ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1665
Committed: Tue Nov 22 20:38:56 2011 UTC (13 years, 5 months ago) by gezelter
File size: 38848 byte(s)
Log Message:
updated copyright notices

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.cpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #include <algorithm>
51 #include <set>
52 #include <map>
53
54 #include "brains/SimInfo.hpp"
55 #include "math/Vector3.hpp"
56 #include "primitives/Molecule.hpp"
57 #include "primitives/StuntDouble.hpp"
58 #include "utils/MemoryUtils.hpp"
59 #include "utils/simError.h"
60 #include "selection/SelectionManager.hpp"
61 #include "io/ForceFieldOptions.hpp"
62 #include "UseTheForce/ForceField.hpp"
63 #include "nonbonded/SwitchingFunction.hpp"
64 #ifdef IS_MPI
65 #include <mpi.h>
66 #endif
67
68 using namespace std;
69 namespace OpenMD {
70
71 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 forceField_(ff), simParams_(simParams),
73 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
77 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 nConstraints_(0), sman_(NULL), topologyDone_(false),
79 calcBoxDipole_(false), useAtomicVirial_(true) {
80
81 MoleculeStamp* molStamp;
82 int nMolWithSameStamp;
83 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 int nGroups = 0; //total cutoff groups defined in meta-data file
85 CutoffGroupStamp* cgStamp;
86 RigidBodyStamp* rbStamp;
87 int nRigidAtoms = 0;
88
89 vector<Component*> components = simParams->getComponents();
90
91 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 molStamp = (*i)->getMoleculeStamp();
93 nMolWithSameStamp = (*i)->getNMol();
94
95 addMoleculeStamp(molStamp, nMolWithSameStamp);
96
97 //calculate atoms in molecules
98 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99
100 //calculate atoms in cutoff groups
101 int nAtomsInGroups = 0;
102 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103
104 for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 cgStamp = molStamp->getCutoffGroupStamp(j);
106 nAtomsInGroups += cgStamp->getNMembers();
107 }
108
109 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110
111 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
112
113 //calculate atoms in rigid bodies
114 int nAtomsInRigidBodies = 0;
115 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116
117 for (int j=0; j < nRigidBodiesInStamp; j++) {
118 rbStamp = molStamp->getRigidBodyStamp(j);
119 nAtomsInRigidBodies += rbStamp->getNMembers();
120 }
121
122 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
124
125 }
126
127 //every free atom (atom does not belong to cutoff groups) is a cutoff
128 //group therefore the total number of cutoff groups in the system is
129 //equal to the total number of atoms minus number of atoms belong to
130 //cutoff group defined in meta-data file plus the number of cutoff
131 //groups defined in meta-data file
132
133 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134
135 //every free atom (atom does not belong to rigid bodies) is an
136 //integrable object therefore the total number of integrable objects
137 //in the system is equal to the total number of atoms minus number of
138 //atoms belong to rigid body defined in meta-data file plus the number
139 //of rigid bodies defined in meta-data file
140 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 + nGlobalRigidBodies_;
142
143 nGlobalMols_ = molStampIds_.size();
144 molToProcMap_.resize(nGlobalMols_);
145 }
146
147 SimInfo::~SimInfo() {
148 map<int, Molecule*>::iterator i;
149 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 delete i->second;
151 }
152 molecules_.clear();
153
154 delete sman_;
155 delete simParams_;
156 delete forceField_;
157 }
158
159
160 bool SimInfo::addMolecule(Molecule* mol) {
161 MoleculeIterator i;
162
163 i = molecules_.find(mol->getGlobalIndex());
164 if (i == molecules_.end() ) {
165
166 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167
168 nAtoms_ += mol->getNAtoms();
169 nBonds_ += mol->getNBonds();
170 nBends_ += mol->getNBends();
171 nTorsions_ += mol->getNTorsions();
172 nInversions_ += mol->getNInversions();
173 nRigidBodies_ += mol->getNRigidBodies();
174 nIntegrableObjects_ += mol->getNIntegrableObjects();
175 nCutoffGroups_ += mol->getNCutoffGroups();
176 nConstraints_ += mol->getNConstraintPairs();
177
178 addInteractionPairs(mol);
179
180 return true;
181 } else {
182 return false;
183 }
184 }
185
186 bool SimInfo::removeMolecule(Molecule* mol) {
187 MoleculeIterator i;
188 i = molecules_.find(mol->getGlobalIndex());
189
190 if (i != molecules_.end() ) {
191
192 assert(mol == i->second);
193
194 nAtoms_ -= mol->getNAtoms();
195 nBonds_ -= mol->getNBonds();
196 nBends_ -= mol->getNBends();
197 nTorsions_ -= mol->getNTorsions();
198 nInversions_ -= mol->getNInversions();
199 nRigidBodies_ -= mol->getNRigidBodies();
200 nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 nCutoffGroups_ -= mol->getNCutoffGroups();
202 nConstraints_ -= mol->getNConstraintPairs();
203
204 removeInteractionPairs(mol);
205 molecules_.erase(mol->getGlobalIndex());
206
207 delete mol;
208
209 return true;
210 } else {
211 return false;
212 }
213 }
214
215
216 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 i = molecules_.begin();
218 return i == molecules_.end() ? NULL : i->second;
219 }
220
221 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 ++i;
223 return i == molecules_.end() ? NULL : i->second;
224 }
225
226
227 void SimInfo::calcNdf() {
228 int ndf_local;
229 MoleculeIterator i;
230 vector<StuntDouble*>::iterator j;
231 Molecule* mol;
232 StuntDouble* integrableObject;
233
234 ndf_local = 0;
235
236 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
237 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
238 integrableObject = mol->nextIntegrableObject(j)) {
239
240 ndf_local += 3;
241
242 if (integrableObject->isDirectional()) {
243 if (integrableObject->isLinear()) {
244 ndf_local += 2;
245 } else {
246 ndf_local += 3;
247 }
248 }
249
250 }
251 }
252
253 // n_constraints is local, so subtract them on each processor
254 ndf_local -= nConstraints_;
255
256 #ifdef IS_MPI
257 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
258 #else
259 ndf_ = ndf_local;
260 #endif
261
262 // nZconstraints_ is global, as are the 3 COM translations for the
263 // entire system:
264 ndf_ = ndf_ - 3 - nZconstraint_;
265
266 }
267
268 int SimInfo::getFdf() {
269 #ifdef IS_MPI
270 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 #else
272 fdf_ = fdf_local;
273 #endif
274 return fdf_;
275 }
276
277 unsigned int SimInfo::getNLocalCutoffGroups(){
278 int nLocalCutoffAtoms = 0;
279 Molecule* mol;
280 MoleculeIterator mi;
281 CutoffGroup* cg;
282 Molecule::CutoffGroupIterator ci;
283
284 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
285
286 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
287 cg = mol->nextCutoffGroup(ci)) {
288 nLocalCutoffAtoms += cg->getNumAtom();
289
290 }
291 }
292
293 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
294 }
295
296 void SimInfo::calcNdfRaw() {
297 int ndfRaw_local;
298
299 MoleculeIterator i;
300 vector<StuntDouble*>::iterator j;
301 Molecule* mol;
302 StuntDouble* integrableObject;
303
304 // Raw degrees of freedom that we have to set
305 ndfRaw_local = 0;
306
307 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
308 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
309 integrableObject = mol->nextIntegrableObject(j)) {
310
311 ndfRaw_local += 3;
312
313 if (integrableObject->isDirectional()) {
314 if (integrableObject->isLinear()) {
315 ndfRaw_local += 2;
316 } else {
317 ndfRaw_local += 3;
318 }
319 }
320
321 }
322 }
323
324 #ifdef IS_MPI
325 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 #else
327 ndfRaw_ = ndfRaw_local;
328 #endif
329 }
330
331 void SimInfo::calcNdfTrans() {
332 int ndfTrans_local;
333
334 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
335
336
337 #ifdef IS_MPI
338 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339 #else
340 ndfTrans_ = ndfTrans_local;
341 #endif
342
343 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
344
345 }
346
347 void SimInfo::addInteractionPairs(Molecule* mol) {
348 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
349 vector<Bond*>::iterator bondIter;
350 vector<Bend*>::iterator bendIter;
351 vector<Torsion*>::iterator torsionIter;
352 vector<Inversion*>::iterator inversionIter;
353 Bond* bond;
354 Bend* bend;
355 Torsion* torsion;
356 Inversion* inversion;
357 int a;
358 int b;
359 int c;
360 int d;
361
362 // atomGroups can be used to add special interaction maps between
363 // groups of atoms that are in two separate rigid bodies.
364 // However, most site-site interactions between two rigid bodies
365 // are probably not special, just the ones between the physically
366 // bonded atoms. Interactions *within* a single rigid body should
367 // always be excluded. These are done at the bottom of this
368 // function.
369
370 map<int, set<int> > atomGroups;
371 Molecule::RigidBodyIterator rbIter;
372 RigidBody* rb;
373 Molecule::IntegrableObjectIterator ii;
374 StuntDouble* integrableObject;
375
376 for (integrableObject = mol->beginIntegrableObject(ii);
377 integrableObject != NULL;
378 integrableObject = mol->nextIntegrableObject(ii)) {
379
380 if (integrableObject->isRigidBody()) {
381 rb = static_cast<RigidBody*>(integrableObject);
382 vector<Atom*> atoms = rb->getAtoms();
383 set<int> rigidAtoms;
384 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
385 rigidAtoms.insert(atoms[i]->getGlobalIndex());
386 }
387 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
388 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
389 }
390 } else {
391 set<int> oneAtomSet;
392 oneAtomSet.insert(integrableObject->getGlobalIndex());
393 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
394 }
395 }
396
397 for (bond= mol->beginBond(bondIter); bond != NULL;
398 bond = mol->nextBond(bondIter)) {
399
400 a = bond->getAtomA()->getGlobalIndex();
401 b = bond->getAtomB()->getGlobalIndex();
402
403 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
404 oneTwoInteractions_.addPair(a, b);
405 } else {
406 excludedInteractions_.addPair(a, b);
407 }
408 }
409
410 for (bend= mol->beginBend(bendIter); bend != NULL;
411 bend = mol->nextBend(bendIter)) {
412
413 a = bend->getAtomA()->getGlobalIndex();
414 b = bend->getAtomB()->getGlobalIndex();
415 c = bend->getAtomC()->getGlobalIndex();
416
417 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 oneTwoInteractions_.addPair(a, b);
419 oneTwoInteractions_.addPair(b, c);
420 } else {
421 excludedInteractions_.addPair(a, b);
422 excludedInteractions_.addPair(b, c);
423 }
424
425 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
426 oneThreeInteractions_.addPair(a, c);
427 } else {
428 excludedInteractions_.addPair(a, c);
429 }
430 }
431
432 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
433 torsion = mol->nextTorsion(torsionIter)) {
434
435 a = torsion->getAtomA()->getGlobalIndex();
436 b = torsion->getAtomB()->getGlobalIndex();
437 c = torsion->getAtomC()->getGlobalIndex();
438 d = torsion->getAtomD()->getGlobalIndex();
439
440 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
441 oneTwoInteractions_.addPair(a, b);
442 oneTwoInteractions_.addPair(b, c);
443 oneTwoInteractions_.addPair(c, d);
444 } else {
445 excludedInteractions_.addPair(a, b);
446 excludedInteractions_.addPair(b, c);
447 excludedInteractions_.addPair(c, d);
448 }
449
450 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 oneThreeInteractions_.addPair(a, c);
452 oneThreeInteractions_.addPair(b, d);
453 } else {
454 excludedInteractions_.addPair(a, c);
455 excludedInteractions_.addPair(b, d);
456 }
457
458 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
459 oneFourInteractions_.addPair(a, d);
460 } else {
461 excludedInteractions_.addPair(a, d);
462 }
463 }
464
465 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
466 inversion = mol->nextInversion(inversionIter)) {
467
468 a = inversion->getAtomA()->getGlobalIndex();
469 b = inversion->getAtomB()->getGlobalIndex();
470 c = inversion->getAtomC()->getGlobalIndex();
471 d = inversion->getAtomD()->getGlobalIndex();
472
473 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
474 oneTwoInteractions_.addPair(a, b);
475 oneTwoInteractions_.addPair(a, c);
476 oneTwoInteractions_.addPair(a, d);
477 } else {
478 excludedInteractions_.addPair(a, b);
479 excludedInteractions_.addPair(a, c);
480 excludedInteractions_.addPair(a, d);
481 }
482
483 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
484 oneThreeInteractions_.addPair(b, c);
485 oneThreeInteractions_.addPair(b, d);
486 oneThreeInteractions_.addPair(c, d);
487 } else {
488 excludedInteractions_.addPair(b, c);
489 excludedInteractions_.addPair(b, d);
490 excludedInteractions_.addPair(c, d);
491 }
492 }
493
494 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
495 rb = mol->nextRigidBody(rbIter)) {
496 vector<Atom*> atoms = rb->getAtoms();
497 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
498 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
499 a = atoms[i]->getGlobalIndex();
500 b = atoms[j]->getGlobalIndex();
501 excludedInteractions_.addPair(a, b);
502 }
503 }
504 }
505
506 }
507
508 void SimInfo::removeInteractionPairs(Molecule* mol) {
509 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
510 vector<Bond*>::iterator bondIter;
511 vector<Bend*>::iterator bendIter;
512 vector<Torsion*>::iterator torsionIter;
513 vector<Inversion*>::iterator inversionIter;
514 Bond* bond;
515 Bend* bend;
516 Torsion* torsion;
517 Inversion* inversion;
518 int a;
519 int b;
520 int c;
521 int d;
522
523 map<int, set<int> > atomGroups;
524 Molecule::RigidBodyIterator rbIter;
525 RigidBody* rb;
526 Molecule::IntegrableObjectIterator ii;
527 StuntDouble* integrableObject;
528
529 for (integrableObject = mol->beginIntegrableObject(ii);
530 integrableObject != NULL;
531 integrableObject = mol->nextIntegrableObject(ii)) {
532
533 if (integrableObject->isRigidBody()) {
534 rb = static_cast<RigidBody*>(integrableObject);
535 vector<Atom*> atoms = rb->getAtoms();
536 set<int> rigidAtoms;
537 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
538 rigidAtoms.insert(atoms[i]->getGlobalIndex());
539 }
540 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
541 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
542 }
543 } else {
544 set<int> oneAtomSet;
545 oneAtomSet.insert(integrableObject->getGlobalIndex());
546 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
547 }
548 }
549
550 for (bond= mol->beginBond(bondIter); bond != NULL;
551 bond = mol->nextBond(bondIter)) {
552
553 a = bond->getAtomA()->getGlobalIndex();
554 b = bond->getAtomB()->getGlobalIndex();
555
556 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
557 oneTwoInteractions_.removePair(a, b);
558 } else {
559 excludedInteractions_.removePair(a, b);
560 }
561 }
562
563 for (bend= mol->beginBend(bendIter); bend != NULL;
564 bend = mol->nextBend(bendIter)) {
565
566 a = bend->getAtomA()->getGlobalIndex();
567 b = bend->getAtomB()->getGlobalIndex();
568 c = bend->getAtomC()->getGlobalIndex();
569
570 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 oneTwoInteractions_.removePair(a, b);
572 oneTwoInteractions_.removePair(b, c);
573 } else {
574 excludedInteractions_.removePair(a, b);
575 excludedInteractions_.removePair(b, c);
576 }
577
578 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
579 oneThreeInteractions_.removePair(a, c);
580 } else {
581 excludedInteractions_.removePair(a, c);
582 }
583 }
584
585 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
586 torsion = mol->nextTorsion(torsionIter)) {
587
588 a = torsion->getAtomA()->getGlobalIndex();
589 b = torsion->getAtomB()->getGlobalIndex();
590 c = torsion->getAtomC()->getGlobalIndex();
591 d = torsion->getAtomD()->getGlobalIndex();
592
593 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
594 oneTwoInteractions_.removePair(a, b);
595 oneTwoInteractions_.removePair(b, c);
596 oneTwoInteractions_.removePair(c, d);
597 } else {
598 excludedInteractions_.removePair(a, b);
599 excludedInteractions_.removePair(b, c);
600 excludedInteractions_.removePair(c, d);
601 }
602
603 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
604 oneThreeInteractions_.removePair(a, c);
605 oneThreeInteractions_.removePair(b, d);
606 } else {
607 excludedInteractions_.removePair(a, c);
608 excludedInteractions_.removePair(b, d);
609 }
610
611 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
612 oneFourInteractions_.removePair(a, d);
613 } else {
614 excludedInteractions_.removePair(a, d);
615 }
616 }
617
618 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
619 inversion = mol->nextInversion(inversionIter)) {
620
621 a = inversion->getAtomA()->getGlobalIndex();
622 b = inversion->getAtomB()->getGlobalIndex();
623 c = inversion->getAtomC()->getGlobalIndex();
624 d = inversion->getAtomD()->getGlobalIndex();
625
626 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
627 oneTwoInteractions_.removePair(a, b);
628 oneTwoInteractions_.removePair(a, c);
629 oneTwoInteractions_.removePair(a, d);
630 } else {
631 excludedInteractions_.removePair(a, b);
632 excludedInteractions_.removePair(a, c);
633 excludedInteractions_.removePair(a, d);
634 }
635
636 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
637 oneThreeInteractions_.removePair(b, c);
638 oneThreeInteractions_.removePair(b, d);
639 oneThreeInteractions_.removePair(c, d);
640 } else {
641 excludedInteractions_.removePair(b, c);
642 excludedInteractions_.removePair(b, d);
643 excludedInteractions_.removePair(c, d);
644 }
645 }
646
647 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
648 rb = mol->nextRigidBody(rbIter)) {
649 vector<Atom*> atoms = rb->getAtoms();
650 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
651 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
652 a = atoms[i]->getGlobalIndex();
653 b = atoms[j]->getGlobalIndex();
654 excludedInteractions_.removePair(a, b);
655 }
656 }
657 }
658
659 }
660
661
662 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
663 int curStampId;
664
665 //index from 0
666 curStampId = moleculeStamps_.size();
667
668 moleculeStamps_.push_back(molStamp);
669 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
670 }
671
672
673 /**
674 * update
675 *
676 * Performs the global checks and variable settings after the
677 * objects have been created.
678 *
679 */
680 void SimInfo::update() {
681 setupSimVariables();
682 calcNdf();
683 calcNdfRaw();
684 calcNdfTrans();
685 }
686
687 /**
688 * getSimulatedAtomTypes
689 *
690 * Returns an STL set of AtomType* that are actually present in this
691 * simulation. Must query all processors to assemble this information.
692 *
693 */
694 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
695 SimInfo::MoleculeIterator mi;
696 Molecule* mol;
697 Molecule::AtomIterator ai;
698 Atom* atom;
699 set<AtomType*> atomTypes;
700
701 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
702 for(atom = mol->beginAtom(ai); atom != NULL;
703 atom = mol->nextAtom(ai)) {
704 atomTypes.insert(atom->getAtomType());
705 }
706 }
707
708 #ifdef IS_MPI
709
710 // loop over the found atom types on this processor, and add their
711 // numerical idents to a vector:
712
713 vector<int> foundTypes;
714 set<AtomType*>::iterator i;
715 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
716 foundTypes.push_back( (*i)->getIdent() );
717
718 // count_local holds the number of found types on this processor
719 int count_local = foundTypes.size();
720
721 int nproc = MPI::COMM_WORLD.Get_size();
722
723 // we need arrays to hold the counts and displacement vectors for
724 // all processors
725 vector<int> counts(nproc, 0);
726 vector<int> disps(nproc, 0);
727
728 // fill the counts array
729 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
730 1, MPI::INT);
731
732 // use the processor counts to compute the displacement array
733 disps[0] = 0;
734 int totalCount = counts[0];
735 for (int iproc = 1; iproc < nproc; iproc++) {
736 disps[iproc] = disps[iproc-1] + counts[iproc-1];
737 totalCount += counts[iproc];
738 }
739
740 // we need a (possibly redundant) set of all found types:
741 vector<int> ftGlobal(totalCount);
742
743 // now spray out the foundTypes to all the other processors:
744 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
745 &ftGlobal[0], &counts[0], &disps[0],
746 MPI::INT);
747
748 vector<int>::iterator j;
749
750 // foundIdents is a stl set, so inserting an already found ident
751 // will have no effect.
752 set<int> foundIdents;
753
754 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
755 foundIdents.insert((*j));
756
757 // now iterate over the foundIdents and get the actual atom types
758 // that correspond to these:
759 set<int>::iterator it;
760 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
761 atomTypes.insert( forceField_->getAtomType((*it)) );
762
763 #endif
764
765 return atomTypes;
766 }
767
768 void SimInfo::setupSimVariables() {
769 useAtomicVirial_ = simParams_->getUseAtomicVirial();
770 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
771 calcBoxDipole_ = false;
772 if ( simParams_->haveAccumulateBoxDipole() )
773 if ( simParams_->getAccumulateBoxDipole() ) {
774 calcBoxDipole_ = true;
775 }
776
777 set<AtomType*>::iterator i;
778 set<AtomType*> atomTypes;
779 atomTypes = getSimulatedAtomTypes();
780 int usesElectrostatic = 0;
781 int usesMetallic = 0;
782 int usesDirectional = 0;
783 //loop over all of the atom types
784 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 usesElectrostatic |= (*i)->isElectrostatic();
786 usesMetallic |= (*i)->isMetal();
787 usesDirectional |= (*i)->isDirectional();
788 }
789
790 #ifdef IS_MPI
791 int temp;
792 temp = usesDirectional;
793 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
794
795 temp = usesMetallic;
796 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
797
798 temp = usesElectrostatic;
799 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
800 #else
801
802 usesDirectionalAtoms_ = usesDirectional;
803 usesMetallicAtoms_ = usesMetallic;
804 usesElectrostaticAtoms_ = usesElectrostatic;
805
806 #endif
807
808 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
809 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
810 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
811 }
812
813
814 vector<int> SimInfo::getGlobalAtomIndices() {
815 SimInfo::MoleculeIterator mi;
816 Molecule* mol;
817 Molecule::AtomIterator ai;
818 Atom* atom;
819
820 vector<int> GlobalAtomIndices(getNAtoms(), 0);
821
822 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
823
824 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
825 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
826 }
827 }
828 return GlobalAtomIndices;
829 }
830
831
832 vector<int> SimInfo::getGlobalGroupIndices() {
833 SimInfo::MoleculeIterator mi;
834 Molecule* mol;
835 Molecule::CutoffGroupIterator ci;
836 CutoffGroup* cg;
837
838 vector<int> GlobalGroupIndices;
839
840 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
841
842 //local index of cutoff group is trivial, it only depends on the
843 //order of travesing
844 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
845 cg = mol->nextCutoffGroup(ci)) {
846 GlobalGroupIndices.push_back(cg->getGlobalIndex());
847 }
848 }
849 return GlobalGroupIndices;
850 }
851
852
853 void SimInfo::prepareTopology() {
854 int nExclude, nOneTwo, nOneThree, nOneFour;
855
856 //calculate mass ratio of cutoff group
857 SimInfo::MoleculeIterator mi;
858 Molecule* mol;
859 Molecule::CutoffGroupIterator ci;
860 CutoffGroup* cg;
861 Molecule::AtomIterator ai;
862 Atom* atom;
863 RealType totalMass;
864
865 /**
866 * The mass factor is the relative mass of an atom to the total
867 * mass of the cutoff group it belongs to. By default, all atoms
868 * are their own cutoff groups, and therefore have mass factors of
869 * 1. We need some special handling for massless atoms, which
870 * will be treated as carrying the entire mass of the cutoff
871 * group.
872 */
873 massFactors_.clear();
874 massFactors_.resize(getNAtoms(), 1.0);
875
876 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
877 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
878 cg = mol->nextCutoffGroup(ci)) {
879
880 totalMass = cg->getMass();
881 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
882 // Check for massless groups - set mfact to 1 if true
883 if (totalMass != 0)
884 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
885 else
886 massFactors_[atom->getLocalIndex()] = 1.0;
887 }
888 }
889 }
890
891 // Build the identArray_
892
893 identArray_.clear();
894 identArray_.reserve(getNAtoms());
895 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
896 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
897 identArray_.push_back(atom->getIdent());
898 }
899 }
900
901 //scan topology
902
903 nExclude = excludedInteractions_.getSize();
904 nOneTwo = oneTwoInteractions_.getSize();
905 nOneThree = oneThreeInteractions_.getSize();
906 nOneFour = oneFourInteractions_.getSize();
907
908 int* excludeList = excludedInteractions_.getPairList();
909 int* oneTwoList = oneTwoInteractions_.getPairList();
910 int* oneThreeList = oneThreeInteractions_.getPairList();
911 int* oneFourList = oneFourInteractions_.getPairList();
912
913 topologyDone_ = true;
914 }
915
916 void SimInfo::addProperty(GenericData* genData) {
917 properties_.addProperty(genData);
918 }
919
920 void SimInfo::removeProperty(const string& propName) {
921 properties_.removeProperty(propName);
922 }
923
924 void SimInfo::clearProperties() {
925 properties_.clearProperties();
926 }
927
928 vector<string> SimInfo::getPropertyNames() {
929 return properties_.getPropertyNames();
930 }
931
932 vector<GenericData*> SimInfo::getProperties() {
933 return properties_.getProperties();
934 }
935
936 GenericData* SimInfo::getPropertyByName(const string& propName) {
937 return properties_.getPropertyByName(propName);
938 }
939
940 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
941 if (sman_ == sman) {
942 return;
943 }
944 delete sman_;
945 sman_ = sman;
946
947 Molecule* mol;
948 RigidBody* rb;
949 Atom* atom;
950 CutoffGroup* cg;
951 SimInfo::MoleculeIterator mi;
952 Molecule::RigidBodyIterator rbIter;
953 Molecule::AtomIterator atomIter;
954 Molecule::CutoffGroupIterator cgIter;
955
956 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
957
958 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
959 atom->setSnapshotManager(sman_);
960 }
961
962 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
963 rb->setSnapshotManager(sman_);
964 }
965
966 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
967 cg->setSnapshotManager(sman_);
968 }
969 }
970
971 }
972
973 Vector3d SimInfo::getComVel(){
974 SimInfo::MoleculeIterator i;
975 Molecule* mol;
976
977 Vector3d comVel(0.0);
978 RealType totalMass = 0.0;
979
980
981 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
982 RealType mass = mol->getMass();
983 totalMass += mass;
984 comVel += mass * mol->getComVel();
985 }
986
987 #ifdef IS_MPI
988 RealType tmpMass = totalMass;
989 Vector3d tmpComVel(comVel);
990 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
991 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
992 #endif
993
994 comVel /= totalMass;
995
996 return comVel;
997 }
998
999 Vector3d SimInfo::getCom(){
1000 SimInfo::MoleculeIterator i;
1001 Molecule* mol;
1002
1003 Vector3d com(0.0);
1004 RealType totalMass = 0.0;
1005
1006 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 RealType mass = mol->getMass();
1008 totalMass += mass;
1009 com += mass * mol->getCom();
1010 }
1011
1012 #ifdef IS_MPI
1013 RealType tmpMass = totalMass;
1014 Vector3d tmpCom(com);
1015 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1016 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1017 #endif
1018
1019 com /= totalMass;
1020
1021 return com;
1022
1023 }
1024
1025 ostream& operator <<(ostream& o, SimInfo& info) {
1026
1027 return o;
1028 }
1029
1030
1031 /*
1032 Returns center of mass and center of mass velocity in one function call.
1033 */
1034
1035 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1036 SimInfo::MoleculeIterator i;
1037 Molecule* mol;
1038
1039
1040 RealType totalMass = 0.0;
1041
1042
1043 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1044 RealType mass = mol->getMass();
1045 totalMass += mass;
1046 com += mass * mol->getCom();
1047 comVel += mass * mol->getComVel();
1048 }
1049
1050 #ifdef IS_MPI
1051 RealType tmpMass = totalMass;
1052 Vector3d tmpCom(com);
1053 Vector3d tmpComVel(comVel);
1054 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1056 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1057 #endif
1058
1059 com /= totalMass;
1060 comVel /= totalMass;
1061 }
1062
1063 /*
1064 Return intertia tensor for entire system and angular momentum Vector.
1065
1066
1067 [ Ixx -Ixy -Ixz ]
1068 J =| -Iyx Iyy -Iyz |
1069 [ -Izx -Iyz Izz ]
1070 */
1071
1072 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1073
1074
1075 RealType xx = 0.0;
1076 RealType yy = 0.0;
1077 RealType zz = 0.0;
1078 RealType xy = 0.0;
1079 RealType xz = 0.0;
1080 RealType yz = 0.0;
1081 Vector3d com(0.0);
1082 Vector3d comVel(0.0);
1083
1084 getComAll(com, comVel);
1085
1086 SimInfo::MoleculeIterator i;
1087 Molecule* mol;
1088
1089 Vector3d thisq(0.0);
1090 Vector3d thisv(0.0);
1091
1092 RealType thisMass = 0.0;
1093
1094
1095
1096
1097 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1098
1099 thisq = mol->getCom()-com;
1100 thisv = mol->getComVel()-comVel;
1101 thisMass = mol->getMass();
1102 // Compute moment of intertia coefficients.
1103 xx += thisq[0]*thisq[0]*thisMass;
1104 yy += thisq[1]*thisq[1]*thisMass;
1105 zz += thisq[2]*thisq[2]*thisMass;
1106
1107 // compute products of intertia
1108 xy += thisq[0]*thisq[1]*thisMass;
1109 xz += thisq[0]*thisq[2]*thisMass;
1110 yz += thisq[1]*thisq[2]*thisMass;
1111
1112 angularMomentum += cross( thisq, thisv ) * thisMass;
1113
1114 }
1115
1116
1117 inertiaTensor(0,0) = yy + zz;
1118 inertiaTensor(0,1) = -xy;
1119 inertiaTensor(0,2) = -xz;
1120 inertiaTensor(1,0) = -xy;
1121 inertiaTensor(1,1) = xx + zz;
1122 inertiaTensor(1,2) = -yz;
1123 inertiaTensor(2,0) = -xz;
1124 inertiaTensor(2,1) = -yz;
1125 inertiaTensor(2,2) = xx + yy;
1126
1127 #ifdef IS_MPI
1128 Mat3x3d tmpI(inertiaTensor);
1129 Vector3d tmpAngMom;
1130 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1131 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1132 #endif
1133
1134 return;
1135 }
1136
1137 //Returns the angular momentum of the system
1138 Vector3d SimInfo::getAngularMomentum(){
1139
1140 Vector3d com(0.0);
1141 Vector3d comVel(0.0);
1142 Vector3d angularMomentum(0.0);
1143
1144 getComAll(com,comVel);
1145
1146 SimInfo::MoleculeIterator i;
1147 Molecule* mol;
1148
1149 Vector3d thisr(0.0);
1150 Vector3d thisp(0.0);
1151
1152 RealType thisMass;
1153
1154 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1155 thisMass = mol->getMass();
1156 thisr = mol->getCom()-com;
1157 thisp = (mol->getComVel()-comVel)*thisMass;
1158
1159 angularMomentum += cross( thisr, thisp );
1160
1161 }
1162
1163 #ifdef IS_MPI
1164 Vector3d tmpAngMom;
1165 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1166 #endif
1167
1168 return angularMomentum;
1169 }
1170
1171 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1172 return IOIndexToIntegrableObject.at(index);
1173 }
1174
1175 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1176 IOIndexToIntegrableObject= v;
1177 }
1178
1179 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1180 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1181 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1182 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1183 */
1184 void SimInfo::getGyrationalVolume(RealType &volume){
1185 Mat3x3d intTensor;
1186 RealType det;
1187 Vector3d dummyAngMom;
1188 RealType sysconstants;
1189 RealType geomCnst;
1190
1191 geomCnst = 3.0/2.0;
1192 /* Get the inertial tensor and angular momentum for free*/
1193 getInertiaTensor(intTensor,dummyAngMom);
1194
1195 det = intTensor.determinant();
1196 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1197 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1198 return;
1199 }
1200
1201 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1202 Mat3x3d intTensor;
1203 Vector3d dummyAngMom;
1204 RealType sysconstants;
1205 RealType geomCnst;
1206
1207 geomCnst = 3.0/2.0;
1208 /* Get the inertial tensor and angular momentum for free*/
1209 getInertiaTensor(intTensor,dummyAngMom);
1210
1211 detI = intTensor.determinant();
1212 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1213 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1214 return;
1215 }
1216 /*
1217 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1218 assert( v.size() == nAtoms_ + nRigidBodies_);
1219 sdByGlobalIndex_ = v;
1220 }
1221
1222 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1223 //assert(index < nAtoms_ + nRigidBodies_);
1224 return sdByGlobalIndex_.at(index);
1225 }
1226 */
1227 int SimInfo::getNGlobalConstraints() {
1228 int nGlobalConstraints;
1229 #ifdef IS_MPI
1230 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1231 MPI_COMM_WORLD);
1232 #else
1233 nGlobalConstraints = nConstraints_;
1234 #endif
1235 return nGlobalConstraints;
1236 }
1237
1238 }//end namespace OpenMD
1239

Properties

Name Value
svn:keywords Author Id Revision Date