
333 |
ndfRaw_local += 2; |
334 |
} else { |
335 |
ndfRaw_local += 3; |
336 |
} |
337 |
} |
338 |
|
339 |
} |
340 |
} |
341 |
|
342 |
#ifdef IS_MPI |
343 |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 |
#else |
345 |
ndfRaw_ = ndfRaw_local; |
346 |
#endif |
347 |
} |
348 |
|
349 |
void SimInfo::calcNdfTrans() { |
350 |
int ndfTrans_local; |
351 |
|
352 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
353 |
|
354 |
|
355 |
#ifdef IS_MPI |
356 |
MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 |
MPI::INT, MPI::SUM); |
358 |
#else |
359 |
ndfTrans_ = ndfTrans_local; |
360 |
#endif |
361 |
|
362 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
363 |
|
364 |
} |
365 |
|
366 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
367 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
368 |
vector<Bond*>::iterator bondIter; |
369 |
vector<Bend*>::iterator bendIter; |
370 |
vector<Torsion*>::iterator torsionIter; |
371 |
vector<Inversion*>::iterator inversionIter; |
372 |
Bond* bond; |
373 |
Bend* bend; |
374 |
Torsion* torsion; |
375 |
Inversion* inversion; |
376 |
int a; |
377 |
int b; |
378 |
int c; |
379 |
int d; |
380 |
|
381 |
// atomGroups can be used to add special interaction maps between |
382 |
// groups of atoms that are in two separate rigid bodies. |
383 |
// However, most site-site interactions between two rigid bodies |
384 |
// are probably not special, just the ones between the physically |
385 |
// bonded atoms. Interactions *within* a single rigid body should |
386 |
// always be excluded. These are done at the bottom of this |
387 |
// function. |
388 |
|
389 |
map<int, set<int> > atomGroups; |
390 |
Molecule::RigidBodyIterator rbIter; |
391 |
RigidBody* rb; |
392 |
Molecule::IntegrableObjectIterator ii; |
393 |
StuntDouble* sd; |
394 |
|
395 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 |
sd = mol->nextIntegrableObject(ii)) { |
397 |
|
398 |
if (sd->isRigidBody()) { |
399 |
rb = static_cast<RigidBody*>(sd); |
400 |
vector<Atom*> atoms = rb->getAtoms(); |
401 |
set<int> rigidAtoms; |
402 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
403 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
404 |
} |
405 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
406 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
407 |
} |
408 |
} else { |
409 |
set<int> oneAtomSet; |
410 |
oneAtomSet.insert(sd->getGlobalIndex()); |
411 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 |
} |
413 |
} |
414 |
|
415 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
416 |
bond = mol->nextBond(bondIter)) { |
417 |
|
418 |
a = bond->getAtomA()->getGlobalIndex(); |
419 |
b = bond->getAtomB()->getGlobalIndex(); |
420 |
|
421 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
422 |
oneTwoInteractions_.addPair(a, b); |
423 |
} else { |
424 |
excludedInteractions_.addPair(a, b); |
425 |
} |
426 |
} |
427 |
|
428 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
429 |
bend = mol->nextBend(bendIter)) { |
430 |
|
431 |
a = bend->getAtomA()->getGlobalIndex(); |
432 |
b = bend->getAtomB()->getGlobalIndex(); |
433 |
c = bend->getAtomC()->getGlobalIndex(); |
434 |
|
435 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
436 |
oneTwoInteractions_.addPair(a, b); |
437 |
oneTwoInteractions_.addPair(b, c); |
438 |
} else { |
439 |
excludedInteractions_.addPair(a, b); |
440 |
excludedInteractions_.addPair(b, c); |
441 |
} |
442 |
|
443 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
444 |
oneThreeInteractions_.addPair(a, c); |
445 |
} else { |
446 |
excludedInteractions_.addPair(a, c); |
447 |
} |
448 |
} |
449 |
|
450 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
451 |
torsion = mol->nextTorsion(torsionIter)) { |
452 |
|
453 |
a = torsion->getAtomA()->getGlobalIndex(); |
454 |
b = torsion->getAtomB()->getGlobalIndex(); |
455 |
c = torsion->getAtomC()->getGlobalIndex(); |
456 |
d = torsion->getAtomD()->getGlobalIndex(); |
457 |
|
458 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
459 |
oneTwoInteractions_.addPair(a, b); |
460 |
oneTwoInteractions_.addPair(b, c); |
461 |
oneTwoInteractions_.addPair(c, d); |
462 |
} else { |
463 |
excludedInteractions_.addPair(a, b); |
464 |
excludedInteractions_.addPair(b, c); |
465 |
excludedInteractions_.addPair(c, d); |
466 |
} |
467 |
|
468 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
469 |
oneThreeInteractions_.addPair(a, c); |
470 |
oneThreeInteractions_.addPair(b, d); |
471 |
} else { |
472 |
excludedInteractions_.addPair(a, c); |
473 |
excludedInteractions_.addPair(b, d); |
474 |
} |
475 |
|
476 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
477 |
oneFourInteractions_.addPair(a, d); |
478 |
} else { |
479 |
excludedInteractions_.addPair(a, d); |
480 |
} |
481 |
} |
482 |
|
483 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
484 |
inversion = mol->nextInversion(inversionIter)) { |
485 |
|
486 |
a = inversion->getAtomA()->getGlobalIndex(); |
487 |
b = inversion->getAtomB()->getGlobalIndex(); |
488 |
c = inversion->getAtomC()->getGlobalIndex(); |
489 |
d = inversion->getAtomD()->getGlobalIndex(); |
490 |
|
491 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
492 |
oneTwoInteractions_.addPair(a, b); |
493 |
oneTwoInteractions_.addPair(a, c); |
494 |
oneTwoInteractions_.addPair(a, d); |
495 |
} else { |
496 |
excludedInteractions_.addPair(a, b); |
497 |
excludedInteractions_.addPair(a, c); |
498 |
excludedInteractions_.addPair(a, d); |
499 |
} |
500 |
|
501 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
502 |
oneThreeInteractions_.addPair(b, c); |
503 |
oneThreeInteractions_.addPair(b, d); |
504 |
oneThreeInteractions_.addPair(c, d); |
505 |
} else { |
506 |
excludedInteractions_.addPair(b, c); |
507 |
excludedInteractions_.addPair(b, d); |
508 |
excludedInteractions_.addPair(c, d); |
509 |
} |
510 |
} |
511 |
|
512 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
513 |
rb = mol->nextRigidBody(rbIter)) { |
514 |
vector<Atom*> atoms = rb->getAtoms(); |
515 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
516 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
517 |
a = atoms[i]->getGlobalIndex(); |
518 |
b = atoms[j]->getGlobalIndex(); |
519 |
excludedInteractions_.addPair(a, b); |
520 |
} |
521 |
} |
522 |
} |
523 |
|
524 |
} |
525 |
|
526 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
527 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
528 |
vector<Bond*>::iterator bondIter; |
529 |
vector<Bend*>::iterator bendIter; |
530 |
vector<Torsion*>::iterator torsionIter; |
531 |
vector<Inversion*>::iterator inversionIter; |
532 |
Bond* bond; |
533 |
Bend* bend; |
534 |
Torsion* torsion; |
535 |
Inversion* inversion; |
536 |
int a; |
537 |
int b; |
538 |
int c; |
539 |
int d; |
540 |
|
541 |
map<int, set<int> > atomGroups; |
542 |
Molecule::RigidBodyIterator rbIter; |
543 |
RigidBody* rb; |
544 |
Molecule::IntegrableObjectIterator ii; |
545 |
StuntDouble* sd; |
546 |
|
547 |
for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 |
sd = mol->nextIntegrableObject(ii)) { |
549 |
|
550 |
if (sd->isRigidBody()) { |
551 |
rb = static_cast<RigidBody*>(sd); |
552 |
vector<Atom*> atoms = rb->getAtoms(); |
553 |
set<int> rigidAtoms; |
554 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
555 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
556 |
} |
557 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
558 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
559 |
} |
560 |
} else { |
561 |
set<int> oneAtomSet; |
562 |
oneAtomSet.insert(sd->getGlobalIndex()); |
563 |
atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 |
} |
565 |
} |
566 |
|
567 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
568 |
bond = mol->nextBond(bondIter)) { |
569 |
|
570 |
a = bond->getAtomA()->getGlobalIndex(); |
571 |
b = bond->getAtomB()->getGlobalIndex(); |
572 |
|
573 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
574 |
oneTwoInteractions_.removePair(a, b); |
575 |
} else { |
576 |
excludedInteractions_.removePair(a, b); |
577 |
} |
578 |
} |
579 |
|
580 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
581 |
bend = mol->nextBend(bendIter)) { |
582 |
|
583 |
a = bend->getAtomA()->getGlobalIndex(); |
584 |
b = bend->getAtomB()->getGlobalIndex(); |
585 |
c = bend->getAtomC()->getGlobalIndex(); |
586 |
|
587 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
588 |
oneTwoInteractions_.removePair(a, b); |
589 |
oneTwoInteractions_.removePair(b, c); |
590 |
} else { |
591 |
excludedInteractions_.removePair(a, b); |
592 |
excludedInteractions_.removePair(b, c); |
593 |
} |
594 |
|
595 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
596 |
oneThreeInteractions_.removePair(a, c); |
597 |
} else { |
598 |
excludedInteractions_.removePair(a, c); |
599 |
} |
600 |
} |
601 |
|
602 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
603 |
torsion = mol->nextTorsion(torsionIter)) { |
604 |
|
605 |
a = torsion->getAtomA()->getGlobalIndex(); |
606 |
b = torsion->getAtomB()->getGlobalIndex(); |
607 |
c = torsion->getAtomC()->getGlobalIndex(); |
608 |
d = torsion->getAtomD()->getGlobalIndex(); |
609 |
|
610 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
611 |
oneTwoInteractions_.removePair(a, b); |
612 |
oneTwoInteractions_.removePair(b, c); |
613 |
oneTwoInteractions_.removePair(c, d); |
614 |
} else { |
615 |
excludedInteractions_.removePair(a, b); |
616 |
excludedInteractions_.removePair(b, c); |
617 |
excludedInteractions_.removePair(c, d); |
618 |
} |
619 |
|
620 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
621 |
oneThreeInteractions_.removePair(a, c); |
622 |
oneThreeInteractions_.removePair(b, d); |
623 |
} else { |
624 |
excludedInteractions_.removePair(a, c); |
625 |
excludedInteractions_.removePair(b, d); |
626 |
} |
627 |
|
628 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
629 |
oneFourInteractions_.removePair(a, d); |
630 |
} else { |
631 |
excludedInteractions_.removePair(a, d); |
632 |
} |
633 |
} |
634 |
|
635 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
636 |
inversion = mol->nextInversion(inversionIter)) { |
637 |
|
638 |
a = inversion->getAtomA()->getGlobalIndex(); |
639 |
b = inversion->getAtomB()->getGlobalIndex(); |
640 |
c = inversion->getAtomC()->getGlobalIndex(); |
641 |
d = inversion->getAtomD()->getGlobalIndex(); |
642 |
|
643 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
644 |
oneTwoInteractions_.removePair(a, b); |
645 |
oneTwoInteractions_.removePair(a, c); |
646 |
oneTwoInteractions_.removePair(a, d); |
647 |
} else { |
648 |
excludedInteractions_.removePair(a, b); |
649 |
excludedInteractions_.removePair(a, c); |
650 |
excludedInteractions_.removePair(a, d); |
651 |
} |
652 |
|
653 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
654 |
oneThreeInteractions_.removePair(b, c); |
655 |
oneThreeInteractions_.removePair(b, d); |
656 |
oneThreeInteractions_.removePair(c, d); |
657 |
} else { |
658 |
excludedInteractions_.removePair(b, c); |
659 |
excludedInteractions_.removePair(b, d); |
660 |
excludedInteractions_.removePair(c, d); |
661 |
} |
662 |
} |
663 |
|
664 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
665 |
rb = mol->nextRigidBody(rbIter)) { |
666 |
vector<Atom*> atoms = rb->getAtoms(); |
667 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
668 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
669 |
a = atoms[i]->getGlobalIndex(); |
670 |
b = atoms[j]->getGlobalIndex(); |
671 |
excludedInteractions_.removePair(a, b); |
672 |
} |
673 |
} |
674 |
} |
675 |
|
676 |
} |
677 |
|
678 |
|
679 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
680 |
int curStampId; |
681 |
|
682 |
//index from 0 |
683 |
curStampId = moleculeStamps_.size(); |
684 |
|
685 |
moleculeStamps_.push_back(molStamp); |
686 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
687 |
} |
688 |
|
689 |
|
690 |
/** |
691 |
* update |
692 |
* |
693 |
* Performs the global checks and variable settings after the |
694 |
* objects have been created. |
695 |
* |
696 |
*/ |
697 |
void SimInfo::update() { |
698 |
setupSimVariables(); |
699 |
calcNdf(); |
700 |
calcNdfRaw(); |
701 |
calcNdfTrans(); |
702 |
} |
703 |
|
704 |
/** |
705 |
* getSimulatedAtomTypes |
706 |
* |
707 |
* Returns an STL set of AtomType* that are actually present in this |
708 |
* simulation. Must query all processors to assemble this information. |
709 |
* |
710 |
*/ |
711 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
712 |
SimInfo::MoleculeIterator mi; |
713 |
Molecule* mol; |
714 |
Molecule::AtomIterator ai; |
715 |
Atom* atom; |
716 |
set<AtomType*> atomTypes; |
717 |
|
718 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 |
for(atom = mol->beginAtom(ai); atom != NULL; |
720 |
atom = mol->nextAtom(ai)) { |
721 |
atomTypes.insert(atom->getAtomType()); |
722 |
} |
723 |
} |
724 |
|
725 |
#ifdef IS_MPI |
726 |
|
727 |
// loop over the found atom types on this processor, and add their |
728 |
// numerical idents to a vector: |
729 |
|
730 |
vector<int> foundTypes; |
731 |
set<AtomType*>::iterator i; |
732 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
733 |
foundTypes.push_back( (*i)->getIdent() ); |
734 |
|
735 |
// count_local holds the number of found types on this processor |
736 |
int count_local = foundTypes.size(); |
737 |
|
738 |
int nproc = MPI::COMM_WORLD.Get_size(); |
739 |
|
740 |
// we need arrays to hold the counts and displacement vectors for |
741 |
// all processors |
742 |
vector<int> counts(nproc, 0); |
743 |
vector<int> disps(nproc, 0); |
744 |
|
745 |
// fill the counts array |
746 |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
747 |
1, MPI::INT); |
748 |
|
749 |
// use the processor counts to compute the displacement array |
750 |
disps[0] = 0; |
751 |
int totalCount = counts[0]; |
752 |
for (int iproc = 1; iproc < nproc; iproc++) { |
753 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
754 |
totalCount += counts[iproc]; |
755 |
} |
756 |
|
757 |
// we need a (possibly redundant) set of all found types: |
758 |
vector<int> ftGlobal(totalCount); |
759 |
|
760 |
// now spray out the foundTypes to all the other processors: |
761 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
762 |
&ftGlobal[0], &counts[0], &disps[0], |
763 |
MPI::INT); |
764 |
|
765 |
vector<int>::iterator j; |
766 |
|
767 |
// foundIdents is a stl set, so inserting an already found ident |
768 |
// will have no effect. |
769 |
set<int> foundIdents; |
770 |
|
771 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
772 |
foundIdents.insert((*j)); |
773 |
|
774 |
// now iterate over the foundIdents and get the actual atom types |
775 |
// that correspond to these: |
776 |
set<int>::iterator it; |
777 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
778 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
779 |
|
780 |
#endif |
781 |
|
782 |
return atomTypes; |
783 |
} |
784 |
|
785 |
void SimInfo::setupSimVariables() { |
786 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
787 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole |
788 |
// parameter is true |
789 |
calcBoxDipole_ = false; |
790 |
if ( simParams_->haveAccumulateBoxDipole() ) |
791 |
if ( simParams_->getAccumulateBoxDipole() ) { |
792 |
calcBoxDipole_ = true; |
793 |
} |
794 |
|
795 |
set<AtomType*>::iterator i; |
796 |
set<AtomType*> atomTypes; |
797 |
atomTypes = getSimulatedAtomTypes(); |
798 |
bool usesElectrostatic = false; |
799 |
bool usesMetallic = false; |
800 |
bool usesDirectional = false; |
801 |
bool usesFluctuatingCharges = false; |
802 |
//loop over all of the atom types |
803 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
804 |
usesElectrostatic |= (*i)->isElectrostatic(); |
805 |
usesMetallic |= (*i)->isMetal(); |
806 |
usesDirectional |= (*i)->isDirectional(); |
807 |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
808 |
} |
809 |
|
810 |
#ifdef IS_MPI |
811 |
bool temp; |
812 |
temp = usesDirectional; |
813 |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
814 |
MPI::LOR); |
815 |
|
816 |
temp = usesMetallic; |
817 |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
818 |
MPI::LOR); |
819 |
|
820 |
temp = usesElectrostatic; |
821 |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
822 |
MPI::LOR); |
823 |
|
824 |
temp = usesFluctuatingCharges; |
825 |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
826 |
MPI::LOR); |
827 |
#else |
828 |
|
829 |
usesDirectionalAtoms_ = usesDirectional; |
830 |
usesMetallicAtoms_ = usesMetallic; |
831 |
usesElectrostaticAtoms_ = usesElectrostatic; |
832 |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
833 |
|
834 |
#endif |
835 |
|
836 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
837 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
838 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
839 |
} |
840 |
|
841 |
|
842 |
vector<int> SimInfo::getGlobalAtomIndices() { |
843 |
SimInfo::MoleculeIterator mi; |
844 |
Molecule* mol; |
845 |
Molecule::AtomIterator ai; |
846 |
Atom* atom; |
847 |
|
848 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
849 |
|
850 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
851 |
|
852 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
853 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
854 |
} |
855 |
} |
856 |
return GlobalAtomIndices; |
857 |
} |
858 |
|
859 |
|
860 |
vector<int> SimInfo::getGlobalGroupIndices() { |
861 |
SimInfo::MoleculeIterator mi; |
862 |
Molecule* mol; |
863 |
Molecule::CutoffGroupIterator ci; |
864 |
CutoffGroup* cg; |
865 |
|
866 |
vector<int> GlobalGroupIndices; |
867 |
|
868 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
869 |
|
870 |
//local index of cutoff group is trivial, it only depends on the |
871 |
//order of travesing |
872 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
873 |
cg = mol->nextCutoffGroup(ci)) { |
874 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
875 |
} |
876 |
} |
877 |
return GlobalGroupIndices; |
878 |
} |
879 |
|
880 |
|
881 |
void SimInfo::prepareTopology() { |
882 |
|
883 |
//calculate mass ratio of cutoff group |
884 |
SimInfo::MoleculeIterator mi; |
885 |
Molecule* mol; |
886 |
Molecule::CutoffGroupIterator ci; |
887 |
CutoffGroup* cg; |
888 |
Molecule::AtomIterator ai; |
889 |
Atom* atom; |
890 |
RealType totalMass; |
891 |
|
892 |
/** |
893 |
* The mass factor is the relative mass of an atom to the total |
894 |
* mass of the cutoff group it belongs to. By default, all atoms |
895 |
* are their own cutoff groups, and therefore have mass factors of |
896 |
* 1. We need some special handling for massless atoms, which |
897 |
* will be treated as carrying the entire mass of the cutoff |
898 |
* group. |
899 |
*/ |
900 |
massFactors_.clear(); |
901 |
massFactors_.resize(getNAtoms(), 1.0); |
902 |
|
903 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
904 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
905 |
cg = mol->nextCutoffGroup(ci)) { |
906 |
|
907 |
totalMass = cg->getMass(); |
908 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
909 |
// Check for massless groups - set mfact to 1 if true |
910 |
if (totalMass != 0) |
911 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
912 |
else |
913 |
massFactors_[atom->getLocalIndex()] = 1.0; |
914 |
} |
915 |
} |
916 |
} |
917 |
|
918 |
// Build the identArray_ |
919 |
|
920 |
identArray_.clear(); |
921 |
identArray_.reserve(getNAtoms()); |
922 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
923 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
924 |
identArray_.push_back(atom->getIdent()); |
925 |
} |
926 |
} |
927 |
|
928 |
//scan topology |
929 |
|
930 |
int* excludeList = excludedInteractions_.getPairList(); |
931 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
932 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
933 |
int* oneFourList = oneFourInteractions_.getPairList(); |
934 |
|
935 |
topologyDone_ = true; |
936 |
} |
937 |
|
938 |
void SimInfo::addProperty(GenericData* genData) { |
939 |
properties_.addProperty(genData); |
940 |
} |
941 |
|
942 |
void SimInfo::removeProperty(const string& propName) { |
943 |
properties_.removeProperty(propName); |
944 |
} |
945 |
|
946 |
void SimInfo::clearProperties() { |
947 |
properties_.clearProperties(); |
948 |
} |
949 |
|
950 |
vector<string> SimInfo::getPropertyNames() { |
951 |
return properties_.getPropertyNames(); |
952 |
} |
953 |
|
954 |
vector<GenericData*> SimInfo::getProperties() { |
955 |
return properties_.getProperties(); |
956 |
} |
957 |
|
958 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
959 |
return properties_.getPropertyByName(propName); |
960 |
} |
961 |
|
962 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
963 |
if (sman_ == sman) { |
964 |
return; |
965 |
} |
966 |
delete sman_; |
967 |
sman_ = sman; |
968 |
|
969 |
Molecule* mol; |
970 |
RigidBody* rb; |
971 |
Atom* atom; |
972 |
CutoffGroup* cg; |
973 |
SimInfo::MoleculeIterator mi; |
974 |
Molecule::RigidBodyIterator rbIter; |
975 |
Molecule::AtomIterator atomIter; |
976 |
Molecule::CutoffGroupIterator cgIter; |
977 |
|
978 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
979 |
|
980 |
for (atom = mol->beginAtom(atomIter); atom != NULL; |
981 |
atom = mol->nextAtom(atomIter)) { |
982 |
atom->setSnapshotManager(sman_); |
983 |
} |
984 |
|
985 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
986 |
rb = mol->nextRigidBody(rbIter)) { |
987 |
rb->setSnapshotManager(sman_); |
988 |
} |
989 |
|
990 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
991 |
cg = mol->nextCutoffGroup(cgIter)) { |
992 |
cg->setSnapshotManager(sman_); |
993 |
} |
994 |
} |
995 |
|
996 |
} |
997 |
|
998 |
|
999 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1000 |
|
1001 |
return o; |
1002 |
} |
1003 |
|
1004 |
|
1005 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1006 |
if (index >= int(IOIndexToIntegrableObject.size())) { |
1007 |
sprintf(painCave.errMsg, |
1008 |
"SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1009 |
"\tindex exceeds number of known objects!\n"); |
1010 |
painCave.isFatal = 1; |
1011 |
simError(); |
1012 |
return NULL; |
1013 |
} else |
1014 |
return IOIndexToIntegrableObject.at(index); |
1015 |
} |
1016 |
|
1017 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1018 |
IOIndexToIntegrableObject= v; |
1019 |
} |
1020 |
|
1021 |
int SimInfo::getNGlobalConstraints() { |
1022 |
int nGlobalConstraints; |
1023 |
#ifdef IS_MPI |
1024 |
MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1025 |
MPI::INT, MPI::SUM); |
1026 |
#else |
1027 |
nGlobalConstraints = nConstraints_; |
1028 |
#endif |
1029 |
return nGlobalConstraints; |
1030 |
} |
1031 |
|
1032 |
}//end namespace OpenMD |
1033 |
|