ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 998
Committed: Mon Jul 3 13:18:43 2006 UTC (18 years, 10 months ago) by chrisfen
Original Path: trunk/src/brains/SimInfo.cpp
File size: 45290 byte(s)
Log Message:
Added simulation box dipole moment accumulation for the purposes of calculating dielectric constants

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "UseTheForce/fCutoffPolicy.h"
57 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 #include "UseTheForce/doForces_interface.h"
61 #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 #include "utils/MemoryUtils.hpp"
64 #include "utils/simError.h"
65 #include "selection/SelectionManager.hpp"
66 #include "io/ForceFieldOptions.hpp"
67 #include "UseTheForce/ForceField.hpp"
68
69 #ifdef IS_MPI
70 #include "UseTheForce/mpiComponentPlan.h"
71 #include "UseTheForce/DarkSide/simParallel_interface.h"
72 #endif
73
74 namespace oopse {
75 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 std::map<int, std::set<int> >::iterator i = container.find(index);
77 std::set<int> result;
78 if (i != container.end()) {
79 result = i->second;
80 }
81
82 return result;
83 }
84
85 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 forceField_(ff), simParams_(simParams),
87 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
92 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
93
94 MoleculeStamp* molStamp;
95 int nMolWithSameStamp;
96 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 int nGroups = 0; //total cutoff groups defined in meta-data file
98 CutoffGroupStamp* cgStamp;
99 RigidBodyStamp* rbStamp;
100 int nRigidAtoms = 0;
101 std::vector<Component*> components = simParams->getComponents();
102
103 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 molStamp = (*i)->getMoleculeStamp();
105 nMolWithSameStamp = (*i)->getNMol();
106
107 addMoleculeStamp(molStamp, nMolWithSameStamp);
108
109 //calculate atoms in molecules
110 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
111
112 //calculate atoms in cutoff groups
113 int nAtomsInGroups = 0;
114 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115
116 for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 cgStamp = molStamp->getCutoffGroupStamp(j);
118 nAtomsInGroups += cgStamp->getNMembers();
119 }
120
121 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122
123 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
124
125 //calculate atoms in rigid bodies
126 int nAtomsInRigidBodies = 0;
127 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128
129 for (int j=0; j < nRigidBodiesInStamp; j++) {
130 rbStamp = molStamp->getRigidBodyStamp(j);
131 nAtomsInRigidBodies += rbStamp->getNMembers();
132 }
133
134 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
136
137 }
138
139 //every free atom (atom does not belong to cutoff groups) is a cutoff
140 //group therefore the total number of cutoff groups in the system is
141 //equal to the total number of atoms minus number of atoms belong to
142 //cutoff group defined in meta-data file plus the number of cutoff
143 //groups defined in meta-data file
144 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145
146 //every free atom (atom does not belong to rigid bodies) is an
147 //integrable object therefore the total number of integrable objects
148 //in the system is equal to the total number of atoms minus number of
149 //atoms belong to rigid body defined in meta-data file plus the number
150 //of rigid bodies defined in meta-data file
151 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 + nGlobalRigidBodies_;
153
154 nGlobalMols_ = molStampIds_.size();
155
156 #ifdef IS_MPI
157 molToProcMap_.resize(nGlobalMols_);
158 #endif
159
160 }
161
162 SimInfo::~SimInfo() {
163 std::map<int, Molecule*>::iterator i;
164 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 delete i->second;
166 }
167 molecules_.clear();
168
169 delete sman_;
170 delete simParams_;
171 delete forceField_;
172 }
173
174 int SimInfo::getNGlobalConstraints() {
175 int nGlobalConstraints;
176 #ifdef IS_MPI
177 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 MPI_COMM_WORLD);
179 #else
180 nGlobalConstraints = nConstraints_;
181 #endif
182 return nGlobalConstraints;
183 }
184
185 bool SimInfo::addMolecule(Molecule* mol) {
186 MoleculeIterator i;
187
188 i = molecules_.find(mol->getGlobalIndex());
189 if (i == molecules_.end() ) {
190
191 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192
193 nAtoms_ += mol->getNAtoms();
194 nBonds_ += mol->getNBonds();
195 nBends_ += mol->getNBends();
196 nTorsions_ += mol->getNTorsions();
197 nRigidBodies_ += mol->getNRigidBodies();
198 nIntegrableObjects_ += mol->getNIntegrableObjects();
199 nCutoffGroups_ += mol->getNCutoffGroups();
200 nConstraints_ += mol->getNConstraintPairs();
201
202 addExcludePairs(mol);
203
204 return true;
205 } else {
206 return false;
207 }
208 }
209
210 bool SimInfo::removeMolecule(Molecule* mol) {
211 MoleculeIterator i;
212 i = molecules_.find(mol->getGlobalIndex());
213
214 if (i != molecules_.end() ) {
215
216 assert(mol == i->second);
217
218 nAtoms_ -= mol->getNAtoms();
219 nBonds_ -= mol->getNBonds();
220 nBends_ -= mol->getNBends();
221 nTorsions_ -= mol->getNTorsions();
222 nRigidBodies_ -= mol->getNRigidBodies();
223 nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 nCutoffGroups_ -= mol->getNCutoffGroups();
225 nConstraints_ -= mol->getNConstraintPairs();
226
227 removeExcludePairs(mol);
228 molecules_.erase(mol->getGlobalIndex());
229
230 delete mol;
231
232 return true;
233 } else {
234 return false;
235 }
236
237
238 }
239
240
241 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 i = molecules_.begin();
243 return i == molecules_.end() ? NULL : i->second;
244 }
245
246 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 ++i;
248 return i == molecules_.end() ? NULL : i->second;
249 }
250
251
252 void SimInfo::calcNdf() {
253 int ndf_local;
254 MoleculeIterator i;
255 std::vector<StuntDouble*>::iterator j;
256 Molecule* mol;
257 StuntDouble* integrableObject;
258
259 ndf_local = 0;
260
261 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 integrableObject = mol->nextIntegrableObject(j)) {
264
265 ndf_local += 3;
266
267 if (integrableObject->isDirectional()) {
268 if (integrableObject->isLinear()) {
269 ndf_local += 2;
270 } else {
271 ndf_local += 3;
272 }
273 }
274
275 }
276 }
277
278 // n_constraints is local, so subtract them on each processor
279 ndf_local -= nConstraints_;
280
281 #ifdef IS_MPI
282 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 #else
284 ndf_ = ndf_local;
285 #endif
286
287 // nZconstraints_ is global, as are the 3 COM translations for the
288 // entire system:
289 ndf_ = ndf_ - 3 - nZconstraint_;
290
291 }
292
293 int SimInfo::getFdf() {
294 #ifdef IS_MPI
295 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 #else
297 fdf_ = fdf_local;
298 #endif
299 return fdf_;
300 }
301
302 void SimInfo::calcNdfRaw() {
303 int ndfRaw_local;
304
305 MoleculeIterator i;
306 std::vector<StuntDouble*>::iterator j;
307 Molecule* mol;
308 StuntDouble* integrableObject;
309
310 // Raw degrees of freedom that we have to set
311 ndfRaw_local = 0;
312
313 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 integrableObject = mol->nextIntegrableObject(j)) {
316
317 ndfRaw_local += 3;
318
319 if (integrableObject->isDirectional()) {
320 if (integrableObject->isLinear()) {
321 ndfRaw_local += 2;
322 } else {
323 ndfRaw_local += 3;
324 }
325 }
326
327 }
328 }
329
330 #ifdef IS_MPI
331 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332 #else
333 ndfRaw_ = ndfRaw_local;
334 #endif
335 }
336
337 void SimInfo::calcNdfTrans() {
338 int ndfTrans_local;
339
340 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341
342
343 #ifdef IS_MPI
344 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345 #else
346 ndfTrans_ = ndfTrans_local;
347 #endif
348
349 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350
351 }
352
353 void SimInfo::addExcludePairs(Molecule* mol) {
354 std::vector<Bond*>::iterator bondIter;
355 std::vector<Bend*>::iterator bendIter;
356 std::vector<Torsion*>::iterator torsionIter;
357 Bond* bond;
358 Bend* bend;
359 Torsion* torsion;
360 int a;
361 int b;
362 int c;
363 int d;
364
365 std::map<int, std::set<int> > atomGroups;
366
367 Molecule::RigidBodyIterator rbIter;
368 RigidBody* rb;
369 Molecule::IntegrableObjectIterator ii;
370 StuntDouble* integrableObject;
371
372 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 integrableObject = mol->nextIntegrableObject(ii)) {
374
375 if (integrableObject->isRigidBody()) {
376 rb = static_cast<RigidBody*>(integrableObject);
377 std::vector<Atom*> atoms = rb->getAtoms();
378 std::set<int> rigidAtoms;
379 for (int i = 0; i < atoms.size(); ++i) {
380 rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 }
382 for (int i = 0; i < atoms.size(); ++i) {
383 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 }
385 } else {
386 std::set<int> oneAtomSet;
387 oneAtomSet.insert(integrableObject->getGlobalIndex());
388 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
389 }
390 }
391
392
393
394 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 a = bond->getAtomA()->getGlobalIndex();
396 b = bond->getAtomB()->getGlobalIndex();
397 exclude_.addPair(a, b);
398 }
399
400 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 a = bend->getAtomA()->getGlobalIndex();
402 b = bend->getAtomB()->getGlobalIndex();
403 c = bend->getAtomC()->getGlobalIndex();
404 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408 exclude_.addPairs(rigidSetA, rigidSetB);
409 exclude_.addPairs(rigidSetA, rigidSetC);
410 exclude_.addPairs(rigidSetB, rigidSetC);
411
412 //exclude_.addPair(a, b);
413 //exclude_.addPair(a, c);
414 //exclude_.addPair(b, c);
415 }
416
417 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 a = torsion->getAtomA()->getGlobalIndex();
419 b = torsion->getAtomB()->getGlobalIndex();
420 c = torsion->getAtomC()->getGlobalIndex();
421 d = torsion->getAtomD()->getGlobalIndex();
422 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426
427 exclude_.addPairs(rigidSetA, rigidSetB);
428 exclude_.addPairs(rigidSetA, rigidSetC);
429 exclude_.addPairs(rigidSetA, rigidSetD);
430 exclude_.addPairs(rigidSetB, rigidSetC);
431 exclude_.addPairs(rigidSetB, rigidSetD);
432 exclude_.addPairs(rigidSetC, rigidSetD);
433
434 /*
435 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441
442
443 exclude_.addPair(a, b);
444 exclude_.addPair(a, c);
445 exclude_.addPair(a, d);
446 exclude_.addPair(b, c);
447 exclude_.addPair(b, d);
448 exclude_.addPair(c, d);
449 */
450 }
451
452 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 std::vector<Atom*> atoms = rb->getAtoms();
454 for (int i = 0; i < atoms.size() -1 ; ++i) {
455 for (int j = i + 1; j < atoms.size(); ++j) {
456 a = atoms[i]->getGlobalIndex();
457 b = atoms[j]->getGlobalIndex();
458 exclude_.addPair(a, b);
459 }
460 }
461 }
462
463 }
464
465 void SimInfo::removeExcludePairs(Molecule* mol) {
466 std::vector<Bond*>::iterator bondIter;
467 std::vector<Bend*>::iterator bendIter;
468 std::vector<Torsion*>::iterator torsionIter;
469 Bond* bond;
470 Bend* bend;
471 Torsion* torsion;
472 int a;
473 int b;
474 int c;
475 int d;
476
477 std::map<int, std::set<int> > atomGroups;
478
479 Molecule::RigidBodyIterator rbIter;
480 RigidBody* rb;
481 Molecule::IntegrableObjectIterator ii;
482 StuntDouble* integrableObject;
483
484 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 integrableObject = mol->nextIntegrableObject(ii)) {
486
487 if (integrableObject->isRigidBody()) {
488 rb = static_cast<RigidBody*>(integrableObject);
489 std::vector<Atom*> atoms = rb->getAtoms();
490 std::set<int> rigidAtoms;
491 for (int i = 0; i < atoms.size(); ++i) {
492 rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 }
494 for (int i = 0; i < atoms.size(); ++i) {
495 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 }
497 } else {
498 std::set<int> oneAtomSet;
499 oneAtomSet.insert(integrableObject->getGlobalIndex());
500 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
501 }
502 }
503
504
505 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 a = bond->getAtomA()->getGlobalIndex();
507 b = bond->getAtomB()->getGlobalIndex();
508 exclude_.removePair(a, b);
509 }
510
511 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 a = bend->getAtomA()->getGlobalIndex();
513 b = bend->getAtomB()->getGlobalIndex();
514 c = bend->getAtomC()->getGlobalIndex();
515
516 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520 exclude_.removePairs(rigidSetA, rigidSetB);
521 exclude_.removePairs(rigidSetA, rigidSetC);
522 exclude_.removePairs(rigidSetB, rigidSetC);
523
524 //exclude_.removePair(a, b);
525 //exclude_.removePair(a, c);
526 //exclude_.removePair(b, c);
527 }
528
529 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 a = torsion->getAtomA()->getGlobalIndex();
531 b = torsion->getAtomB()->getGlobalIndex();
532 c = torsion->getAtomC()->getGlobalIndex();
533 d = torsion->getAtomD()->getGlobalIndex();
534
535 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539
540 exclude_.removePairs(rigidSetA, rigidSetB);
541 exclude_.removePairs(rigidSetA, rigidSetC);
542 exclude_.removePairs(rigidSetA, rigidSetD);
543 exclude_.removePairs(rigidSetB, rigidSetC);
544 exclude_.removePairs(rigidSetB, rigidSetD);
545 exclude_.removePairs(rigidSetC, rigidSetD);
546
547 /*
548 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554
555
556 exclude_.removePair(a, b);
557 exclude_.removePair(a, c);
558 exclude_.removePair(a, d);
559 exclude_.removePair(b, c);
560 exclude_.removePair(b, d);
561 exclude_.removePair(c, d);
562 */
563 }
564
565 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 std::vector<Atom*> atoms = rb->getAtoms();
567 for (int i = 0; i < atoms.size() -1 ; ++i) {
568 for (int j = i + 1; j < atoms.size(); ++j) {
569 a = atoms[i]->getGlobalIndex();
570 b = atoms[j]->getGlobalIndex();
571 exclude_.removePair(a, b);
572 }
573 }
574 }
575
576 }
577
578
579 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 int curStampId;
581
582 //index from 0
583 curStampId = moleculeStamps_.size();
584
585 moleculeStamps_.push_back(molStamp);
586 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 }
588
589 void SimInfo::update() {
590
591 setupSimType();
592
593 #ifdef IS_MPI
594 setupFortranParallel();
595 #endif
596
597 setupFortranSim();
598
599 //setup fortran force field
600 /** @deprecate */
601 int isError = 0;
602
603 setupElectrostaticSummationMethod( isError );
604 setupSwitchingFunction();
605 setupAccumulateBoxDipole();
606
607 if(isError){
608 sprintf( painCave.errMsg,
609 "ForceField error: There was an error initializing the forceField in fortran.\n" );
610 painCave.isFatal = 1;
611 simError();
612 }
613
614
615 setupCutoff();
616
617 calcNdf();
618 calcNdfRaw();
619 calcNdfTrans();
620
621 fortranInitialized_ = true;
622 }
623
624 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625 SimInfo::MoleculeIterator mi;
626 Molecule* mol;
627 Molecule::AtomIterator ai;
628 Atom* atom;
629 std::set<AtomType*> atomTypes;
630
631 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632
633 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 atomTypes.insert(atom->getAtomType());
635 }
636
637 }
638
639 return atomTypes;
640 }
641
642 void SimInfo::setupSimType() {
643 std::set<AtomType*>::iterator i;
644 std::set<AtomType*> atomTypes;
645 atomTypes = getUniqueAtomTypes();
646
647 int useLennardJones = 0;
648 int useElectrostatic = 0;
649 int useEAM = 0;
650 int useSC = 0;
651 int useCharge = 0;
652 int useDirectional = 0;
653 int useDipole = 0;
654 int useGayBerne = 0;
655 int useSticky = 0;
656 int useStickyPower = 0;
657 int useShape = 0;
658 int useFLARB = 0; //it is not in AtomType yet
659 int useDirectionalAtom = 0;
660 int useElectrostatics = 0;
661 //usePBC and useRF are from simParams
662 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 int useRF;
664 int useSF;
665 int useSP;
666 int useBoxDipole;
667 std::string myMethod;
668
669 // set the useRF logical
670 useRF = 0;
671 useSF = 0;
672
673
674 if (simParams_->haveElectrostaticSummationMethod()) {
675 std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 toUpper(myMethod);
677 if (myMethod == "REACTION_FIELD"){
678 useRF=1;
679 } else if (myMethod == "SHIFTED_FORCE"){
680 useSF = 1;
681 } else if (myMethod == "SHIFTED_POTENTIAL"){
682 useSP = 1;
683 }
684 }
685
686 if (simParams_->haveAccumulateBoxDipole())
687 if (simParams_->getAccumulateBoxDipole())
688 useBoxDipole = 1;
689
690 //loop over all of the atom types
691 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 useLennardJones |= (*i)->isLennardJones();
693 useElectrostatic |= (*i)->isElectrostatic();
694 useEAM |= (*i)->isEAM();
695 useSC |= (*i)->isSC();
696 useCharge |= (*i)->isCharge();
697 useDirectional |= (*i)->isDirectional();
698 useDipole |= (*i)->isDipole();
699 useGayBerne |= (*i)->isGayBerne();
700 useSticky |= (*i)->isSticky();
701 useStickyPower |= (*i)->isStickyPower();
702 useShape |= (*i)->isShape();
703 }
704
705 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 useDirectionalAtom = 1;
707 }
708
709 if (useCharge || useDipole) {
710 useElectrostatics = 1;
711 }
712
713 #ifdef IS_MPI
714 int temp;
715
716 temp = usePBC;
717 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
718
719 temp = useDirectionalAtom;
720 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
721
722 temp = useLennardJones;
723 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
724
725 temp = useElectrostatics;
726 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
727
728 temp = useCharge;
729 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730
731 temp = useDipole;
732 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
733
734 temp = useSticky;
735 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
736
737 temp = useStickyPower;
738 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
739
740 temp = useGayBerne;
741 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
742
743 temp = useEAM;
744 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
745
746 temp = useSC;
747 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748
749 temp = useShape;
750 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751
752 temp = useFLARB;
753 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
754
755 temp = useRF;
756 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
757
758 temp = useSF;
759 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
760
761 temp = useSP;
762 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763
764 temp = useBoxDipole;
765 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766
767 #endif
768
769 fInfo_.SIM_uses_PBC = usePBC;
770 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 fInfo_.SIM_uses_LennardJones = useLennardJones;
772 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
773 fInfo_.SIM_uses_Charges = useCharge;
774 fInfo_.SIM_uses_Dipoles = useDipole;
775 fInfo_.SIM_uses_Sticky = useSticky;
776 fInfo_.SIM_uses_StickyPower = useStickyPower;
777 fInfo_.SIM_uses_GayBerne = useGayBerne;
778 fInfo_.SIM_uses_EAM = useEAM;
779 fInfo_.SIM_uses_SC = useSC;
780 fInfo_.SIM_uses_Shapes = useShape;
781 fInfo_.SIM_uses_FLARB = useFLARB;
782 fInfo_.SIM_uses_RF = useRF;
783 fInfo_.SIM_uses_SF = useSF;
784 fInfo_.SIM_uses_SP = useSP;
785 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786
787 if( myMethod == "REACTION_FIELD") {
788
789 if (simParams_->haveDielectric()) {
790 fInfo_.dielect = simParams_->getDielectric();
791 } else {
792 sprintf(painCave.errMsg,
793 "SimSetup Error: No Dielectric constant was set.\n"
794 "\tYou are trying to use Reaction Field without"
795 "\tsetting a dielectric constant!\n");
796 painCave.isFatal = 1;
797 simError();
798 }
799 }
800
801 }
802
803 void SimInfo::setupFortranSim() {
804 int isError;
805 int nExclude;
806 std::vector<int> fortranGlobalGroupMembership;
807
808 nExclude = exclude_.getSize();
809 isError = 0;
810
811 //globalGroupMembership_ is filled by SimCreator
812 for (int i = 0; i < nGlobalAtoms_; i++) {
813 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814 }
815
816 //calculate mass ratio of cutoff group
817 std::vector<RealType> mfact;
818 SimInfo::MoleculeIterator mi;
819 Molecule* mol;
820 Molecule::CutoffGroupIterator ci;
821 CutoffGroup* cg;
822 Molecule::AtomIterator ai;
823 Atom* atom;
824 RealType totalMass;
825
826 //to avoid memory reallocation, reserve enough space for mfact
827 mfact.reserve(getNCutoffGroups());
828
829 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
830 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
831
832 totalMass = cg->getMass();
833 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 // Check for massless groups - set mfact to 1 if true
835 if (totalMass != 0)
836 mfact.push_back(atom->getMass()/totalMass);
837 else
838 mfact.push_back( 1.0 );
839 }
840
841 }
842 }
843
844 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
845 std::vector<int> identArray;
846
847 //to avoid memory reallocation, reserve enough space identArray
848 identArray.reserve(getNAtoms());
849
850 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
851 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 identArray.push_back(atom->getIdent());
853 }
854 }
855
856 //fill molMembershipArray
857 //molMembershipArray is filled by SimCreator
858 std::vector<int> molMembershipArray(nGlobalAtoms_);
859 for (int i = 0; i < nGlobalAtoms_; i++) {
860 molMembershipArray[i] = globalMolMembership_[i] + 1;
861 }
862
863 //setup fortran simulation
864 int nGlobalExcludes = 0;
865 int* globalExcludes = NULL;
866 int* excludeList = exclude_.getExcludeList();
867 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870
871 if( isError ){
872
873 sprintf( painCave.errMsg,
874 "There was an error setting the simulation information in fortran.\n" );
875 painCave.isFatal = 1;
876 painCave.severity = OOPSE_ERROR;
877 simError();
878 }
879
880 #ifdef IS_MPI
881 sprintf( checkPointMsg,
882 "succesfully sent the simulation information to fortran.\n");
883 MPIcheckPoint();
884 #endif // is_mpi
885 }
886
887
888 #ifdef IS_MPI
889 void SimInfo::setupFortranParallel() {
890
891 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 std::vector<int> localToGlobalCutoffGroupIndex;
894 SimInfo::MoleculeIterator mi;
895 Molecule::AtomIterator ai;
896 Molecule::CutoffGroupIterator ci;
897 Molecule* mol;
898 Atom* atom;
899 CutoffGroup* cg;
900 mpiSimData parallelData;
901 int isError;
902
903 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
904
905 //local index(index in DataStorge) of atom is important
906 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 }
909
910 //local index of cutoff group is trivial, it only depends on the order of travesing
911 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 }
914
915 }
916
917 //fill up mpiSimData struct
918 parallelData.nMolGlobal = getNGlobalMolecules();
919 parallelData.nMolLocal = getNMolecules();
920 parallelData.nAtomsGlobal = getNGlobalAtoms();
921 parallelData.nAtomsLocal = getNAtoms();
922 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 parallelData.nGroupsLocal = getNCutoffGroups();
924 parallelData.myNode = worldRank;
925 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926
927 //pass mpiSimData struct and index arrays to fortran
928 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
930 &localToGlobalCutoffGroupIndex[0], &isError);
931
932 if (isError) {
933 sprintf(painCave.errMsg,
934 "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 painCave.isFatal = 1;
936 simError();
937 }
938
939 sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 MPIcheckPoint();
941
942
943 }
944
945 #endif
946
947 void SimInfo::setupCutoff() {
948
949 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950
951 // Check the cutoff policy
952 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953
954 std::string myPolicy;
955 if (forceFieldOptions_.haveCutoffPolicy()){
956 myPolicy = forceFieldOptions_.getCutoffPolicy();
957 }else if (simParams_->haveCutoffPolicy()) {
958 myPolicy = simParams_->getCutoffPolicy();
959 }
960
961 if (!myPolicy.empty()){
962 toUpper(myPolicy);
963 if (myPolicy == "MIX") {
964 cp = MIX_CUTOFF_POLICY;
965 } else {
966 if (myPolicy == "MAX") {
967 cp = MAX_CUTOFF_POLICY;
968 } else {
969 if (myPolicy == "TRADITIONAL") {
970 cp = TRADITIONAL_CUTOFF_POLICY;
971 } else {
972 // throw error
973 sprintf( painCave.errMsg,
974 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 painCave.isFatal = 1;
976 simError();
977 }
978 }
979 }
980 }
981 notifyFortranCutoffPolicy(&cp);
982
983 // Check the Skin Thickness for neighborlists
984 RealType skin;
985 if (simParams_->haveSkinThickness()) {
986 skin = simParams_->getSkinThickness();
987 notifyFortranSkinThickness(&skin);
988 }
989
990 // Check if the cutoff was set explicitly:
991 if (simParams_->haveCutoffRadius()) {
992 rcut_ = simParams_->getCutoffRadius();
993 if (simParams_->haveSwitchingRadius()) {
994 rsw_ = simParams_->getSwitchingRadius();
995 } else {
996 if (fInfo_.SIM_uses_Charges |
997 fInfo_.SIM_uses_Dipoles |
998 fInfo_.SIM_uses_RF) {
999
1000 rsw_ = 0.85 * rcut_;
1001 sprintf(painCave.errMsg,
1002 "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 painCave.isFatal = 0;
1006 simError();
1007 } else {
1008 rsw_ = rcut_;
1009 sprintf(painCave.errMsg,
1010 "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 painCave.isFatal = 0;
1014 simError();
1015 }
1016 }
1017
1018 notifyFortranCutoffs(&rcut_, &rsw_);
1019
1020 } else {
1021
1022 // For electrostatic atoms, we'll assume a large safe value:
1023 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 sprintf(painCave.errMsg,
1025 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 "\tOOPSE will use a default value of 15.0 angstroms"
1027 "\tfor the cutoffRadius.\n");
1028 painCave.isFatal = 0;
1029 simError();
1030 rcut_ = 15.0;
1031
1032 if (simParams_->haveElectrostaticSummationMethod()) {
1033 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 toUpper(myMethod);
1035 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 if (simParams_->haveSwitchingRadius()){
1037 sprintf(painCave.errMsg,
1038 "SimInfo Warning: A value was set for the switchingRadius\n"
1039 "\teven though the electrostaticSummationMethod was\n"
1040 "\tset to %s\n", myMethod.c_str());
1041 painCave.isFatal = 1;
1042 simError();
1043 }
1044 }
1045 }
1046
1047 if (simParams_->haveSwitchingRadius()){
1048 rsw_ = simParams_->getSwitchingRadius();
1049 } else {
1050 sprintf(painCave.errMsg,
1051 "SimCreator Warning: No value was set for switchingRadius.\n"
1052 "\tOOPSE will use a default value of\n"
1053 "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 painCave.isFatal = 0;
1055 simError();
1056 rsw_ = 0.85 * rcut_;
1057 }
1058 notifyFortranCutoffs(&rcut_, &rsw_);
1059 } else {
1060 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 // We'll punt and let fortran figure out the cutoffs later.
1062
1063 notifyFortranYouAreOnYourOwn();
1064
1065 }
1066 }
1067 }
1068
1069 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1070
1071 int errorOut;
1072 int esm = NONE;
1073 int sm = UNDAMPED;
1074 RealType alphaVal;
1075 RealType dielectric;
1076
1077 errorOut = isError;
1078 alphaVal = simParams_->getDampingAlpha();
1079 dielectric = simParams_->getDielectric();
1080
1081 if (simParams_->haveElectrostaticSummationMethod()) {
1082 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1083 toUpper(myMethod);
1084 if (myMethod == "NONE") {
1085 esm = NONE;
1086 } else {
1087 if (myMethod == "SWITCHING_FUNCTION") {
1088 esm = SWITCHING_FUNCTION;
1089 } else {
1090 if (myMethod == "SHIFTED_POTENTIAL") {
1091 esm = SHIFTED_POTENTIAL;
1092 } else {
1093 if (myMethod == "SHIFTED_FORCE") {
1094 esm = SHIFTED_FORCE;
1095 } else {
1096 if (myMethod == "REACTION_FIELD") {
1097 esm = REACTION_FIELD;
1098 } else {
1099 // throw error
1100 sprintf( painCave.errMsg,
1101 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1102 "\t(Input file specified %s .)\n"
1103 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1104 "\t\"shifted_potential\", \"shifted_force\", or \n"
1105 "\t\"reaction_field\".\n", myMethod.c_str() );
1106 painCave.isFatal = 1;
1107 simError();
1108 }
1109 }
1110 }
1111 }
1112 }
1113 }
1114
1115 if (simParams_->haveElectrostaticScreeningMethod()) {
1116 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1117 toUpper(myScreen);
1118 if (myScreen == "UNDAMPED") {
1119 sm = UNDAMPED;
1120 } else {
1121 if (myScreen == "DAMPED") {
1122 sm = DAMPED;
1123 if (!simParams_->haveDampingAlpha()) {
1124 //throw error
1125 sprintf( painCave.errMsg,
1126 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1127 "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1128 painCave.isFatal = 0;
1129 simError();
1130 }
1131 } else {
1132 // throw error
1133 sprintf( painCave.errMsg,
1134 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1135 "\t(Input file specified %s .)\n"
1136 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1137 "or \"damped\".\n", myScreen.c_str() );
1138 painCave.isFatal = 1;
1139 simError();
1140 }
1141 }
1142 }
1143
1144 // let's pass some summation method variables to fortran
1145 setElectrostaticSummationMethod( &esm );
1146 setFortranElectrostaticMethod( &esm );
1147 setScreeningMethod( &sm );
1148 setDampingAlpha( &alphaVal );
1149 setReactionFieldDielectric( &dielectric );
1150 initFortranFF( &errorOut );
1151 }
1152
1153 void SimInfo::setupSwitchingFunction() {
1154 int ft = CUBIC;
1155
1156 if (simParams_->haveSwitchingFunctionType()) {
1157 std::string funcType = simParams_->getSwitchingFunctionType();
1158 toUpper(funcType);
1159 if (funcType == "CUBIC") {
1160 ft = CUBIC;
1161 } else {
1162 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1163 ft = FIFTH_ORDER_POLY;
1164 } else {
1165 // throw error
1166 sprintf( painCave.errMsg,
1167 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1168 painCave.isFatal = 1;
1169 simError();
1170 }
1171 }
1172 }
1173
1174 // send switching function notification to switcheroo
1175 setFunctionType(&ft);
1176
1177 }
1178
1179 void SimInfo::setupAccumulateBoxDipole() {
1180
1181 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1182 if ( simParams_->haveAccumulateBoxDipole() )
1183 if ( simParams_->getAccumulateBoxDipole() ) {
1184 setAccumulateBoxDipole();
1185 calcBoxDipole_ = true;
1186 }
1187
1188 }
1189
1190 void SimInfo::addProperty(GenericData* genData) {
1191 properties_.addProperty(genData);
1192 }
1193
1194 void SimInfo::removeProperty(const std::string& propName) {
1195 properties_.removeProperty(propName);
1196 }
1197
1198 void SimInfo::clearProperties() {
1199 properties_.clearProperties();
1200 }
1201
1202 std::vector<std::string> SimInfo::getPropertyNames() {
1203 return properties_.getPropertyNames();
1204 }
1205
1206 std::vector<GenericData*> SimInfo::getProperties() {
1207 return properties_.getProperties();
1208 }
1209
1210 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1211 return properties_.getPropertyByName(propName);
1212 }
1213
1214 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1215 if (sman_ == sman) {
1216 return;
1217 }
1218 delete sman_;
1219 sman_ = sman;
1220
1221 Molecule* mol;
1222 RigidBody* rb;
1223 Atom* atom;
1224 SimInfo::MoleculeIterator mi;
1225 Molecule::RigidBodyIterator rbIter;
1226 Molecule::AtomIterator atomIter;;
1227
1228 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1229
1230 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1231 atom->setSnapshotManager(sman_);
1232 }
1233
1234 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1235 rb->setSnapshotManager(sman_);
1236 }
1237 }
1238
1239 }
1240
1241 Vector3d SimInfo::getComVel(){
1242 SimInfo::MoleculeIterator i;
1243 Molecule* mol;
1244
1245 Vector3d comVel(0.0);
1246 RealType totalMass = 0.0;
1247
1248
1249 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 RealType mass = mol->getMass();
1251 totalMass += mass;
1252 comVel += mass * mol->getComVel();
1253 }
1254
1255 #ifdef IS_MPI
1256 RealType tmpMass = totalMass;
1257 Vector3d tmpComVel(comVel);
1258 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260 #endif
1261
1262 comVel /= totalMass;
1263
1264 return comVel;
1265 }
1266
1267 Vector3d SimInfo::getCom(){
1268 SimInfo::MoleculeIterator i;
1269 Molecule* mol;
1270
1271 Vector3d com(0.0);
1272 RealType totalMass = 0.0;
1273
1274 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1275 RealType mass = mol->getMass();
1276 totalMass += mass;
1277 com += mass * mol->getCom();
1278 }
1279
1280 #ifdef IS_MPI
1281 RealType tmpMass = totalMass;
1282 Vector3d tmpCom(com);
1283 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1284 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285 #endif
1286
1287 com /= totalMass;
1288
1289 return com;
1290
1291 }
1292
1293 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1294
1295 return o;
1296 }
1297
1298
1299 /*
1300 Returns center of mass and center of mass velocity in one function call.
1301 */
1302
1303 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1304 SimInfo::MoleculeIterator i;
1305 Molecule* mol;
1306
1307
1308 RealType totalMass = 0.0;
1309
1310
1311 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1312 RealType mass = mol->getMass();
1313 totalMass += mass;
1314 com += mass * mol->getCom();
1315 comVel += mass * mol->getComVel();
1316 }
1317
1318 #ifdef IS_MPI
1319 RealType tmpMass = totalMass;
1320 Vector3d tmpCom(com);
1321 Vector3d tmpComVel(comVel);
1322 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325 #endif
1326
1327 com /= totalMass;
1328 comVel /= totalMass;
1329 }
1330
1331 /*
1332 Return intertia tensor for entire system and angular momentum Vector.
1333
1334
1335 [ Ixx -Ixy -Ixz ]
1336 J =| -Iyx Iyy -Iyz |
1337 [ -Izx -Iyz Izz ]
1338 */
1339
1340 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1341
1342
1343 RealType xx = 0.0;
1344 RealType yy = 0.0;
1345 RealType zz = 0.0;
1346 RealType xy = 0.0;
1347 RealType xz = 0.0;
1348 RealType yz = 0.0;
1349 Vector3d com(0.0);
1350 Vector3d comVel(0.0);
1351
1352 getComAll(com, comVel);
1353
1354 SimInfo::MoleculeIterator i;
1355 Molecule* mol;
1356
1357 Vector3d thisq(0.0);
1358 Vector3d thisv(0.0);
1359
1360 RealType thisMass = 0.0;
1361
1362
1363
1364
1365 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1366
1367 thisq = mol->getCom()-com;
1368 thisv = mol->getComVel()-comVel;
1369 thisMass = mol->getMass();
1370 // Compute moment of intertia coefficients.
1371 xx += thisq[0]*thisq[0]*thisMass;
1372 yy += thisq[1]*thisq[1]*thisMass;
1373 zz += thisq[2]*thisq[2]*thisMass;
1374
1375 // compute products of intertia
1376 xy += thisq[0]*thisq[1]*thisMass;
1377 xz += thisq[0]*thisq[2]*thisMass;
1378 yz += thisq[1]*thisq[2]*thisMass;
1379
1380 angularMomentum += cross( thisq, thisv ) * thisMass;
1381
1382 }
1383
1384
1385 inertiaTensor(0,0) = yy + zz;
1386 inertiaTensor(0,1) = -xy;
1387 inertiaTensor(0,2) = -xz;
1388 inertiaTensor(1,0) = -xy;
1389 inertiaTensor(1,1) = xx + zz;
1390 inertiaTensor(1,2) = -yz;
1391 inertiaTensor(2,0) = -xz;
1392 inertiaTensor(2,1) = -yz;
1393 inertiaTensor(2,2) = xx + yy;
1394
1395 #ifdef IS_MPI
1396 Mat3x3d tmpI(inertiaTensor);
1397 Vector3d tmpAngMom;
1398 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 #endif
1401
1402 return;
1403 }
1404
1405 //Returns the angular momentum of the system
1406 Vector3d SimInfo::getAngularMomentum(){
1407
1408 Vector3d com(0.0);
1409 Vector3d comVel(0.0);
1410 Vector3d angularMomentum(0.0);
1411
1412 getComAll(com,comVel);
1413
1414 SimInfo::MoleculeIterator i;
1415 Molecule* mol;
1416
1417 Vector3d thisr(0.0);
1418 Vector3d thisp(0.0);
1419
1420 RealType thisMass;
1421
1422 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1423 thisMass = mol->getMass();
1424 thisr = mol->getCom()-com;
1425 thisp = (mol->getComVel()-comVel)*thisMass;
1426
1427 angularMomentum += cross( thisr, thisp );
1428
1429 }
1430
1431 #ifdef IS_MPI
1432 Vector3d tmpAngMom;
1433 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434 #endif
1435
1436 return angularMomentum;
1437 }
1438
1439
1440 }//end namespace oopse
1441