ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC vs.
Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 < #include "nonbonded/InteractionManager.hpp"
68 <
69 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 79 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 95 | Line 88 | namespace OpenMD {
88      
89      vector<Component*> components = simParams->getComponents();
90      
91 <    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93        molStamp = (*i)->getMoleculeStamp();
94        nMolWithSameStamp = (*i)->getNMol();
95        
# Line 136 | Line 130 | namespace OpenMD {
130      //equal to the total number of atoms minus number of atoms belong to
131      //cutoff group defined in meta-data file plus the number of cutoff
132      //groups defined in meta-data file
133 +
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135      
136      //every free atom (atom does not belong to rigid bodies) is an
# Line 231 | Line 226 | namespace OpenMD {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231      vector<StuntDouble*>::iterator j;
232 +    vector<Atom*>::iterator k;
233 +
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
243      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
255            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 273 | Line 284 | namespace OpenMD {
284  
285    int SimInfo::getFdf() {
286   #ifdef IS_MPI
287 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288   #else
289      fdf_ = fdf_local;
290   #endif
291      return fdf_;
292    }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300      
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317      vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 309 | Line 340 | namespace OpenMD {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 322 | Line 353 | namespace OpenMD {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 358 | Line 390 | namespace OpenMD {
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii);
396 <         integrableObject != NULL;
365 <         integrableObject = mol->nextIntegrableObject(ii)) {
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397        
398 <      if (integrableObject->isRigidBody()) {
399 <        rb = static_cast<RigidBody*>(integrableObject);
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400          vector<Atom*> atoms = rb->getAtoms();
401          set<int> rigidAtoms;
402          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 376 | Line 407 | namespace OpenMD {
407          }      
408        } else {
409          set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414            
# Line 511 | Line 542 | namespace OpenMD {
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii);
548 <         integrableObject != NULL;
518 <         integrableObject = mol->nextIntegrableObject(ii)) {
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549        
550 <      if (integrableObject->isRigidBody()) {
551 <        rb = static_cast<RigidBody*>(integrableObject);
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552          vector<Atom*> atoms = rb->getAtoms();
553          set<int> rigidAtoms;
554          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 529 | Line 559 | namespace OpenMD {
559          }      
560        } else {
561          set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
# Line 656 | Line 686 | namespace OpenMD {
686      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
687    }
688  
659  void SimInfo::update() {
689  
690 <    setupSimType();
691 <    setupCutoffRadius();
692 <    setupSwitchingRadius();
693 <    setupCutoffMethod();
694 <    setupSkinThickness();
695 <    setupSwitchingFunction();
696 <    setupAccumulateBoxDipole();
697 <
698 < #ifdef IS_MPI
670 <    setupFortranParallel();
671 < #endif
672 <    setupFortranSim();
673 <    fortranInitialized_ = true;
674 <
690 >  /**
691 >   * update
692 >   *
693 >   *  Performs the global checks and variable settings after the
694 >   *  objects have been created.
695 >   *
696 >   */
697 >  void SimInfo::update() {  
698 >    setupSimVariables();
699      calcNdf();
700      calcNdfRaw();
701      calcNdfTrans();
702    }
703    
704 +  /**
705 +   * getSimulatedAtomTypes
706 +   *
707 +   * Returns an STL set of AtomType* that are actually present in this
708 +   * simulation.  Must query all processors to assemble this information.
709 +   *
710 +   */
711    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
712      SimInfo::MoleculeIterator mi;
713      Molecule* mol;
# Line 685 | Line 716 | namespace OpenMD {
716      set<AtomType*> atomTypes;
717      
718      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 <      
720 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722 <      }
723 <      
693 <    }
722 >      }      
723 >    }    
724      
725 <    return atomTypes;        
696 <  }
725 > #ifdef IS_MPI
726  
727 <  /**
728 <   * setupCutoffRadius
700 <   *
701 <   *  If the cutoffRadius was explicitly set, use that value.
702 <   *  If the cutoffRadius was not explicitly set:
703 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
704 <   *      No electrostatic atoms?  Poll the atom types present in the
705 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 <   *      Use the maximum suggested value that was found.
707 <   */
708 <  void SimInfo::setupCutoffRadius() {
727 >    // loop over the found atom types on this processor, and add their
728 >    // numerical idents to a vector:
729      
730 <    if (simParams_->haveCutoffRadius()) {
731 <      cutoffRadius_ = simParams_->getCutoffRadius();
732 <    } else {      
733 <      if (usesElectrostaticAtoms_) {
714 <        sprintf(painCave.errMsg,
715 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 <                "\tOpenMD will use a default value of 12.0 angstroms"
717 <                "\tfor the cutoffRadius.\n");
718 <        painCave.isFatal = 0;
719 <        simError();
720 <        cutoffRadius_ = 12.0;
721 <      } else {
722 <        RealType thisCut;
723 <        set<AtomType*>::iterator i;
724 <        set<AtomType*> atomTypes;
725 <        atomTypes = getSimulatedAtomTypes();        
726 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 <        }
730 <        sprintf(painCave.errMsg,
731 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 <                "\tOpenMD will use %lf angstroms.\n",
733 <                cutoffRadius_);
734 <        painCave.isFatal = 0;
735 <        simError();
736 <      }            
737 <    }
730 >    vector<int> foundTypes;
731 >    set<AtomType*>::iterator i;
732 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
733 >      foundTypes.push_back( (*i)->getIdent() );
734  
735 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
736 <  }
737 <  
738 <  /**
739 <   * setupSwitchingRadius
740 <   *
741 <   *  If the switchingRadius was explicitly set, use that value (but check it)
742 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
743 <   */
744 <  void SimInfo::setupSwitchingRadius() {
735 >    // count_local holds the number of found types on this processor
736 >    int count_local = foundTypes.size();
737 >
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739 >
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744 >
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755 >    }
756 >
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759      
760 <    if (simParams_->haveSwitchingRadius()) {
761 <      switchingRadius_ = simParams_->getSwitchingRadius();
762 <      if (switchingRadius_ > cutoffRadius_) {        
763 <        sprintf(painCave.errMsg,
754 <                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 <                switchingRadius_, cutoffRadius_);
756 <        painCave.isFatal = 1;
757 <        simError();
760 >    // now spray out the foundTypes to all the other processors:    
761 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 <      }
760 <    } else {      
761 <      switchingRadius_ = 0.85 * cutoffRadius_;
762 <      sprintf(painCave.errMsg,
763 <              "SimInfo Warning: No value was set for the switchingRadius.\n"
764 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766 <      painCave.isFatal = 0;
767 <      simError();
768 <    }            
769 <    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770 <  }
765 >    vector<int>::iterator j;
766  
767 <  /**
768 <   * setupSkinThickness
769 <   *
770 <   *  If the skinThickness was explicitly set, use that value (but check it)
771 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
772 <   */
773 <  void SimInfo::setupSkinThickness() {    
774 <    if (simParams_->haveSkinThickness()) {
775 <      skinThickness_ = simParams_->getSkinThickness();
776 <    } else {      
777 <      skinThickness_ = 1.0;
778 <      sprintf(painCave.errMsg,
779 <              "SimInfo Warning: No value was set for the skinThickness.\n"
780 <              "\tOpenMD will use a default value of %f Angstroms\n"
781 <              "\tfor this simulation\n", skinThickness_);
782 <      painCave.isFatal = 0;
788 <      simError();
789 <    }            
767 >    // foundIdents is a stl set, so inserting an already found ident
768 >    // will have no effect.
769 >    set<int> foundIdents;
770 >
771 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772 >      foundIdents.insert((*j));
773 >    
774 >    // now iterate over the foundIdents and get the actual atom types
775 >    // that correspond to these:
776 >    set<int>::iterator it;
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778 >      atomTypes.insert( forceField_->getAtomType((*it)) );
779 >
780 > #endif
781 >
782 >    return atomTypes;        
783    }
784  
785 <  void SimInfo::setupSimType() {
785 >  void SimInfo::setupSimVariables() {
786 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
787 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
788 >    // parameter is true
789 >    calcBoxDipole_ = false;
790 >    if ( simParams_->haveAccumulateBoxDipole() )
791 >      if ( simParams_->getAccumulateBoxDipole() ) {
792 >        calcBoxDipole_ = true;      
793 >      }
794 >    
795      set<AtomType*>::iterator i;
796      set<AtomType*> atomTypes;
797 <    atomTypes = getSimulatedAtomTypes();
798 <
799 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
800 <
801 <    int usesElectrostatic = 0;
800 <    int usesMetallic = 0;
801 <    int usesDirectional = 0;
797 >    atomTypes = getSimulatedAtomTypes();    
798 >    bool usesElectrostatic = false;
799 >    bool usesMetallic = false;
800 >    bool usesDirectional = false;
801 >    bool usesFluctuatingCharges =  false;
802      //loop over all of the atom types
803      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804        usesElectrostatic |= (*i)->isElectrostatic();
805        usesMetallic |= (*i)->isMetal();
806        usesDirectional |= (*i)->isDirectional();
807 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
808      }
809  
810 < #ifdef IS_MPI    
811 <    int temp;
810 > #ifdef IS_MPI
811 >    bool temp;
812      temp = usesDirectional;
813 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >        
816      temp = usesMetallic;
817 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819 >    
820      temp = usesElectrostatic;
821 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 >
824 >    temp = usesFluctuatingCharges;
825 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
826 >                              MPI::LOR);
827 > #else
828 >
829 >    usesDirectionalAtoms_ = usesDirectional;
830 >    usesMetallicAtoms_ = usesMetallic;
831 >    usesElectrostaticAtoms_ = usesElectrostatic;
832 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
833 >
834   #endif
835 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
836 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
837 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
838 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
835 >    
836 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
837 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
838 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
839    }
840  
841 <  void SimInfo::setupFortranSim() {
842 <    int isError;
843 <    int nExclude, nOneTwo, nOneThree, nOneFour;
844 <    vector<int> fortranGlobalGroupMembership;
841 >
842 >  vector<int> SimInfo::getGlobalAtomIndices() {
843 >    SimInfo::MoleculeIterator mi;
844 >    Molecule* mol;
845 >    Molecule::AtomIterator ai;
846 >    Atom* atom;
847 >
848 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
849      
850 <    notifyFortranSkinThickness(&skinThickness_);
850 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
851 >      
852 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
853 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
854 >      }
855 >    }
856 >    return GlobalAtomIndices;
857 >  }
858  
835    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
836    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
837    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
859  
860 <    isError = 0;
860 >  vector<int> SimInfo::getGlobalGroupIndices() {
861 >    SimInfo::MoleculeIterator mi;
862 >    Molecule* mol;
863 >    Molecule::CutoffGroupIterator ci;
864 >    CutoffGroup* cg;
865  
866 <    //globalGroupMembership_ is filled by SimCreator    
867 <    for (int i = 0; i < nGlobalAtoms_; i++) {
868 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
866 >    vector<int> GlobalGroupIndices;
867 >    
868 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
869 >      
870 >      //local index of cutoff group is trivial, it only depends on the
871 >      //order of travesing
872 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
873 >           cg = mol->nextCutoffGroup(ci)) {
874 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
875 >      }        
876      }
877 +    return GlobalGroupIndices;
878 +  }
879  
880 +
881 +  void SimInfo::prepareTopology() {
882 +
883      //calculate mass ratio of cutoff group
847    vector<RealType> mfact;
884      SimInfo::MoleculeIterator mi;
885      Molecule* mol;
886      Molecule::CutoffGroupIterator ci;
# Line 853 | Line 889 | namespace OpenMD {
889      Atom* atom;
890      RealType totalMass;
891  
892 <    //to avoid memory reallocation, reserve enough space for mfact
893 <    mfact.reserve(getNCutoffGroups());
892 >    /**
893 >     * The mass factor is the relative mass of an atom to the total
894 >     * mass of the cutoff group it belongs to.  By default, all atoms
895 >     * are their own cutoff groups, and therefore have mass factors of
896 >     * 1.  We need some special handling for massless atoms, which
897 >     * will be treated as carrying the entire mass of the cutoff
898 >     * group.
899 >     */
900 >    massFactors_.clear();
901 >    massFactors_.resize(getNAtoms(), 1.0);
902      
903      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
904 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
904 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
905 >           cg = mol->nextCutoffGroup(ci)) {
906  
907          totalMass = cg->getMass();
908          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
909            // Check for massless groups - set mfact to 1 if true
910 <          if (totalMass != 0)
911 <            mfact.push_back(atom->getMass()/totalMass);
910 >          if (totalMass != 0)
911 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
912            else
913 <            mfact.push_back( 1.0 );
913 >            massFactors_[atom->getLocalIndex()] = 1.0;
914          }
915        }      
916      }
917  
918 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    vector<int> identArray;
918 >    // Build the identArray_
919  
920 <    //to avoid memory reallocation, reserve enough space identArray
921 <    identArray.reserve(getNAtoms());
878 <    
920 >    identArray_.clear();
921 >    identArray_.reserve(getNAtoms());    
922      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
923        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
924 <        identArray.push_back(atom->getIdent());
924 >        identArray_.push_back(atom->getIdent());
925        }
926      }    
884
885    //fill molMembershipArray
886    //molMembershipArray is filled by SimCreator    
887    vector<int> molMembershipArray(nGlobalAtoms_);
888    for (int i = 0; i < nGlobalAtoms_; i++) {
889      molMembershipArray[i] = globalMolMembership_[i] + 1;
890    }
927      
928 <    //setup fortran simulation
928 >    //scan topology
929  
894    nExclude = excludedInteractions_.getSize();
895    nOneTwo = oneTwoInteractions_.getSize();
896    nOneThree = oneThreeInteractions_.getSize();
897    nOneFour = oneFourInteractions_.getSize();
898
930      int* excludeList = excludedInteractions_.getPairList();
931      int* oneTwoList = oneTwoInteractions_.getPairList();
932      int* oneThreeList = oneThreeInteractions_.getPairList();
933      int* oneFourList = oneFourInteractions_.getPairList();
934  
935 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
905 <                   &nExclude, excludeList,
906 <                   &nOneTwo, oneTwoList,
907 <                   &nOneThree, oneThreeList,
908 <                   &nOneFour, oneFourList,
909 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
910 <                   &fortranGlobalGroupMembership[0], &isError);
911 <    
912 <    if( isError ){
913 <      
914 <      sprintf( painCave.errMsg,
915 <               "There was an error setting the simulation information in fortran.\n" );
916 <      painCave.isFatal = 1;
917 <      painCave.severity = OPENMD_ERROR;
918 <      simError();
919 <    }
920 <    
921 <    
922 <    sprintf( checkPointMsg,
923 <             "succesfully sent the simulation information to fortran.\n");
924 <    
925 <    errorCheckPoint();
926 <    
927 <    // Setup number of neighbors in neighbor list if present
928 <    if (simParams_->haveNeighborListNeighbors()) {
929 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 <      setNeighbors(&nlistNeighbors);
931 <    }
932 <  
933 <
935 >    topologyDone_ = true;
936    }
937  
936
937  void SimInfo::setupFortranParallel() {
938 #ifdef IS_MPI    
939    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941    vector<int> localToGlobalCutoffGroupIndex;
942    SimInfo::MoleculeIterator mi;
943    Molecule::AtomIterator ai;
944    Molecule::CutoffGroupIterator ci;
945    Molecule* mol;
946    Atom* atom;
947    CutoffGroup* cg;
948    mpiSimData parallelData;
949    int isError;
950
951    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
952
953      //local index(index in DataStorge) of atom is important
954      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
956      }
957
958      //local index of cutoff group is trivial, it only depends on the order of travesing
959      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
960        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
961      }        
962        
963    }
964
965    //fill up mpiSimData struct
966    parallelData.nMolGlobal = getNGlobalMolecules();
967    parallelData.nMolLocal = getNMolecules();
968    parallelData.nAtomsGlobal = getNGlobalAtoms();
969    parallelData.nAtomsLocal = getNAtoms();
970    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
971    parallelData.nGroupsLocal = getNCutoffGroups();
972    parallelData.myNode = worldRank;
973    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
974
975    //pass mpiSimData struct and index arrays to fortran
976    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
977                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
978                    &localToGlobalCutoffGroupIndex[0], &isError);
979
980    if (isError) {
981      sprintf(painCave.errMsg,
982              "mpiRefresh errror: fortran didn't like something we gave it.\n");
983      painCave.isFatal = 1;
984      simError();
985    }
986
987    sprintf(checkPointMsg, " mpiRefresh successful.\n");
988    errorCheckPoint();
989
990 #endif
991  }
992
993
994  void SimInfo::setupSwitchingFunction() {    
995    int ft = CUBIC;
996    
997    if (simParams_->haveSwitchingFunctionType()) {
998      string funcType = simParams_->getSwitchingFunctionType();
999      toUpper(funcType);
1000      if (funcType == "CUBIC") {
1001        ft = CUBIC;
1002      } else {
1003        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1004          ft = FIFTH_ORDER_POLY;
1005        } else {
1006          // throw error        
1007          sprintf( painCave.errMsg,
1008                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1009          painCave.isFatal = 1;
1010          simError();
1011        }          
1012      }
1013    }
1014
1015    // send switching function notification to switcheroo
1016    setFunctionType(&ft);
1017
1018  }
1019
1020  void SimInfo::setupAccumulateBoxDipole() {    
1021
1022    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023    if ( simParams_->haveAccumulateBoxDipole() )
1024      if ( simParams_->getAccumulateBoxDipole() ) {
1025        calcBoxDipole_ = true;
1026      }
1027
1028  }
1029
938    void SimInfo::addProperty(GenericData* genData) {
939      properties_.addProperty(genData);  
940    }
# Line 1061 | Line 969 | namespace OpenMD {
969      Molecule* mol;
970      RigidBody* rb;
971      Atom* atom;
972 +    CutoffGroup* cg;
973      SimInfo::MoleculeIterator mi;
974      Molecule::RigidBodyIterator rbIter;
975 <    Molecule::AtomIterator atomIter;;
975 >    Molecule::AtomIterator atomIter;
976 >    Molecule::CutoffGroupIterator cgIter;
977  
978      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
979          
980 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
981 >           atom = mol->nextAtom(atomIter)) {
982          atom->setSnapshotManager(sman_);
983        }
984          
985 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
985 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
986 >           rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989 +
990 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
991 +           cg = mol->nextCutoffGroup(cgIter)) {
992 +        cg->setSnapshotManager(sman_);
993 +      }
994      }    
995      
996    }
997  
1081  Vector3d SimInfo::getComVel(){
1082    SimInfo::MoleculeIterator i;
1083    Molecule* mol;
998  
1085    Vector3d comVel(0.0);
1086    RealType totalMass = 0.0;
1087    
1088
1089    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1090      RealType mass = mol->getMass();
1091      totalMass += mass;
1092      comVel += mass * mol->getComVel();
1093    }  
1094
1095 #ifdef IS_MPI
1096    RealType tmpMass = totalMass;
1097    Vector3d tmpComVel(comVel);    
1098    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1100 #endif
1101
1102    comVel /= totalMass;
1103
1104    return comVel;
1105  }
1106
1107  Vector3d SimInfo::getCom(){
1108    SimInfo::MoleculeIterator i;
1109    Molecule* mol;
1110
1111    Vector3d com(0.0);
1112    RealType totalMass = 0.0;
1113    
1114    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115      RealType mass = mol->getMass();
1116      totalMass += mass;
1117      com += mass * mol->getCom();
1118    }  
1119
1120 #ifdef IS_MPI
1121    RealType tmpMass = totalMass;
1122    Vector3d tmpCom(com);    
1123    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1125 #endif
1126
1127    com /= totalMass;
1128
1129    return com;
1130
1131  }        
1132
999    ostream& operator <<(ostream& o, SimInfo& info) {
1000  
1001      return o;
1002    }
1003    
1004 <  
1139 <   /*
1140 <   Returns center of mass and center of mass velocity in one function call.
1141 <   */
1142 <  
1143 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1144 <      SimInfo::MoleculeIterator i;
1145 <      Molecule* mol;
1146 <      
1147 <    
1148 <      RealType totalMass = 0.0;
1149 <    
1150 <
1151 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1152 <         RealType mass = mol->getMass();
1153 <         totalMass += mass;
1154 <         com += mass * mol->getCom();
1155 <         comVel += mass * mol->getComVel();          
1156 <      }  
1157 <      
1158 < #ifdef IS_MPI
1159 <      RealType tmpMass = totalMass;
1160 <      Vector3d tmpCom(com);  
1161 <      Vector3d tmpComVel(comVel);
1162 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1165 < #endif
1166 <      
1167 <      com /= totalMass;
1168 <      comVel /= totalMass;
1169 <   }        
1170 <  
1171 <   /*
1172 <   Return intertia tensor for entire system and angular momentum Vector.
1173 <
1174 <
1175 <       [  Ixx -Ixy  -Ixz ]
1176 <    J =| -Iyx  Iyy  -Iyz |
1177 <       [ -Izx -Iyz   Izz ]
1178 <    */
1179 <
1180 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1181 <      
1182 <
1183 <      RealType xx = 0.0;
1184 <      RealType yy = 0.0;
1185 <      RealType zz = 0.0;
1186 <      RealType xy = 0.0;
1187 <      RealType xz = 0.0;
1188 <      RealType yz = 0.0;
1189 <      Vector3d com(0.0);
1190 <      Vector3d comVel(0.0);
1191 <      
1192 <      getComAll(com, comVel);
1193 <      
1194 <      SimInfo::MoleculeIterator i;
1195 <      Molecule* mol;
1196 <      
1197 <      Vector3d thisq(0.0);
1198 <      Vector3d thisv(0.0);
1199 <
1200 <      RealType thisMass = 0.0;
1201 <    
1202 <      
1203 <      
1204 <  
1205 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1206 <        
1207 <         thisq = mol->getCom()-com;
1208 <         thisv = mol->getComVel()-comVel;
1209 <         thisMass = mol->getMass();
1210 <         // Compute moment of intertia coefficients.
1211 <         xx += thisq[0]*thisq[0]*thisMass;
1212 <         yy += thisq[1]*thisq[1]*thisMass;
1213 <         zz += thisq[2]*thisq[2]*thisMass;
1214 <        
1215 <         // compute products of intertia
1216 <         xy += thisq[0]*thisq[1]*thisMass;
1217 <         xz += thisq[0]*thisq[2]*thisMass;
1218 <         yz += thisq[1]*thisq[2]*thisMass;
1219 <            
1220 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1221 <            
1222 <      }  
1223 <      
1224 <      
1225 <      inertiaTensor(0,0) = yy + zz;
1226 <      inertiaTensor(0,1) = -xy;
1227 <      inertiaTensor(0,2) = -xz;
1228 <      inertiaTensor(1,0) = -xy;
1229 <      inertiaTensor(1,1) = xx + zz;
1230 <      inertiaTensor(1,2) = -yz;
1231 <      inertiaTensor(2,0) = -xz;
1232 <      inertiaTensor(2,1) = -yz;
1233 <      inertiaTensor(2,2) = xx + yy;
1234 <      
1235 < #ifdef IS_MPI
1236 <      Mat3x3d tmpI(inertiaTensor);
1237 <      Vector3d tmpAngMom;
1238 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1240 < #endif
1241 <              
1242 <      return;
1243 <   }
1244 <
1245 <   //Returns the angular momentum of the system
1246 <   Vector3d SimInfo::getAngularMomentum(){
1247 <      
1248 <      Vector3d com(0.0);
1249 <      Vector3d comVel(0.0);
1250 <      Vector3d angularMomentum(0.0);
1251 <      
1252 <      getComAll(com,comVel);
1253 <      
1254 <      SimInfo::MoleculeIterator i;
1255 <      Molecule* mol;
1256 <      
1257 <      Vector3d thisr(0.0);
1258 <      Vector3d thisp(0.0);
1259 <      
1260 <      RealType thisMass;
1261 <      
1262 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1263 <        thisMass = mol->getMass();
1264 <        thisr = mol->getCom()-com;
1265 <        thisp = (mol->getComVel()-comVel)*thisMass;
1266 <        
1267 <        angularMomentum += cross( thisr, thisp );
1268 <        
1269 <      }  
1270 <      
1271 < #ifdef IS_MPI
1272 <      Vector3d tmpAngMom;
1273 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1274 < #endif
1275 <      
1276 <      return angularMomentum;
1277 <   }
1278 <  
1004 >  
1005    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1006 <    return IOIndexToIntegrableObject.at(index);
1006 >    if (index >= IOIndexToIntegrableObject.size()) {
1007 >      sprintf(painCave.errMsg,
1008 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1009 >              "\tindex exceeds number of known objects!\n");
1010 >      painCave.isFatal = 1;
1011 >      simError();
1012 >      return NULL;
1013 >    } else
1014 >      return IOIndexToIntegrableObject.at(index);
1015    }
1016    
1017    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1018      IOIndexToIntegrableObject= v;
1019    }
1020  
1287  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1288     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1289     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1290     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1291  */
1292  void SimInfo::getGyrationalVolume(RealType &volume){
1293    Mat3x3d intTensor;
1294    RealType det;
1295    Vector3d dummyAngMom;
1296    RealType sysconstants;
1297    RealType geomCnst;
1298
1299    geomCnst = 3.0/2.0;
1300    /* Get the inertial tensor and angular momentum for free*/
1301    getInertiaTensor(intTensor,dummyAngMom);
1302    
1303    det = intTensor.determinant();
1304    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1305    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1306    return;
1307  }
1308
1309  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1310    Mat3x3d intTensor;
1311    Vector3d dummyAngMom;
1312    RealType sysconstants;
1313    RealType geomCnst;
1314
1315    geomCnst = 3.0/2.0;
1316    /* Get the inertial tensor and angular momentum for free*/
1317    getInertiaTensor(intTensor,dummyAngMom);
1318    
1319    detI = intTensor.determinant();
1320    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1321    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1322    return;
1323  }
1324 /*
1325   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1326      assert( v.size() == nAtoms_ + nRigidBodies_);
1327      sdByGlobalIndex_ = v;
1328    }
1329
1330    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1331      //assert(index < nAtoms_ + nRigidBodies_);
1332      return sdByGlobalIndex_.at(index);
1333    }  
1334 */  
1021    int SimInfo::getNGlobalConstraints() {
1022      int nGlobalConstraints;
1023   #ifdef IS_MPI
1024 <    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 <                  MPI_COMM_WORLD);    
1024 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1025 >                              MPI::INT, MPI::SUM);
1026   #else
1027      nGlobalConstraints =  nConstraints_;
1028   #endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines