ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1597
Committed: Tue Jul 26 15:49:24 2011 UTC (13 years, 9 months ago) by gezelter
File size: 38956 byte(s)
Log Message:
Debugging mainly

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60 #include "io/ForceFieldOptions.hpp"
61 #include "UseTheForce/ForceField.hpp"
62 #include "nonbonded/SwitchingFunction.hpp"
63
64 using namespace std;
65 namespace OpenMD {
66
67 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 forceField_(ff), simParams_(simParams),
69 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
73 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 nConstraints_(0), sman_(NULL), topologyDone_(false),
75 calcBoxDipole_(false), useAtomicVirial_(true) {
76
77 MoleculeStamp* molStamp;
78 int nMolWithSameStamp;
79 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 int nGroups = 0; //total cutoff groups defined in meta-data file
81 CutoffGroupStamp* cgStamp;
82 RigidBodyStamp* rbStamp;
83 int nRigidAtoms = 0;
84
85 vector<Component*> components = simParams->getComponents();
86
87 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 molStamp = (*i)->getMoleculeStamp();
89 nMolWithSameStamp = (*i)->getNMol();
90
91 addMoleculeStamp(molStamp, nMolWithSameStamp);
92
93 //calculate atoms in molecules
94 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
95
96 //calculate atoms in cutoff groups
97 int nAtomsInGroups = 0;
98 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99
100 for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 cgStamp = molStamp->getCutoffGroupStamp(j);
102 nAtomsInGroups += cgStamp->getNMembers();
103 }
104
105 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106
107 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
108
109 //calculate atoms in rigid bodies
110 int nAtomsInRigidBodies = 0;
111 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112
113 for (int j=0; j < nRigidBodiesInStamp; j++) {
114 rbStamp = molStamp->getRigidBodyStamp(j);
115 nAtomsInRigidBodies += rbStamp->getNMembers();
116 }
117
118 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
120
121 }
122
123 //every free atom (atom does not belong to cutoff groups) is a cutoff
124 //group therefore the total number of cutoff groups in the system is
125 //equal to the total number of atoms minus number of atoms belong to
126 //cutoff group defined in meta-data file plus the number of cutoff
127 //groups defined in meta-data file
128
129 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130
131 //every free atom (atom does not belong to rigid bodies) is an
132 //integrable object therefore the total number of integrable objects
133 //in the system is equal to the total number of atoms minus number of
134 //atoms belong to rigid body defined in meta-data file plus the number
135 //of rigid bodies defined in meta-data file
136 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 + nGlobalRigidBodies_;
138
139 nGlobalMols_ = molStampIds_.size();
140 molToProcMap_.resize(nGlobalMols_);
141 }
142
143 SimInfo::~SimInfo() {
144 map<int, Molecule*>::iterator i;
145 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146 delete i->second;
147 }
148 molecules_.clear();
149
150 delete sman_;
151 delete simParams_;
152 delete forceField_;
153 }
154
155
156 bool SimInfo::addMolecule(Molecule* mol) {
157 MoleculeIterator i;
158
159 i = molecules_.find(mol->getGlobalIndex());
160 if (i == molecules_.end() ) {
161
162 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163
164 nAtoms_ += mol->getNAtoms();
165 nBonds_ += mol->getNBonds();
166 nBends_ += mol->getNBends();
167 nTorsions_ += mol->getNTorsions();
168 nInversions_ += mol->getNInversions();
169 nRigidBodies_ += mol->getNRigidBodies();
170 nIntegrableObjects_ += mol->getNIntegrableObjects();
171 nCutoffGroups_ += mol->getNCutoffGroups();
172 nConstraints_ += mol->getNConstraintPairs();
173
174 addInteractionPairs(mol);
175
176 return true;
177 } else {
178 return false;
179 }
180 }
181
182 bool SimInfo::removeMolecule(Molecule* mol) {
183 MoleculeIterator i;
184 i = molecules_.find(mol->getGlobalIndex());
185
186 if (i != molecules_.end() ) {
187
188 assert(mol == i->second);
189
190 nAtoms_ -= mol->getNAtoms();
191 nBonds_ -= mol->getNBonds();
192 nBends_ -= mol->getNBends();
193 nTorsions_ -= mol->getNTorsions();
194 nInversions_ -= mol->getNInversions();
195 nRigidBodies_ -= mol->getNRigidBodies();
196 nIntegrableObjects_ -= mol->getNIntegrableObjects();
197 nCutoffGroups_ -= mol->getNCutoffGroups();
198 nConstraints_ -= mol->getNConstraintPairs();
199
200 removeInteractionPairs(mol);
201 molecules_.erase(mol->getGlobalIndex());
202
203 delete mol;
204
205 return true;
206 } else {
207 return false;
208 }
209 }
210
211
212 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
213 i = molecules_.begin();
214 return i == molecules_.end() ? NULL : i->second;
215 }
216
217 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
218 ++i;
219 return i == molecules_.end() ? NULL : i->second;
220 }
221
222
223 void SimInfo::calcNdf() {
224 int ndf_local;
225 MoleculeIterator i;
226 vector<StuntDouble*>::iterator j;
227 Molecule* mol;
228 StuntDouble* integrableObject;
229
230 ndf_local = 0;
231
232 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
233 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234 integrableObject = mol->nextIntegrableObject(j)) {
235
236 ndf_local += 3;
237
238 if (integrableObject->isDirectional()) {
239 if (integrableObject->isLinear()) {
240 ndf_local += 2;
241 } else {
242 ndf_local += 3;
243 }
244 }
245
246 }
247 }
248
249 // n_constraints is local, so subtract them on each processor
250 ndf_local -= nConstraints_;
251
252 #ifdef IS_MPI
253 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
254 #else
255 ndf_ = ndf_local;
256 #endif
257
258 // nZconstraints_ is global, as are the 3 COM translations for the
259 // entire system:
260 ndf_ = ndf_ - 3 - nZconstraint_;
261
262 }
263
264 int SimInfo::getFdf() {
265 #ifdef IS_MPI
266 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 #else
268 fdf_ = fdf_local;
269 #endif
270 return fdf_;
271 }
272
273 unsigned int SimInfo::getNLocalCutoffGroups(){
274 int nLocalCutoffAtoms = 0;
275 Molecule* mol;
276 MoleculeIterator mi;
277 CutoffGroup* cg;
278 Molecule::CutoffGroupIterator ci;
279
280 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
281
282 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 cg = mol->nextCutoffGroup(ci)) {
284 nLocalCutoffAtoms += cg->getNumAtom();
285
286 }
287 }
288
289 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 }
291
292 void SimInfo::calcNdfRaw() {
293 int ndfRaw_local;
294
295 MoleculeIterator i;
296 vector<StuntDouble*>::iterator j;
297 Molecule* mol;
298 StuntDouble* integrableObject;
299
300 // Raw degrees of freedom that we have to set
301 ndfRaw_local = 0;
302
303 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
304 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 integrableObject = mol->nextIntegrableObject(j)) {
306
307 ndfRaw_local += 3;
308
309 if (integrableObject->isDirectional()) {
310 if (integrableObject->isLinear()) {
311 ndfRaw_local += 2;
312 } else {
313 ndfRaw_local += 3;
314 }
315 }
316
317 }
318 }
319
320 #ifdef IS_MPI
321 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 #else
323 ndfRaw_ = ndfRaw_local;
324 #endif
325 }
326
327 void SimInfo::calcNdfTrans() {
328 int ndfTrans_local;
329
330 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
331
332
333 #ifdef IS_MPI
334 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335 #else
336 ndfTrans_ = ndfTrans_local;
337 #endif
338
339 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
340
341 }
342
343 void SimInfo::addInteractionPairs(Molecule* mol) {
344 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 vector<Bond*>::iterator bondIter;
346 vector<Bend*>::iterator bendIter;
347 vector<Torsion*>::iterator torsionIter;
348 vector<Inversion*>::iterator inversionIter;
349 Bond* bond;
350 Bend* bend;
351 Torsion* torsion;
352 Inversion* inversion;
353 int a;
354 int b;
355 int c;
356 int d;
357
358 // atomGroups can be used to add special interaction maps between
359 // groups of atoms that are in two separate rigid bodies.
360 // However, most site-site interactions between two rigid bodies
361 // are probably not special, just the ones between the physically
362 // bonded atoms. Interactions *within* a single rigid body should
363 // always be excluded. These are done at the bottom of this
364 // function.
365
366 map<int, set<int> > atomGroups;
367 Molecule::RigidBodyIterator rbIter;
368 RigidBody* rb;
369 Molecule::IntegrableObjectIterator ii;
370 StuntDouble* integrableObject;
371
372 for (integrableObject = mol->beginIntegrableObject(ii);
373 integrableObject != NULL;
374 integrableObject = mol->nextIntegrableObject(ii)) {
375
376 if (integrableObject->isRigidBody()) {
377 rb = static_cast<RigidBody*>(integrableObject);
378 vector<Atom*> atoms = rb->getAtoms();
379 set<int> rigidAtoms;
380 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 }
383 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 }
386 } else {
387 set<int> oneAtomSet;
388 oneAtomSet.insert(integrableObject->getGlobalIndex());
389 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
390 }
391 }
392
393 for (bond= mol->beginBond(bondIter); bond != NULL;
394 bond = mol->nextBond(bondIter)) {
395
396 a = bond->getAtomA()->getGlobalIndex();
397 b = bond->getAtomB()->getGlobalIndex();
398
399 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 oneTwoInteractions_.addPair(a, b);
401 } else {
402 excludedInteractions_.addPair(a, b);
403 }
404 }
405
406 for (bend= mol->beginBend(bendIter); bend != NULL;
407 bend = mol->nextBend(bendIter)) {
408
409 a = bend->getAtomA()->getGlobalIndex();
410 b = bend->getAtomB()->getGlobalIndex();
411 c = bend->getAtomC()->getGlobalIndex();
412
413 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 oneTwoInteractions_.addPair(a, b);
415 oneTwoInteractions_.addPair(b, c);
416 } else {
417 excludedInteractions_.addPair(a, b);
418 excludedInteractions_.addPair(b, c);
419 }
420
421 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 oneThreeInteractions_.addPair(a, c);
423 } else {
424 excludedInteractions_.addPair(a, c);
425 }
426 }
427
428 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 torsion = mol->nextTorsion(torsionIter)) {
430
431 a = torsion->getAtomA()->getGlobalIndex();
432 b = torsion->getAtomB()->getGlobalIndex();
433 c = torsion->getAtomC()->getGlobalIndex();
434 d = torsion->getAtomD()->getGlobalIndex();
435
436 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 oneTwoInteractions_.addPair(a, b);
438 oneTwoInteractions_.addPair(b, c);
439 oneTwoInteractions_.addPair(c, d);
440 } else {
441 excludedInteractions_.addPair(a, b);
442 excludedInteractions_.addPair(b, c);
443 excludedInteractions_.addPair(c, d);
444 }
445
446 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 oneThreeInteractions_.addPair(a, c);
448 oneThreeInteractions_.addPair(b, d);
449 } else {
450 excludedInteractions_.addPair(a, c);
451 excludedInteractions_.addPair(b, d);
452 }
453
454 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 oneFourInteractions_.addPair(a, d);
456 } else {
457 excludedInteractions_.addPair(a, d);
458 }
459 }
460
461 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 inversion = mol->nextInversion(inversionIter)) {
463
464 a = inversion->getAtomA()->getGlobalIndex();
465 b = inversion->getAtomB()->getGlobalIndex();
466 c = inversion->getAtomC()->getGlobalIndex();
467 d = inversion->getAtomD()->getGlobalIndex();
468
469 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 oneTwoInteractions_.addPair(a, b);
471 oneTwoInteractions_.addPair(a, c);
472 oneTwoInteractions_.addPair(a, d);
473 } else {
474 excludedInteractions_.addPair(a, b);
475 excludedInteractions_.addPair(a, c);
476 excludedInteractions_.addPair(a, d);
477 }
478
479 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 oneThreeInteractions_.addPair(b, c);
481 oneThreeInteractions_.addPair(b, d);
482 oneThreeInteractions_.addPair(c, d);
483 } else {
484 excludedInteractions_.addPair(b, c);
485 excludedInteractions_.addPair(b, d);
486 excludedInteractions_.addPair(c, d);
487 }
488 }
489
490 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 rb = mol->nextRigidBody(rbIter)) {
492 vector<Atom*> atoms = rb->getAtoms();
493 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495 a = atoms[i]->getGlobalIndex();
496 b = atoms[j]->getGlobalIndex();
497 excludedInteractions_.addPair(a, b);
498 }
499 }
500 }
501
502 }
503
504 void SimInfo::removeInteractionPairs(Molecule* mol) {
505 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 vector<Bond*>::iterator bondIter;
507 vector<Bend*>::iterator bendIter;
508 vector<Torsion*>::iterator torsionIter;
509 vector<Inversion*>::iterator inversionIter;
510 Bond* bond;
511 Bend* bend;
512 Torsion* torsion;
513 Inversion* inversion;
514 int a;
515 int b;
516 int c;
517 int d;
518
519 map<int, set<int> > atomGroups;
520 Molecule::RigidBodyIterator rbIter;
521 RigidBody* rb;
522 Molecule::IntegrableObjectIterator ii;
523 StuntDouble* integrableObject;
524
525 for (integrableObject = mol->beginIntegrableObject(ii);
526 integrableObject != NULL;
527 integrableObject = mol->nextIntegrableObject(ii)) {
528
529 if (integrableObject->isRigidBody()) {
530 rb = static_cast<RigidBody*>(integrableObject);
531 vector<Atom*> atoms = rb->getAtoms();
532 set<int> rigidAtoms;
533 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 }
536 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 }
539 } else {
540 set<int> oneAtomSet;
541 oneAtomSet.insert(integrableObject->getGlobalIndex());
542 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
543 }
544 }
545
546 for (bond= mol->beginBond(bondIter); bond != NULL;
547 bond = mol->nextBond(bondIter)) {
548
549 a = bond->getAtomA()->getGlobalIndex();
550 b = bond->getAtomB()->getGlobalIndex();
551
552 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 oneTwoInteractions_.removePair(a, b);
554 } else {
555 excludedInteractions_.removePair(a, b);
556 }
557 }
558
559 for (bend= mol->beginBend(bendIter); bend != NULL;
560 bend = mol->nextBend(bendIter)) {
561
562 a = bend->getAtomA()->getGlobalIndex();
563 b = bend->getAtomB()->getGlobalIndex();
564 c = bend->getAtomC()->getGlobalIndex();
565
566 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 oneTwoInteractions_.removePair(a, b);
568 oneTwoInteractions_.removePair(b, c);
569 } else {
570 excludedInteractions_.removePair(a, b);
571 excludedInteractions_.removePair(b, c);
572 }
573
574 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 oneThreeInteractions_.removePair(a, c);
576 } else {
577 excludedInteractions_.removePair(a, c);
578 }
579 }
580
581 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 torsion = mol->nextTorsion(torsionIter)) {
583
584 a = torsion->getAtomA()->getGlobalIndex();
585 b = torsion->getAtomB()->getGlobalIndex();
586 c = torsion->getAtomC()->getGlobalIndex();
587 d = torsion->getAtomD()->getGlobalIndex();
588
589 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 oneTwoInteractions_.removePair(a, b);
591 oneTwoInteractions_.removePair(b, c);
592 oneTwoInteractions_.removePair(c, d);
593 } else {
594 excludedInteractions_.removePair(a, b);
595 excludedInteractions_.removePair(b, c);
596 excludedInteractions_.removePair(c, d);
597 }
598
599 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 oneThreeInteractions_.removePair(a, c);
601 oneThreeInteractions_.removePair(b, d);
602 } else {
603 excludedInteractions_.removePair(a, c);
604 excludedInteractions_.removePair(b, d);
605 }
606
607 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 oneFourInteractions_.removePair(a, d);
609 } else {
610 excludedInteractions_.removePair(a, d);
611 }
612 }
613
614 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 inversion = mol->nextInversion(inversionIter)) {
616
617 a = inversion->getAtomA()->getGlobalIndex();
618 b = inversion->getAtomB()->getGlobalIndex();
619 c = inversion->getAtomC()->getGlobalIndex();
620 d = inversion->getAtomD()->getGlobalIndex();
621
622 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 oneTwoInteractions_.removePair(a, b);
624 oneTwoInteractions_.removePair(a, c);
625 oneTwoInteractions_.removePair(a, d);
626 } else {
627 excludedInteractions_.removePair(a, b);
628 excludedInteractions_.removePair(a, c);
629 excludedInteractions_.removePair(a, d);
630 }
631
632 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 oneThreeInteractions_.removePair(b, c);
634 oneThreeInteractions_.removePair(b, d);
635 oneThreeInteractions_.removePair(c, d);
636 } else {
637 excludedInteractions_.removePair(b, c);
638 excludedInteractions_.removePair(b, d);
639 excludedInteractions_.removePair(c, d);
640 }
641 }
642
643 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 rb = mol->nextRigidBody(rbIter)) {
645 vector<Atom*> atoms = rb->getAtoms();
646 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648 a = atoms[i]->getGlobalIndex();
649 b = atoms[j]->getGlobalIndex();
650 excludedInteractions_.removePair(a, b);
651 }
652 }
653 }
654
655 }
656
657
658 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659 int curStampId;
660
661 //index from 0
662 curStampId = moleculeStamps_.size();
663
664 moleculeStamps_.push_back(molStamp);
665 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666 }
667
668
669 /**
670 * update
671 *
672 * Performs the global checks and variable settings after the
673 * objects have been created.
674 *
675 */
676 void SimInfo::update() {
677 setupSimVariables();
678 calcNdf();
679 calcNdfRaw();
680 calcNdfTrans();
681 }
682
683 /**
684 * getSimulatedAtomTypes
685 *
686 * Returns an STL set of AtomType* that are actually present in this
687 * simulation. Must query all processors to assemble this information.
688 *
689 */
690 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691 SimInfo::MoleculeIterator mi;
692 Molecule* mol;
693 Molecule::AtomIterator ai;
694 Atom* atom;
695 set<AtomType*> atomTypes;
696
697 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 for(atom = mol->beginAtom(ai); atom != NULL;
699 atom = mol->nextAtom(ai)) {
700 atomTypes.insert(atom->getAtomType());
701 }
702 }
703
704 #ifdef IS_MPI
705
706 // loop over the found atom types on this processor, and add their
707 // numerical idents to a vector:
708
709 vector<int> foundTypes;
710 set<AtomType*>::iterator i;
711 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
712 foundTypes.push_back( (*i)->getIdent() );
713
714 // count_local holds the number of found types on this processor
715 int count_local = foundTypes.size();
716
717 int nproc = MPI::COMM_WORLD.Get_size();
718
719 // we need arrays to hold the counts and displacement vectors for
720 // all processors
721 vector<int> counts(nproc, 0);
722 vector<int> disps(nproc, 0);
723
724 // fill the counts array
725 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 1, MPI::INT);
727
728 // use the processor counts to compute the displacement array
729 disps[0] = 0;
730 int totalCount = counts[0];
731 for (int iproc = 1; iproc < nproc; iproc++) {
732 disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 totalCount += counts[iproc];
734 }
735
736 // we need a (possibly redundant) set of all found types:
737 vector<int> ftGlobal(totalCount);
738
739 // now spray out the foundTypes to all the other processors:
740 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 &ftGlobal[0], &counts[0], &disps[0],
742 MPI::INT);
743
744 vector<int>::iterator j;
745
746 // foundIdents is a stl set, so inserting an already found ident
747 // will have no effect.
748 set<int> foundIdents;
749
750 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751 foundIdents.insert((*j));
752
753 // now iterate over the foundIdents and get the actual atom types
754 // that correspond to these:
755 set<int>::iterator it;
756 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757 atomTypes.insert( forceField_->getAtomType((*it)) );
758
759 #endif
760
761 return atomTypes;
762 }
763
764 void SimInfo::setupSimVariables() {
765 useAtomicVirial_ = simParams_->getUseAtomicVirial();
766 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
767 calcBoxDipole_ = false;
768 if ( simParams_->haveAccumulateBoxDipole() )
769 if ( simParams_->getAccumulateBoxDipole() ) {
770 calcBoxDipole_ = true;
771 }
772
773 set<AtomType*>::iterator i;
774 set<AtomType*> atomTypes;
775 atomTypes = getSimulatedAtomTypes();
776 int usesElectrostatic = 0;
777 int usesMetallic = 0;
778 int usesDirectional = 0;
779 //loop over all of the atom types
780 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
781 usesElectrostatic |= (*i)->isElectrostatic();
782 usesMetallic |= (*i)->isMetal();
783 usesDirectional |= (*i)->isDirectional();
784 }
785
786 #ifdef IS_MPI
787 int temp;
788 temp = usesDirectional;
789 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
790
791 temp = usesMetallic;
792 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
793
794 temp = usesElectrostatic;
795 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 #else
797
798 usesDirectionalAtoms_ = usesDirectional;
799 usesMetallicAtoms_ = usesMetallic;
800 usesElectrostaticAtoms_ = usesElectrostatic;
801
802 #endif
803
804 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
807 }
808
809
810 vector<int> SimInfo::getGlobalAtomIndices() {
811 SimInfo::MoleculeIterator mi;
812 Molecule* mol;
813 Molecule::AtomIterator ai;
814 Atom* atom;
815
816 vector<int> GlobalAtomIndices(getNAtoms(), 0);
817
818 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
819
820 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 cerr << "LI = " << atom->getLocalIndex() << "GAI = " << GlobalAtomIndices[atom->getLocalIndex()] << "\n";
823 }
824 }
825 return GlobalAtomIndices;
826 }
827
828
829 vector<int> SimInfo::getGlobalGroupIndices() {
830 SimInfo::MoleculeIterator mi;
831 Molecule* mol;
832 Molecule::CutoffGroupIterator ci;
833 CutoffGroup* cg;
834
835 vector<int> GlobalGroupIndices;
836
837 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
838
839 //local index of cutoff group is trivial, it only depends on the
840 //order of travesing
841 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
842 cg = mol->nextCutoffGroup(ci)) {
843 GlobalGroupIndices.push_back(cg->getGlobalIndex());
844 cerr << "LI, GGI = " << GlobalGroupIndices.size() << " " << cg->getGlobalIndex() << "\n";
845 }
846 }
847 return GlobalGroupIndices;
848 }
849
850
851 void SimInfo::prepareTopology() {
852 int nExclude, nOneTwo, nOneThree, nOneFour;
853
854 //calculate mass ratio of cutoff group
855 SimInfo::MoleculeIterator mi;
856 Molecule* mol;
857 Molecule::CutoffGroupIterator ci;
858 CutoffGroup* cg;
859 Molecule::AtomIterator ai;
860 Atom* atom;
861 RealType totalMass;
862
863 /**
864 * The mass factor is the relative mass of an atom to the total
865 * mass of the cutoff group it belongs to. By default, all atoms
866 * are their own cutoff groups, and therefore have mass factors of
867 * 1. We need some special handling for massless atoms, which
868 * will be treated as carrying the entire mass of the cutoff
869 * group.
870 */
871 massFactors_.clear();
872 massFactors_.resize(getNAtoms(), 1.0);
873
874 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
875 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
876 cg = mol->nextCutoffGroup(ci)) {
877
878 totalMass = cg->getMass();
879 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
880 // Check for massless groups - set mfact to 1 if true
881 if (totalMass != 0)
882 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
883 else
884 massFactors_[atom->getLocalIndex()] = 1.0;
885 }
886 }
887 }
888
889 // Build the identArray_
890
891 identArray_.clear();
892 identArray_.reserve(getNAtoms());
893 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
894 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
895 identArray_.push_back(atom->getIdent());
896 }
897 }
898
899 //scan topology
900
901 nExclude = excludedInteractions_.getSize();
902 nOneTwo = oneTwoInteractions_.getSize();
903 nOneThree = oneThreeInteractions_.getSize();
904 nOneFour = oneFourInteractions_.getSize();
905
906 int* excludeList = excludedInteractions_.getPairList();
907 int* oneTwoList = oneTwoInteractions_.getPairList();
908 int* oneThreeList = oneThreeInteractions_.getPairList();
909 int* oneFourList = oneFourInteractions_.getPairList();
910
911 topologyDone_ = true;
912 }
913
914 void SimInfo::addProperty(GenericData* genData) {
915 properties_.addProperty(genData);
916 }
917
918 void SimInfo::removeProperty(const string& propName) {
919 properties_.removeProperty(propName);
920 }
921
922 void SimInfo::clearProperties() {
923 properties_.clearProperties();
924 }
925
926 vector<string> SimInfo::getPropertyNames() {
927 return properties_.getPropertyNames();
928 }
929
930 vector<GenericData*> SimInfo::getProperties() {
931 return properties_.getProperties();
932 }
933
934 GenericData* SimInfo::getPropertyByName(const string& propName) {
935 return properties_.getPropertyByName(propName);
936 }
937
938 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
939 if (sman_ == sman) {
940 return;
941 }
942 delete sman_;
943 sman_ = sman;
944
945 Molecule* mol;
946 RigidBody* rb;
947 Atom* atom;
948 CutoffGroup* cg;
949 SimInfo::MoleculeIterator mi;
950 Molecule::RigidBodyIterator rbIter;
951 Molecule::AtomIterator atomIter;
952 Molecule::CutoffGroupIterator cgIter;
953
954 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
955
956 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
957 atom->setSnapshotManager(sman_);
958 }
959
960 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
961 rb->setSnapshotManager(sman_);
962 }
963
964 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
965 cg->setSnapshotManager(sman_);
966 }
967 }
968
969 }
970
971 Vector3d SimInfo::getComVel(){
972 SimInfo::MoleculeIterator i;
973 Molecule* mol;
974
975 Vector3d comVel(0.0);
976 RealType totalMass = 0.0;
977
978
979 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
980 RealType mass = mol->getMass();
981 totalMass += mass;
982 comVel += mass * mol->getComVel();
983 }
984
985 #ifdef IS_MPI
986 RealType tmpMass = totalMass;
987 Vector3d tmpComVel(comVel);
988 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
989 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
990 #endif
991
992 comVel /= totalMass;
993
994 return comVel;
995 }
996
997 Vector3d SimInfo::getCom(){
998 SimInfo::MoleculeIterator i;
999 Molecule* mol;
1000
1001 Vector3d com(0.0);
1002 RealType totalMass = 0.0;
1003
1004 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1005 RealType mass = mol->getMass();
1006 totalMass += mass;
1007 com += mass * mol->getCom();
1008 }
1009
1010 #ifdef IS_MPI
1011 RealType tmpMass = totalMass;
1012 Vector3d tmpCom(com);
1013 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1014 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1015 #endif
1016
1017 com /= totalMass;
1018
1019 return com;
1020
1021 }
1022
1023 ostream& operator <<(ostream& o, SimInfo& info) {
1024
1025 return o;
1026 }
1027
1028
1029 /*
1030 Returns center of mass and center of mass velocity in one function call.
1031 */
1032
1033 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1034 SimInfo::MoleculeIterator i;
1035 Molecule* mol;
1036
1037
1038 RealType totalMass = 0.0;
1039
1040
1041 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1042 RealType mass = mol->getMass();
1043 totalMass += mass;
1044 com += mass * mol->getCom();
1045 comVel += mass * mol->getComVel();
1046 }
1047
1048 #ifdef IS_MPI
1049 RealType tmpMass = totalMass;
1050 Vector3d tmpCom(com);
1051 Vector3d tmpComVel(comVel);
1052 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1053 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1054 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 #endif
1056
1057 com /= totalMass;
1058 comVel /= totalMass;
1059 }
1060
1061 /*
1062 Return intertia tensor for entire system and angular momentum Vector.
1063
1064
1065 [ Ixx -Ixy -Ixz ]
1066 J =| -Iyx Iyy -Iyz |
1067 [ -Izx -Iyz Izz ]
1068 */
1069
1070 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1071
1072
1073 RealType xx = 0.0;
1074 RealType yy = 0.0;
1075 RealType zz = 0.0;
1076 RealType xy = 0.0;
1077 RealType xz = 0.0;
1078 RealType yz = 0.0;
1079 Vector3d com(0.0);
1080 Vector3d comVel(0.0);
1081
1082 getComAll(com, comVel);
1083
1084 SimInfo::MoleculeIterator i;
1085 Molecule* mol;
1086
1087 Vector3d thisq(0.0);
1088 Vector3d thisv(0.0);
1089
1090 RealType thisMass = 0.0;
1091
1092
1093
1094
1095 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1096
1097 thisq = mol->getCom()-com;
1098 thisv = mol->getComVel()-comVel;
1099 thisMass = mol->getMass();
1100 // Compute moment of intertia coefficients.
1101 xx += thisq[0]*thisq[0]*thisMass;
1102 yy += thisq[1]*thisq[1]*thisMass;
1103 zz += thisq[2]*thisq[2]*thisMass;
1104
1105 // compute products of intertia
1106 xy += thisq[0]*thisq[1]*thisMass;
1107 xz += thisq[0]*thisq[2]*thisMass;
1108 yz += thisq[1]*thisq[2]*thisMass;
1109
1110 angularMomentum += cross( thisq, thisv ) * thisMass;
1111
1112 }
1113
1114
1115 inertiaTensor(0,0) = yy + zz;
1116 inertiaTensor(0,1) = -xy;
1117 inertiaTensor(0,2) = -xz;
1118 inertiaTensor(1,0) = -xy;
1119 inertiaTensor(1,1) = xx + zz;
1120 inertiaTensor(1,2) = -yz;
1121 inertiaTensor(2,0) = -xz;
1122 inertiaTensor(2,1) = -yz;
1123 inertiaTensor(2,2) = xx + yy;
1124
1125 #ifdef IS_MPI
1126 Mat3x3d tmpI(inertiaTensor);
1127 Vector3d tmpAngMom;
1128 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1129 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1130 #endif
1131
1132 return;
1133 }
1134
1135 //Returns the angular momentum of the system
1136 Vector3d SimInfo::getAngularMomentum(){
1137
1138 Vector3d com(0.0);
1139 Vector3d comVel(0.0);
1140 Vector3d angularMomentum(0.0);
1141
1142 getComAll(com,comVel);
1143
1144 SimInfo::MoleculeIterator i;
1145 Molecule* mol;
1146
1147 Vector3d thisr(0.0);
1148 Vector3d thisp(0.0);
1149
1150 RealType thisMass;
1151
1152 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1153 thisMass = mol->getMass();
1154 thisr = mol->getCom()-com;
1155 thisp = (mol->getComVel()-comVel)*thisMass;
1156
1157 angularMomentum += cross( thisr, thisp );
1158
1159 }
1160
1161 #ifdef IS_MPI
1162 Vector3d tmpAngMom;
1163 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 #endif
1165
1166 return angularMomentum;
1167 }
1168
1169 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1170 return IOIndexToIntegrableObject.at(index);
1171 }
1172
1173 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1174 IOIndexToIntegrableObject= v;
1175 }
1176
1177 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1178 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1179 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1180 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1181 */
1182 void SimInfo::getGyrationalVolume(RealType &volume){
1183 Mat3x3d intTensor;
1184 RealType det;
1185 Vector3d dummyAngMom;
1186 RealType sysconstants;
1187 RealType geomCnst;
1188
1189 geomCnst = 3.0/2.0;
1190 /* Get the inertial tensor and angular momentum for free*/
1191 getInertiaTensor(intTensor,dummyAngMom);
1192
1193 det = intTensor.determinant();
1194 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1195 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1196 return;
1197 }
1198
1199 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1200 Mat3x3d intTensor;
1201 Vector3d dummyAngMom;
1202 RealType sysconstants;
1203 RealType geomCnst;
1204
1205 geomCnst = 3.0/2.0;
1206 /* Get the inertial tensor and angular momentum for free*/
1207 getInertiaTensor(intTensor,dummyAngMom);
1208
1209 detI = intTensor.determinant();
1210 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1211 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1212 return;
1213 }
1214 /*
1215 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1216 assert( v.size() == nAtoms_ + nRigidBodies_);
1217 sdByGlobalIndex_ = v;
1218 }
1219
1220 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1221 //assert(index < nAtoms_ + nRigidBodies_);
1222 return sdByGlobalIndex_.at(index);
1223 }
1224 */
1225 int SimInfo::getNGlobalConstraints() {
1226 int nGlobalConstraints;
1227 #ifdef IS_MPI
1228 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1229 MPI_COMM_WORLD);
1230 #else
1231 nGlobalConstraints = nConstraints_;
1232 #endif
1233 return nGlobalConstraints;
1234 }
1235
1236 }//end namespace OpenMD
1237

Properties

Name Value
svn:keywords Author Id Revision Date