ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1129 by chrisfen, Fri Apr 20 18:15:48 2007 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
79 <    useAtomicVirial_(true) {
80 <
81 <      MoleculeStamp* molStamp;
82 <      int nMolWithSameStamp;
83 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
85 <      CutoffGroupStamp* cgStamp;    
86 <      RigidBodyStamp* rbStamp;
87 <      int nRigidAtoms = 0;
88 <      std::vector<Component*> components = simParams->getComponents();
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94        
95 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
96 <        molStamp = (*i)->getMoleculeStamp();
97 <        nMolWithSameStamp = (*i)->getNMol();
98 <        
99 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
100 <
101 <        //calculate atoms in molecules
102 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 <
104 <        //calculate atoms in cutoff groups
105 <        int nAtomsInGroups = 0;
106 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 <        
120 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <          cgStamp = molStamp->getCutoffGroupStamp(j);
122 <          nAtomsInGroups += cgStamp->getNMembers();
123 <        }
124 <
125 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 <
127 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 <
129 <        //calculate atoms in rigid bodies
130 <        int nAtomsInRigidBodies = 0;
131 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 <        
133 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
134 <          rbStamp = molStamp->getRigidBodyStamp(j);
135 <          nAtomsInRigidBodies += rbStamp->getNMembers();
136 <        }
137 <
138 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 <        
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
110 <      //group therefore the total number of cutoff groups in the system is
111 <      //equal to the total number of atoms minus number of atoms belong to
112 <      //cutoff group defined in meta-data file plus the number of cutoff
113 <      //groups defined in meta-data file
114 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
115 <
116 <      //every free atom (atom does not belong to rigid bodies) is an
117 <      //integrable object therefore the total number of integrable objects
118 <      //in the system is equal to the total number of atoms minus number of
119 <      //atoms belong to rigid body defined in meta-data file plus the number
120 <      //of rigid bodies defined in meta-data file
121 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
122 <                                                + nGlobalRigidBodies_;
123 <  
124 <      nGlobalMols_ = molStampIds_.size();
159 <
160 < #ifdef IS_MPI    
161 <      molToProcMap_.resize(nGlobalMols_);
162 < #endif
163 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
# Line 175 | Line 156 | namespace oopse {
156      delete forceField_;
157    }
158  
178  int SimInfo::getNGlobalConstraints() {
179    int nGlobalConstraints;
180 #ifdef IS_MPI
181    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182                  MPI_COMM_WORLD);    
183 #else
184    nGlobalConstraints =  nConstraints_;
185 #endif
186    return nGlobalConstraints;
187  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 223 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 237 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
240
241
213    }    
214  
215          
# Line 254 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 275 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
253 <            
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259        }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 302 | Line 286 | namespace oopse {
286   #endif
287      return fdf_;
288    }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296      
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
312      MoleculeIterator i;
313 <    std::vector<StuntDouble*>::iterator j;
313 >    vector<StuntDouble*>::iterator j;
314      Molecule* mol;
315      StuntDouble* integrableObject;
316  
# Line 354 | Line 357 | namespace oopse {
357  
358    }
359  
360 <  void SimInfo::addExcludePairs(Molecule* mol) {
361 <    std::vector<Bond*>::iterator bondIter;
362 <    std::vector<Bend*>::iterator bendIter;
363 <    std::vector<Torsion*>::iterator torsionIter;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366      Bond* bond;
367      Bend* bend;
368      Torsion* torsion;
369 +    Inversion* inversion;
370      int a;
371      int b;
372      int c;
373      int d;
374  
375 <    std::map<int, std::set<int> > atomGroups;
375 >    // atomGroups can be used to add special interaction maps between
376 >    // groups of atoms that are in two separate rigid bodies.
377 >    // However, most site-site interactions between two rigid bodies
378 >    // are probably not special, just the ones between the physically
379 >    // bonded atoms.  Interactions *within* a single rigid body should
380 >    // always be excluded.  These are done at the bottom of this
381 >    // function.
382  
383 +    map<int, set<int> > atomGroups;
384      Molecule::RigidBodyIterator rbIter;
385      RigidBody* rb;
386      Molecule::IntegrableObjectIterator ii;
387      StuntDouble* integrableObject;
388      
389 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
390 <           integrableObject = mol->nextIntegrableObject(ii)) {
391 <
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393        if (integrableObject->isRigidBody()) {
394 <          rb = static_cast<RigidBody*>(integrableObject);
395 <          std::vector<Atom*> atoms = rb->getAtoms();
396 <          std::set<int> rigidAtoms;
397 <          for (int i = 0; i < atoms.size(); ++i) {
398 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 <          }
400 <          for (int i = 0; i < atoms.size(); ++i) {
401 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 <          }      
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403        } else {
404 <        std::set<int> oneAtomSet;
404 >        set<int> oneAtomSet;
405          oneAtomSet.insert(integrableObject->getGlobalIndex());
406 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407        }
408      }  
409 +          
410 +    for (bond= mol->beginBond(bondIter); bond != NULL;
411 +         bond = mol->nextBond(bondIter)) {
412  
396    
397    
398    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
413        a = bond->getAtomA()->getGlobalIndex();
414 <      b = bond->getAtomB()->getGlobalIndex();        
415 <      exclude_.addPair(a, b);
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
422  
423 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425 >
426        a = bend->getAtomA()->getGlobalIndex();
427        b = bend->getAtomB()->getGlobalIndex();        
428        c = bend->getAtomC()->getGlobalIndex();
408      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411
412      exclude_.addPairs(rigidSetA, rigidSetB);
413      exclude_.addPairs(rigidSetA, rigidSetC);
414      exclude_.addPairs(rigidSetB, rigidSetC);
429        
430 <      //exclude_.addPair(a, b);
431 <      //exclude_.addPair(a, c);
432 <      //exclude_.addPair(b, c);        
430 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 >        oneTwoInteractions_.addPair(a, b);      
432 >        oneTwoInteractions_.addPair(b, c);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >      }
437 >
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443      }
444  
445 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447 >
448        a = torsion->getAtomA()->getGlobalIndex();
449        b = torsion->getAtomB()->getGlobalIndex();        
450        c = torsion->getAtomC()->getGlobalIndex();        
451 <      d = torsion->getAtomD()->getGlobalIndex();        
426 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <      exclude_.addPairs(rigidSetA, rigidSetB);
454 <      exclude_.addPairs(rigidSetA, rigidSetC);
455 <      exclude_.addPairs(rigidSetA, rigidSetD);
456 <      exclude_.addPairs(rigidSetB, rigidSetC);
457 <      exclude_.addPairs(rigidSetB, rigidSetD);
458 <      exclude_.addPairs(rigidSetC, rigidSetD);
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462  
463 <      /*
464 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
465 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
466 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
467 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
468 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
469 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
470 <        
471 <      
472 <      exclude_.addPair(a, b);
473 <      exclude_.addPair(a, c);
474 <      exclude_.addPair(a, d);
475 <      exclude_.addPair(b, c);
451 <      exclude_.addPair(b, d);
452 <      exclude_.addPair(c, d);        
453 <      */
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470 >
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476      }
477  
478 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
479 <      std::vector<Atom*> atoms = rb->getAtoms();
480 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
481 <        for (int j = i + 1; j < atoms.size(); ++j) {
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480 >
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485 >
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495 >
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506 >
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512            a = atoms[i]->getGlobalIndex();
513            b = atoms[j]->getGlobalIndex();
514 <          exclude_.addPair(a, b);
514 >          excludedInteractions_.addPair(a, b);
515          }
516        }
517      }        
518  
519    }
520  
521 <  void SimInfo::removeExcludePairs(Molecule* mol) {
522 <    std::vector<Bond*>::iterator bondIter;
523 <    std::vector<Bend*>::iterator bendIter;
524 <    std::vector<Torsion*>::iterator torsionIter;
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527      Bond* bond;
528      Bend* bend;
529      Torsion* torsion;
530 +    Inversion* inversion;
531      int a;
532      int b;
533      int c;
534      int d;
535  
536 <    std::map<int, std::set<int> > atomGroups;
482 <
536 >    map<int, set<int> > atomGroups;
537      Molecule::RigidBodyIterator rbIter;
538      RigidBody* rb;
539      Molecule::IntegrableObjectIterator ii;
540      StuntDouble* integrableObject;
541      
542 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
543 <           integrableObject = mol->nextIntegrableObject(ii)) {
544 <
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546        if (integrableObject->isRigidBody()) {
547 <          rb = static_cast<RigidBody*>(integrableObject);
548 <          std::vector<Atom*> atoms = rb->getAtoms();
549 <          std::set<int> rigidAtoms;
550 <          for (int i = 0; i < atoms.size(); ++i) {
551 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 <          }
553 <          for (int i = 0; i < atoms.size(); ++i) {
554 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 <          }      
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556        } else {
557 <        std::set<int> oneAtomSet;
557 >        set<int> oneAtomSet;
558          oneAtomSet.insert(integrableObject->getGlobalIndex());
559 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560        }
561      }  
562  
563 <    
564 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566        a = bond->getAtomA()->getGlobalIndex();
567 <      b = bond->getAtomB()->getGlobalIndex();        
568 <      exclude_.removePair(a, b);
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
575  
576 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578 >
579        a = bend->getAtomA()->getGlobalIndex();
580        b = bend->getAtomB()->getGlobalIndex();        
581        c = bend->getAtomC()->getGlobalIndex();
519
520      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523
524      exclude_.removePairs(rigidSetA, rigidSetB);
525      exclude_.removePairs(rigidSetA, rigidSetC);
526      exclude_.removePairs(rigidSetB, rigidSetC);
582        
583 <      //exclude_.removePair(a, b);
584 <      //exclude_.removePair(a, c);
585 <      //exclude_.removePair(b, c);        
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);      
585 >        oneTwoInteractions_.removePair(b, c);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >      }
590 >
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596      }
597  
598 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600 >
601        a = torsion->getAtomA()->getGlobalIndex();
602        b = torsion->getAtomB()->getGlobalIndex();        
603        c = torsion->getAtomC()->getGlobalIndex();        
604 <      d = torsion->getAtomD()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
617 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
618 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
619 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623  
624 <      exclude_.removePairs(rigidSetA, rigidSetB);
625 <      exclude_.removePairs(rigidSetA, rigidSetC);
626 <      exclude_.removePairs(rigidSetA, rigidSetD);
627 <      exclude_.removePairs(rigidSetB, rigidSetC);
628 <      exclude_.removePairs(rigidSetB, rigidSetD);
629 <      exclude_.removePairs(rigidSetC, rigidSetD);
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629 >    }
630  
631 <      /*
632 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633  
634 <      
635 <      exclude_.removePair(a, b);
636 <      exclude_.removePair(a, c);
637 <      exclude_.removePair(a, d);
638 <      exclude_.removePair(b, c);
639 <      exclude_.removePair(b, d);
640 <      exclude_.removePair(c, d);        
641 <      */
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658      }
659  
660 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
661 <      std::vector<Atom*> atoms = rb->getAtoms();
662 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
663 <        for (int j = i + 1; j < atoms.size(); ++j) {
660 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 >         rb = mol->nextRigidBody(rbIter)) {
662 >      vector<Atom*> atoms = rb->getAtoms();
663 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665            a = atoms[i]->getGlobalIndex();
666            b = atoms[j]->getGlobalIndex();
667 <          exclude_.removePair(a, b);
667 >          excludedInteractions_.removePair(a, b);
668          }
669        }
670      }        
671 <
671 >    
672    }
673 <
674 <
673 >  
674 >  
675    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676      int curStampId;
677 <
677 >    
678      //index from 0
679      curStampId = moleculeStamps_.size();
680  
# Line 590 | Line 682 | namespace oopse {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
593  void SimInfo::update() {
685  
686 <    setupSimType();
687 <
688 < #ifdef IS_MPI
689 <    setupFortranParallel();
690 < #endif
691 <
692 <    setupFortranSim();
693 <
694 <    //setup fortran force field
604 <    /** @deprecate */    
605 <    int isError = 0;
606 <    
607 <    setupCutoff();
608 <    
609 <    setupElectrostaticSummationMethod( isError );
610 <    setupSwitchingFunction();
611 <    setupAccumulateBoxDipole();
612 <
613 <    if(isError){
614 <      sprintf( painCave.errMsg,
615 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
616 <      painCave.isFatal = 1;
617 <      simError();
618 <    }
619 <
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
623
624    fortranInitialized_ = true;
698    }
699 <
700 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  
700 >  /**
701 >   * getSimulatedAtomTypes
702 >   *
703 >   * Returns an STL set of AtomType* that are actually present in this
704 >   * simulation.  Must query all processors to assemble this information.
705 >   *
706 >   */
707 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
710      Molecule::AtomIterator ai;
711      Atom* atom;
712 <    std::set<AtomType*> atomTypes;
713 <
712 >    set<AtomType*> atomTypes;
713 >    
714      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 <
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718 <      }
719 <        
640 <    }
641 <
642 <    return atomTypes;        
643 <  }
644 <
645 <  void SimInfo::setupSimType() {
646 <    std::set<AtomType*>::iterator i;
647 <    std::set<AtomType*> atomTypes;
648 <    atomTypes = getUniqueAtomTypes();
718 >      }      
719 >    }    
720      
721 <    int useLennardJones = 0;
651 <    int useElectrostatic = 0;
652 <    int useEAM = 0;
653 <    int useSC = 0;
654 <    int useCharge = 0;
655 <    int useDirectional = 0;
656 <    int useDipole = 0;
657 <    int useGayBerne = 0;
658 <    int useSticky = 0;
659 <    int useStickyPower = 0;
660 <    int useShape = 0;
661 <    int useFLARB = 0; //it is not in AtomType yet
662 <    int useDirectionalAtom = 0;    
663 <    int useElectrostatics = 0;
664 <    //usePBC and useRF are from simParams
665 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 <    int useRF;
667 <    int useSF;
668 <    int useSP;
669 <    int useBoxDipole;
721 > #ifdef IS_MPI
722  
723 <    std::string myMethod;
724 <
673 <    // set the useRF logical
674 <    useRF = 0;
675 <    useSF = 0;
676 <    useSP = 0;
677 <
678 <
679 <    if (simParams_->haveElectrostaticSummationMethod()) {
680 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
681 <      toUpper(myMethod);
682 <      if (myMethod == "REACTION_FIELD"){
683 <        useRF = 1;
684 <      } else if (myMethod == "SHIFTED_FORCE"){
685 <        useSF = 1;
686 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
687 <        useSP = 1;
688 <      }
689 <    }
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725      
726 <    if (simParams_->haveAccumulateBoxDipole())
727 <      if (simParams_->getAccumulateBoxDipole())
728 <        useBoxDipole = 1;
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730  
731 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733  
734 <    //loop over all of the atom types
698 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 <      useLennardJones |= (*i)->isLennardJones();
700 <      useElectrostatic |= (*i)->isElectrostatic();
701 <      useEAM |= (*i)->isEAM();
702 <      useSC |= (*i)->isSC();
703 <      useCharge |= (*i)->isCharge();
704 <      useDirectional |= (*i)->isDirectional();
705 <      useDipole |= (*i)->isDipole();
706 <      useGayBerne |= (*i)->isGayBerne();
707 <      useSticky |= (*i)->isSticky();
708 <      useStickyPower |= (*i)->isStickyPower();
709 <      useShape |= (*i)->isShape();
710 <    }
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735  
736 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
737 <      useDirectionalAtom = 1;
738 <    }
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740  
741 <    if (useCharge || useDipole) {
742 <      useElectrostatics = 1;
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751      }
752  
753 < #ifdef IS_MPI    
754 <    int temp;
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755 >    
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <    temp = usePBC;
724 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
761 >    vector<int>::iterator j;
762  
763 <    temp = useDirectionalAtom;
764 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
763 >    // foundIdents is a stl set, so inserting an already found ident
764 >    // will have no effect.
765 >    set<int> foundIdents;
766  
767 <    temp = useLennardJones;
768 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useElectrostatics;
733 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
734 <
735 <    temp = useCharge;
736 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
737 <
738 <    temp = useDipole;
739 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
740 <
741 <    temp = useSticky;
742 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 <
744 <    temp = useStickyPower;
745 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769      
770 <    temp = useGayBerne;
771 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776 > #endif
777  
778 <    temp = useEAM;
779 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
778 >    return atomTypes;        
779 >  }
780  
781 <    temp = useSC;
782 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789      
790 <    temp = useShape;
791 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();    
793 >    bool usesElectrostatic = false;
794 >    bool usesMetallic = false;
795 >    bool usesDirectional = false;
796 >    bool usesFluctuatingCharges =  false;
797 >    //loop over all of the atom types
798 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803 >    }
804  
805 <    temp = useFLARB;
806 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
805 > #ifdef IS_MPI
806 >    bool temp;
807 >    temp = usesDirectional;
808 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
809 >                              MPI::LOR);
810 >        
811 >    temp = usesMetallic;
812 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
813 >                              MPI::LOR);
814 >    
815 >    temp = usesElectrostatic;
816 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
817 >                              MPI::LOR);
818  
819 <    temp = useRF;
820 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 >    temp = usesFluctuatingCharges;
820 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
821 >                              MPI::LOR);
822 > #else
823  
824 <    temp = useSF;
825 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
824 >    usesDirectionalAtoms_ = usesDirectional;
825 >    usesMetallicAtoms_ = usesMetallic;
826 >    usesElectrostaticAtoms_ = usesElectrostatic;
827 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
828  
829 <    temp = useSP;
830 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
829 > #endif
830 >    
831 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
832 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
833 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
834 >  }
835  
771    temp = useBoxDipole;
772    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
836  
837 <    temp = useAtomicVirial_;
838 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
837 >  vector<int> SimInfo::getGlobalAtomIndices() {
838 >    SimInfo::MoleculeIterator mi;
839 >    Molecule* mol;
840 >    Molecule::AtomIterator ai;
841 >    Atom* atom;
842  
843 < #endif
844 <
845 <    fInfo_.SIM_uses_PBC = usePBC;    
846 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
847 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
848 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
849 <    fInfo_.SIM_uses_Charges = useCharge;
850 <    fInfo_.SIM_uses_Dipoles = useDipole;
851 <    fInfo_.SIM_uses_Sticky = useSticky;
786 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
787 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
788 <    fInfo_.SIM_uses_EAM = useEAM;
789 <    fInfo_.SIM_uses_SC = useSC;
790 <    fInfo_.SIM_uses_Shapes = useShape;
791 <    fInfo_.SIM_uses_FLARB = useFLARB;
792 <    fInfo_.SIM_uses_RF = useRF;
793 <    fInfo_.SIM_uses_SF = useSF;
794 <    fInfo_.SIM_uses_SP = useSP;
795 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
843 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
844 >    
845 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
846 >      
847 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
849 >      }
850 >    }
851 >    return GlobalAtomIndices;
852    }
853  
799  void SimInfo::setupFortranSim() {
800    int isError;
801    int nExclude;
802    std::vector<int> fortranGlobalGroupMembership;
803    
804    nExclude = exclude_.getSize();
805    isError = 0;
854  
855 <    //globalGroupMembership_ is filled by SimCreator    
856 <    for (int i = 0; i < nGlobalAtoms_; i++) {
857 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
855 >  vector<int> SimInfo::getGlobalGroupIndices() {
856 >    SimInfo::MoleculeIterator mi;
857 >    Molecule* mol;
858 >    Molecule::CutoffGroupIterator ci;
859 >    CutoffGroup* cg;
860 >
861 >    vector<int> GlobalGroupIndices;
862 >    
863 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
864 >      
865 >      //local index of cutoff group is trivial, it only depends on the
866 >      //order of travesing
867 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
868 >           cg = mol->nextCutoffGroup(ci)) {
869 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
870 >      }        
871      }
872 +    return GlobalGroupIndices;
873 +  }
874  
875 +
876 +  void SimInfo::prepareTopology() {
877 +    int nExclude, nOneTwo, nOneThree, nOneFour;
878 +
879      //calculate mass ratio of cutoff group
813    std::vector<RealType> mfact;
880      SimInfo::MoleculeIterator mi;
881      Molecule* mol;
882      Molecule::CutoffGroupIterator ci;
# Line 819 | Line 885 | namespace oopse {
885      Atom* atom;
886      RealType totalMass;
887  
888 <    //to avoid memory reallocation, reserve enough space for mfact
889 <    mfact.reserve(getNCutoffGroups());
888 >    /**
889 >     * The mass factor is the relative mass of an atom to the total
890 >     * mass of the cutoff group it belongs to.  By default, all atoms
891 >     * are their own cutoff groups, and therefore have mass factors of
892 >     * 1.  We need some special handling for massless atoms, which
893 >     * will be treated as carrying the entire mass of the cutoff
894 >     * group.
895 >     */
896 >    massFactors_.clear();
897 >    massFactors_.resize(getNAtoms(), 1.0);
898      
899      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
900 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
901 >           cg = mol->nextCutoffGroup(ci)) {
902  
903          totalMass = cg->getMass();
904          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
905            // Check for massless groups - set mfact to 1 if true
906 <          if (totalMass != 0)
907 <            mfact.push_back(atom->getMass()/totalMass);
906 >          if (totalMass != 0)
907 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
908            else
909 <            mfact.push_back( 1.0 );
909 >            massFactors_[atom->getLocalIndex()] = 1.0;
910          }
836
911        }      
912      }
913  
914 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841 <    std::vector<int> identArray;
914 >    // Build the identArray_
915  
916 <    //to avoid memory reallocation, reserve enough space identArray
917 <    identArray.reserve(getNAtoms());
845 <    
916 >    identArray_.clear();
917 >    identArray_.reserve(getNAtoms());    
918      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
919        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
920 <        identArray.push_back(atom->getIdent());
920 >        identArray_.push_back(atom->getIdent());
921        }
922      }    
851
852    //fill molMembershipArray
853    //molMembershipArray is filled by SimCreator    
854    std::vector<int> molMembershipArray(nGlobalAtoms_);
855    for (int i = 0; i < nGlobalAtoms_; i++) {
856      molMembershipArray[i] = globalMolMembership_[i] + 1;
857    }
923      
924 <    //setup fortran simulation
860 <    int nGlobalExcludes = 0;
861 <    int* globalExcludes = NULL;
862 <    int* excludeList = exclude_.getExcludeList();
863 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
924 >    //scan topology
925  
926 <    if( isError ){
926 >    nExclude = excludedInteractions_.getSize();
927 >    nOneTwo = oneTwoInteractions_.getSize();
928 >    nOneThree = oneThreeInteractions_.getSize();
929 >    nOneFour = oneFourInteractions_.getSize();
930  
931 <      sprintf( painCave.errMsg,
932 <               "There was an error setting the simulation information in fortran.\n" );
933 <      painCave.isFatal = 1;
934 <      painCave.severity = OOPSE_ERROR;
873 <      simError();
874 <    }
931 >    int* excludeList = excludedInteractions_.getPairList();
932 >    int* oneTwoList = oneTwoInteractions_.getPairList();
933 >    int* oneThreeList = oneThreeInteractions_.getPairList();
934 >    int* oneFourList = oneFourInteractions_.getPairList();
935  
936 < #ifdef IS_MPI
877 <    sprintf( checkPointMsg,
878 <             "succesfully sent the simulation information to fortran.\n");
879 <    MPIcheckPoint();
880 < #endif // is_mpi
881 <
882 <    // Setup number of neighbors in neighbor list if present
883 <    if (simParams_->haveNeighborListNeighbors()) {
884 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 <      setNeighbors(&nlistNeighbors);
886 <    }
887 <  
888 <
889 <  }
890 <
891 <
892 < #ifdef IS_MPI
893 <  void SimInfo::setupFortranParallel() {
894 <    
895 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897 <    std::vector<int> localToGlobalCutoffGroupIndex;
898 <    SimInfo::MoleculeIterator mi;
899 <    Molecule::AtomIterator ai;
900 <    Molecule::CutoffGroupIterator ci;
901 <    Molecule* mol;
902 <    Atom* atom;
903 <    CutoffGroup* cg;
904 <    mpiSimData parallelData;
905 <    int isError;
906 <
907 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
908 <
909 <      //local index(index in DataStorge) of atom is important
910 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912 <      }
913 <
914 <      //local index of cutoff group is trivial, it only depends on the order of travesing
915 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917 <      }        
918 <        
919 <    }
920 <
921 <    //fill up mpiSimData struct
922 <    parallelData.nMolGlobal = getNGlobalMolecules();
923 <    parallelData.nMolLocal = getNMolecules();
924 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
925 <    parallelData.nAtomsLocal = getNAtoms();
926 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927 <    parallelData.nGroupsLocal = getNCutoffGroups();
928 <    parallelData.myNode = worldRank;
929 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930 <
931 <    //pass mpiSimData struct and index arrays to fortran
932 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
934 <                    &localToGlobalCutoffGroupIndex[0], &isError);
935 <
936 <    if (isError) {
937 <      sprintf(painCave.errMsg,
938 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 <      painCave.isFatal = 1;
940 <      simError();
941 <    }
942 <
943 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
944 <    MPIcheckPoint();
945 <
946 <
947 <  }
948 <
949 < #endif
950 <
951 <  void SimInfo::setupCutoff() {          
952 <    
953 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954 <
955 <    // Check the cutoff policy
956 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957 <
958 <    // Set LJ shifting bools to false
959 <    ljsp_ = false;
960 <    ljsf_ = false;
961 <
962 <    std::string myPolicy;
963 <    if (forceFieldOptions_.haveCutoffPolicy()){
964 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
965 <    }else if (simParams_->haveCutoffPolicy()) {
966 <      myPolicy = simParams_->getCutoffPolicy();
967 <    }
968 <
969 <    if (!myPolicy.empty()){
970 <      toUpper(myPolicy);
971 <      if (myPolicy == "MIX") {
972 <        cp = MIX_CUTOFF_POLICY;
973 <      } else {
974 <        if (myPolicy == "MAX") {
975 <          cp = MAX_CUTOFF_POLICY;
976 <        } else {
977 <          if (myPolicy == "TRADITIONAL") {            
978 <            cp = TRADITIONAL_CUTOFF_POLICY;
979 <          } else {
980 <            // throw error        
981 <            sprintf( painCave.errMsg,
982 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
983 <            painCave.isFatal = 1;
984 <            simError();
985 <          }    
986 <        }          
987 <      }
988 <    }          
989 <    notifyFortranCutoffPolicy(&cp);
990 <
991 <    // Check the Skin Thickness for neighborlists
992 <    RealType skin;
993 <    if (simParams_->haveSkinThickness()) {
994 <      skin = simParams_->getSkinThickness();
995 <      notifyFortranSkinThickness(&skin);
996 <    }            
997 <        
998 <    // Check if the cutoff was set explicitly:
999 <    if (simParams_->haveCutoffRadius()) {
1000 <      rcut_ = simParams_->getCutoffRadius();
1001 <      if (simParams_->haveSwitchingRadius()) {
1002 <        rsw_  = simParams_->getSwitchingRadius();
1003 <      } else {
1004 <        if (fInfo_.SIM_uses_Charges |
1005 <            fInfo_.SIM_uses_Dipoles |
1006 <            fInfo_.SIM_uses_RF) {
1007 <          
1008 <          rsw_ = 0.85 * rcut_;
1009 <          sprintf(painCave.errMsg,
1010 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1012 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 <        painCave.isFatal = 0;
1014 <        simError();
1015 <        } else {
1016 <          rsw_ = rcut_;
1017 <          sprintf(painCave.errMsg,
1018 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1019 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1020 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1021 <          painCave.isFatal = 0;
1022 <          simError();
1023 <        }
1024 <      }
1025 <
1026 <      if (simParams_->haveElectrostaticSummationMethod()) {
1027 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028 <        toUpper(myMethod);
1029 <        
1030 <        if (myMethod == "SHIFTED_POTENTIAL") {
1031 <          ljsp_ = true;
1032 <        } else if (myMethod == "SHIFTED_FORCE") {
1033 <          ljsf_ = true;
1034 <        }
1035 <      }
1036 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1037 <      
1038 <    } else {
1039 <      
1040 <      // For electrostatic atoms, we'll assume a large safe value:
1041 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1042 <        sprintf(painCave.errMsg,
1043 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1044 <                "\tOOPSE will use a default value of 15.0 angstroms"
1045 <                "\tfor the cutoffRadius.\n");
1046 <        painCave.isFatal = 0;
1047 <        simError();
1048 <        rcut_ = 15.0;
1049 <      
1050 <        if (simParams_->haveElectrostaticSummationMethod()) {
1051 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1052 <          toUpper(myMethod);
1053 <      
1054 <      // For the time being, we're tethering the LJ shifted behavior to the
1055 <      // electrostaticSummationMethod keyword options
1056 <          if (myMethod == "SHIFTED_POTENTIAL") {
1057 <            ljsp_ = true;
1058 <          } else if (myMethod == "SHIFTED_FORCE") {
1059 <            ljsf_ = true;
1060 <          }
1061 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1062 <            if (simParams_->haveSwitchingRadius()){
1063 <              sprintf(painCave.errMsg,
1064 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1065 <                      "\teven though the electrostaticSummationMethod was\n"
1066 <                      "\tset to %s\n", myMethod.c_str());
1067 <              painCave.isFatal = 1;
1068 <              simError();            
1069 <            }
1070 <          }
1071 <        }
1072 <      
1073 <        if (simParams_->haveSwitchingRadius()){
1074 <          rsw_ = simParams_->getSwitchingRadius();
1075 <        } else {        
1076 <          sprintf(painCave.errMsg,
1077 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1078 <                  "\tOOPSE will use a default value of\n"
1079 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1080 <          painCave.isFatal = 0;
1081 <          simError();
1082 <          rsw_ = 0.85 * rcut_;
1083 <        }
1084 <
1085 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1086 <
1087 <      } else {
1088 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1089 <        // We'll punt and let fortran figure out the cutoffs later.
1090 <        
1091 <        notifyFortranYouAreOnYourOwn();
1092 <
1093 <      }
1094 <    }
936 >    topologyDone_ = true;
937    }
938  
1097  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1098    
1099    int errorOut;
1100    int esm =  NONE;
1101    int sm = UNDAMPED;
1102    RealType alphaVal;
1103    RealType dielectric;
1104    
1105    errorOut = isError;
1106
1107    if (simParams_->haveElectrostaticSummationMethod()) {
1108      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1109      toUpper(myMethod);
1110      if (myMethod == "NONE") {
1111        esm = NONE;
1112      } else {
1113        if (myMethod == "SWITCHING_FUNCTION") {
1114          esm = SWITCHING_FUNCTION;
1115        } else {
1116          if (myMethod == "SHIFTED_POTENTIAL") {
1117            esm = SHIFTED_POTENTIAL;
1118          } else {
1119            if (myMethod == "SHIFTED_FORCE") {            
1120              esm = SHIFTED_FORCE;
1121            } else {
1122              if (myMethod == "REACTION_FIELD") {
1123                esm = REACTION_FIELD;
1124                dielectric = simParams_->getDielectric();
1125                if (!simParams_->haveDielectric()) {
1126                  // throw warning
1127                  sprintf( painCave.errMsg,
1128                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1129                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1130                  painCave.isFatal = 0;
1131                  simError();
1132                }
1133              } else {
1134                // throw error        
1135                sprintf( painCave.errMsg,
1136                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1137                         "\t(Input file specified %s .)\n"
1138                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1139                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1140                         "\t\"reaction_field\".\n", myMethod.c_str() );
1141                painCave.isFatal = 1;
1142                simError();
1143              }    
1144            }          
1145          }
1146        }
1147      }
1148    }
1149    
1150    if (simParams_->haveElectrostaticScreeningMethod()) {
1151      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1152      toUpper(myScreen);
1153      if (myScreen == "UNDAMPED") {
1154        sm = UNDAMPED;
1155      } else {
1156        if (myScreen == "DAMPED") {
1157          sm = DAMPED;
1158          if (!simParams_->haveDampingAlpha()) {
1159            // first set a cutoff dependent alpha value
1160            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1161            alphaVal = 0.5125 - rcut_* 0.025;
1162            // for values rcut > 20.5, alpha is zero
1163            if (alphaVal < 0) alphaVal = 0;
1164
1165            // throw warning
1166            sprintf( painCave.errMsg,
1167                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1168                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1169            painCave.isFatal = 0;
1170            simError();
1171          } else {
1172            alphaVal = simParams_->getDampingAlpha();
1173          }
1174          
1175        } else {
1176          // throw error        
1177          sprintf( painCave.errMsg,
1178                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1179                   "\t(Input file specified %s .)\n"
1180                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1181                   "or \"damped\".\n", myScreen.c_str() );
1182          painCave.isFatal = 1;
1183          simError();
1184        }
1185      }
1186    }
1187    
1188    // let's pass some summation method variables to fortran
1189    setElectrostaticSummationMethod( &esm );
1190    setFortranElectrostaticMethod( &esm );
1191    setScreeningMethod( &sm );
1192    setDampingAlpha( &alphaVal );
1193    setReactionFieldDielectric( &dielectric );
1194    initFortranFF( &errorOut );
1195  }
1196
1197  void SimInfo::setupSwitchingFunction() {    
1198    int ft = CUBIC;
1199
1200    if (simParams_->haveSwitchingFunctionType()) {
1201      std::string funcType = simParams_->getSwitchingFunctionType();
1202      toUpper(funcType);
1203      if (funcType == "CUBIC") {
1204        ft = CUBIC;
1205      } else {
1206        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1207          ft = FIFTH_ORDER_POLY;
1208        } else {
1209          // throw error        
1210          sprintf( painCave.errMsg,
1211                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1212          painCave.isFatal = 1;
1213          simError();
1214        }          
1215      }
1216    }
1217
1218    // send switching function notification to switcheroo
1219    setFunctionType(&ft);
1220
1221  }
1222
1223  void SimInfo::setupAccumulateBoxDipole() {    
1224
1225    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1226    if ( simParams_->haveAccumulateBoxDipole() )
1227      if ( simParams_->getAccumulateBoxDipole() ) {
1228        setAccumulateBoxDipole();
1229        calcBoxDipole_ = true;
1230      }
1231
1232  }
1233
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 1243 | Line 948 | namespace oopse {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 1265 | Line 970 | namespace oopse {
970      Molecule* mol;
971      RigidBody* rb;
972      Atom* atom;
973 +    CutoffGroup* cg;
974      SimInfo::MoleculeIterator mi;
975      Molecule::RigidBodyIterator rbIter;
976 <    Molecule::AtomIterator atomIter;;
976 >    Molecule::AtomIterator atomIter;
977 >    Molecule::CutoffGroupIterator cgIter;
978  
979      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
980          
# Line 1278 | Line 985 | namespace oopse {
985        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
986          rb->setSnapshotManager(sman_);
987        }
988 +
989 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 +        cg->setSnapshotManager(sman_);
991 +      }
992      }    
993      
994    }
995  
1285  Vector3d SimInfo::getComVel(){
1286    SimInfo::MoleculeIterator i;
1287    Molecule* mol;
996  
997 <    Vector3d comVel(0.0);
1290 <    RealType totalMass = 0.0;
1291 <    
1292 <
1293 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1294 <      RealType mass = mol->getMass();
1295 <      totalMass += mass;
1296 <      comVel += mass * mol->getComVel();
1297 <    }  
1298 <
1299 < #ifdef IS_MPI
1300 <    RealType tmpMass = totalMass;
1301 <    Vector3d tmpComVel(comVel);    
1302 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1303 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 < #endif
1305 <
1306 <    comVel /= totalMass;
1307 <
1308 <    return comVel;
1309 <  }
1310 <
1311 <  Vector3d SimInfo::getCom(){
1312 <    SimInfo::MoleculeIterator i;
1313 <    Molecule* mol;
1314 <
1315 <    Vector3d com(0.0);
1316 <    RealType totalMass = 0.0;
1317 <    
1318 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1319 <      RealType mass = mol->getMass();
1320 <      totalMass += mass;
1321 <      com += mass * mol->getCom();
1322 <    }  
1323 <
1324 < #ifdef IS_MPI
1325 <    RealType tmpMass = totalMass;
1326 <    Vector3d tmpCom(com);    
1327 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 < #endif
1330 <
1331 <    com /= totalMass;
1332 <
1333 <    return com;
997 >  ostream& operator <<(ostream& o, SimInfo& info) {
998  
1335  }        
1336
1337  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1338
999      return o;
1000    }
1001    
1002 <  
1343 <   /*
1344 <   Returns center of mass and center of mass velocity in one function call.
1345 <   */
1346 <  
1347 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1348 <      SimInfo::MoleculeIterator i;
1349 <      Molecule* mol;
1350 <      
1351 <    
1352 <      RealType totalMass = 0.0;
1353 <    
1354 <
1355 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1356 <         RealType mass = mol->getMass();
1357 <         totalMass += mass;
1358 <         com += mass * mol->getCom();
1359 <         comVel += mass * mol->getComVel();          
1360 <      }  
1361 <      
1362 < #ifdef IS_MPI
1363 <      RealType tmpMass = totalMass;
1364 <      Vector3d tmpCom(com);  
1365 <      Vector3d tmpComVel(comVel);
1366 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1367 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1368 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1369 < #endif
1370 <      
1371 <      com /= totalMass;
1372 <      comVel /= totalMass;
1373 <   }        
1374 <  
1375 <   /*
1376 <   Return intertia tensor for entire system and angular momentum Vector.
1377 <
1378 <
1379 <       [  Ixx -Ixy  -Ixz ]
1380 <  J =| -Iyx  Iyy  -Iyz |
1381 <       [ -Izx -Iyz   Izz ]
1382 <    */
1383 <
1384 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1385 <      
1386 <
1387 <      RealType xx = 0.0;
1388 <      RealType yy = 0.0;
1389 <      RealType zz = 0.0;
1390 <      RealType xy = 0.0;
1391 <      RealType xz = 0.0;
1392 <      RealType yz = 0.0;
1393 <      Vector3d com(0.0);
1394 <      Vector3d comVel(0.0);
1395 <      
1396 <      getComAll(com, comVel);
1397 <      
1398 <      SimInfo::MoleculeIterator i;
1399 <      Molecule* mol;
1400 <      
1401 <      Vector3d thisq(0.0);
1402 <      Vector3d thisv(0.0);
1403 <
1404 <      RealType thisMass = 0.0;
1405 <    
1406 <      
1407 <      
1408 <  
1409 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1410 <        
1411 <         thisq = mol->getCom()-com;
1412 <         thisv = mol->getComVel()-comVel;
1413 <         thisMass = mol->getMass();
1414 <         // Compute moment of intertia coefficients.
1415 <         xx += thisq[0]*thisq[0]*thisMass;
1416 <         yy += thisq[1]*thisq[1]*thisMass;
1417 <         zz += thisq[2]*thisq[2]*thisMass;
1418 <        
1419 <         // compute products of intertia
1420 <         xy += thisq[0]*thisq[1]*thisMass;
1421 <         xz += thisq[0]*thisq[2]*thisMass;
1422 <         yz += thisq[1]*thisq[2]*thisMass;
1423 <            
1424 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1425 <            
1426 <      }  
1427 <      
1428 <      
1429 <      inertiaTensor(0,0) = yy + zz;
1430 <      inertiaTensor(0,1) = -xy;
1431 <      inertiaTensor(0,2) = -xz;
1432 <      inertiaTensor(1,0) = -xy;
1433 <      inertiaTensor(1,1) = xx + zz;
1434 <      inertiaTensor(1,2) = -yz;
1435 <      inertiaTensor(2,0) = -xz;
1436 <      inertiaTensor(2,1) = -yz;
1437 <      inertiaTensor(2,2) = xx + yy;
1438 <      
1439 < #ifdef IS_MPI
1440 <      Mat3x3d tmpI(inertiaTensor);
1441 <      Vector3d tmpAngMom;
1442 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1444 < #endif
1445 <              
1446 <      return;
1447 <   }
1448 <
1449 <   //Returns the angular momentum of the system
1450 <   Vector3d SimInfo::getAngularMomentum(){
1451 <      
1452 <      Vector3d com(0.0);
1453 <      Vector3d comVel(0.0);
1454 <      Vector3d angularMomentum(0.0);
1455 <      
1456 <      getComAll(com,comVel);
1457 <      
1458 <      SimInfo::MoleculeIterator i;
1459 <      Molecule* mol;
1460 <      
1461 <      Vector3d thisr(0.0);
1462 <      Vector3d thisp(0.0);
1463 <      
1464 <      RealType thisMass;
1465 <      
1466 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1467 <        thisMass = mol->getMass();
1468 <        thisr = mol->getCom()-com;
1469 <        thisp = (mol->getComVel()-comVel)*thisMass;
1470 <        
1471 <        angularMomentum += cross( thisr, thisp );
1472 <        
1473 <      }  
1474 <      
1475 < #ifdef IS_MPI
1476 <      Vector3d tmpAngMom;
1477 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1478 < #endif
1479 <      
1480 <      return angularMomentum;
1481 <   }
1482 <  
1002 >  
1003    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1004      return IOIndexToIntegrableObject.at(index);
1005    }
1006    
1007 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1007 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1008      IOIndexToIntegrableObject= v;
1009    }
1490
1491  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1492     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1493     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1494     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1495  */
1496  void SimInfo::getGyrationalVolume(RealType &volume){
1497    Mat3x3d intTensor;
1498    RealType det;
1499    Vector3d dummyAngMom;
1500    RealType sysconstants;
1501    RealType geomCnst;
1502
1503    geomCnst = 3.0/2.0;
1504    /* Get the inertial tensor and angular momentum for free*/
1505    getInertiaTensor(intTensor,dummyAngMom);
1506    
1507    det = intTensor.determinant();
1508    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1509    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1510    return;
1511  }
1512
1513  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1514    Mat3x3d intTensor;
1515    Vector3d dummyAngMom;
1516    RealType sysconstants;
1517    RealType geomCnst;
1518
1519    geomCnst = 3.0/2.0;
1520    /* Get the inertial tensor and angular momentum for free*/
1521    getInertiaTensor(intTensor,dummyAngMom);
1522    
1523    detI = intTensor.determinant();
1524    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1525    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1526    return;
1527  }
1010   /*
1011 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1011 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1012        assert( v.size() == nAtoms_ + nRigidBodies_);
1013        sdByGlobalIndex_ = v;
1014      }
# Line 1536 | Line 1018 | namespace oopse {
1018        return sdByGlobalIndex_.at(index);
1019      }  
1020   */  
1021 < }//end namespace oopse
1021 >  int SimInfo::getNGlobalConstraints() {
1022 >    int nGlobalConstraints;
1023 > #ifdef IS_MPI
1024 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 >                  MPI_COMM_WORLD);    
1026 > #else
1027 >    nGlobalConstraints =  nConstraints_;
1028 > #endif
1029 >    return nGlobalConstraints;
1030 >  }
1031  
1032 + }//end namespace OpenMD
1033 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1129 by chrisfen, Fri Apr 20 18:15:48 2007 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines