1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "utils/MemoryUtils.hpp" |
58 |
#include "utils/simError.h" |
59 |
#include "selection/SelectionManager.hpp" |
60 |
#include "io/ForceFieldOptions.hpp" |
61 |
#include "UseTheForce/ForceField.hpp" |
62 |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
|
64 |
using namespace std; |
65 |
namespace OpenMD { |
66 |
|
67 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
68 |
forceField_(ff), simParams_(simParams), |
69 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
70 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
71 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
72 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
73 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
74 |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
75 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
|
77 |
MoleculeStamp* molStamp; |
78 |
int nMolWithSameStamp; |
79 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
80 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
81 |
CutoffGroupStamp* cgStamp; |
82 |
RigidBodyStamp* rbStamp; |
83 |
int nRigidAtoms = 0; |
84 |
|
85 |
vector<Component*> components = simParams->getComponents(); |
86 |
|
87 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
88 |
molStamp = (*i)->getMoleculeStamp(); |
89 |
nMolWithSameStamp = (*i)->getNMol(); |
90 |
|
91 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
92 |
|
93 |
//calculate atoms in molecules |
94 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
95 |
|
96 |
//calculate atoms in cutoff groups |
97 |
int nAtomsInGroups = 0; |
98 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
99 |
|
100 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
101 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
102 |
nAtomsInGroups += cgStamp->getNMembers(); |
103 |
} |
104 |
|
105 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
106 |
|
107 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
108 |
|
109 |
//calculate atoms in rigid bodies |
110 |
int nAtomsInRigidBodies = 0; |
111 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
112 |
|
113 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
114 |
rbStamp = molStamp->getRigidBodyStamp(j); |
115 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
116 |
} |
117 |
|
118 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
119 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
120 |
|
121 |
} |
122 |
|
123 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
124 |
//group therefore the total number of cutoff groups in the system is |
125 |
//equal to the total number of atoms minus number of atoms belong to |
126 |
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
//groups defined in meta-data file |
128 |
|
129 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
130 |
|
131 |
//every free atom (atom does not belong to rigid bodies) is an |
132 |
//integrable object therefore the total number of integrable objects |
133 |
//in the system is equal to the total number of atoms minus number of |
134 |
//atoms belong to rigid body defined in meta-data file plus the number |
135 |
//of rigid bodies defined in meta-data file |
136 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
137 |
+ nGlobalRigidBodies_; |
138 |
|
139 |
nGlobalMols_ = molStampIds_.size(); |
140 |
molToProcMap_.resize(nGlobalMols_); |
141 |
} |
142 |
|
143 |
SimInfo::~SimInfo() { |
144 |
map<int, Molecule*>::iterator i; |
145 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
146 |
delete i->second; |
147 |
} |
148 |
molecules_.clear(); |
149 |
|
150 |
delete sman_; |
151 |
delete simParams_; |
152 |
delete forceField_; |
153 |
} |
154 |
|
155 |
|
156 |
bool SimInfo::addMolecule(Molecule* mol) { |
157 |
MoleculeIterator i; |
158 |
|
159 |
i = molecules_.find(mol->getGlobalIndex()); |
160 |
if (i == molecules_.end() ) { |
161 |
|
162 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
163 |
|
164 |
nAtoms_ += mol->getNAtoms(); |
165 |
nBonds_ += mol->getNBonds(); |
166 |
nBends_ += mol->getNBends(); |
167 |
nTorsions_ += mol->getNTorsions(); |
168 |
nInversions_ += mol->getNInversions(); |
169 |
nRigidBodies_ += mol->getNRigidBodies(); |
170 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
171 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
172 |
nConstraints_ += mol->getNConstraintPairs(); |
173 |
|
174 |
addInteractionPairs(mol); |
175 |
|
176 |
return true; |
177 |
} else { |
178 |
return false; |
179 |
} |
180 |
} |
181 |
|
182 |
bool SimInfo::removeMolecule(Molecule* mol) { |
183 |
MoleculeIterator i; |
184 |
i = molecules_.find(mol->getGlobalIndex()); |
185 |
|
186 |
if (i != molecules_.end() ) { |
187 |
|
188 |
assert(mol == i->second); |
189 |
|
190 |
nAtoms_ -= mol->getNAtoms(); |
191 |
nBonds_ -= mol->getNBonds(); |
192 |
nBends_ -= mol->getNBends(); |
193 |
nTorsions_ -= mol->getNTorsions(); |
194 |
nInversions_ -= mol->getNInversions(); |
195 |
nRigidBodies_ -= mol->getNRigidBodies(); |
196 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
197 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
198 |
nConstraints_ -= mol->getNConstraintPairs(); |
199 |
|
200 |
removeInteractionPairs(mol); |
201 |
molecules_.erase(mol->getGlobalIndex()); |
202 |
|
203 |
delete mol; |
204 |
|
205 |
return true; |
206 |
} else { |
207 |
return false; |
208 |
} |
209 |
} |
210 |
|
211 |
|
212 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
213 |
i = molecules_.begin(); |
214 |
return i == molecules_.end() ? NULL : i->second; |
215 |
} |
216 |
|
217 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
218 |
++i; |
219 |
return i == molecules_.end() ? NULL : i->second; |
220 |
} |
221 |
|
222 |
|
223 |
void SimInfo::calcNdf() { |
224 |
int ndf_local; |
225 |
MoleculeIterator i; |
226 |
vector<StuntDouble*>::iterator j; |
227 |
Molecule* mol; |
228 |
StuntDouble* integrableObject; |
229 |
|
230 |
ndf_local = 0; |
231 |
|
232 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
233 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
234 |
integrableObject = mol->nextIntegrableObject(j)) { |
235 |
|
236 |
ndf_local += 3; |
237 |
|
238 |
if (integrableObject->isDirectional()) { |
239 |
if (integrableObject->isLinear()) { |
240 |
ndf_local += 2; |
241 |
} else { |
242 |
ndf_local += 3; |
243 |
} |
244 |
} |
245 |
|
246 |
} |
247 |
} |
248 |
|
249 |
// n_constraints is local, so subtract them on each processor |
250 |
ndf_local -= nConstraints_; |
251 |
|
252 |
#ifdef IS_MPI |
253 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
254 |
#else |
255 |
ndf_ = ndf_local; |
256 |
#endif |
257 |
|
258 |
// nZconstraints_ is global, as are the 3 COM translations for the |
259 |
// entire system: |
260 |
ndf_ = ndf_ - 3 - nZconstraint_; |
261 |
|
262 |
} |
263 |
|
264 |
int SimInfo::getFdf() { |
265 |
#ifdef IS_MPI |
266 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
267 |
#else |
268 |
fdf_ = fdf_local; |
269 |
#endif |
270 |
return fdf_; |
271 |
} |
272 |
|
273 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 |
int nLocalCutoffAtoms = 0; |
275 |
Molecule* mol; |
276 |
MoleculeIterator mi; |
277 |
CutoffGroup* cg; |
278 |
Molecule::CutoffGroupIterator ci; |
279 |
|
280 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 |
|
282 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 |
cg = mol->nextCutoffGroup(ci)) { |
284 |
nLocalCutoffAtoms += cg->getNumAtom(); |
285 |
|
286 |
} |
287 |
} |
288 |
|
289 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 |
} |
291 |
|
292 |
void SimInfo::calcNdfRaw() { |
293 |
int ndfRaw_local; |
294 |
|
295 |
MoleculeIterator i; |
296 |
vector<StuntDouble*>::iterator j; |
297 |
Molecule* mol; |
298 |
StuntDouble* integrableObject; |
299 |
|
300 |
// Raw degrees of freedom that we have to set |
301 |
ndfRaw_local = 0; |
302 |
|
303 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
304 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
305 |
integrableObject = mol->nextIntegrableObject(j)) { |
306 |
|
307 |
ndfRaw_local += 3; |
308 |
|
309 |
if (integrableObject->isDirectional()) { |
310 |
if (integrableObject->isLinear()) { |
311 |
ndfRaw_local += 2; |
312 |
} else { |
313 |
ndfRaw_local += 3; |
314 |
} |
315 |
} |
316 |
|
317 |
} |
318 |
} |
319 |
|
320 |
#ifdef IS_MPI |
321 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
322 |
#else |
323 |
ndfRaw_ = ndfRaw_local; |
324 |
#endif |
325 |
} |
326 |
|
327 |
void SimInfo::calcNdfTrans() { |
328 |
int ndfTrans_local; |
329 |
|
330 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
331 |
|
332 |
|
333 |
#ifdef IS_MPI |
334 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
335 |
#else |
336 |
ndfTrans_ = ndfTrans_local; |
337 |
#endif |
338 |
|
339 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
340 |
|
341 |
} |
342 |
|
343 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
344 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
345 |
vector<Bond*>::iterator bondIter; |
346 |
vector<Bend*>::iterator bendIter; |
347 |
vector<Torsion*>::iterator torsionIter; |
348 |
vector<Inversion*>::iterator inversionIter; |
349 |
Bond* bond; |
350 |
Bend* bend; |
351 |
Torsion* torsion; |
352 |
Inversion* inversion; |
353 |
int a; |
354 |
int b; |
355 |
int c; |
356 |
int d; |
357 |
|
358 |
// atomGroups can be used to add special interaction maps between |
359 |
// groups of atoms that are in two separate rigid bodies. |
360 |
// However, most site-site interactions between two rigid bodies |
361 |
// are probably not special, just the ones between the physically |
362 |
// bonded atoms. Interactions *within* a single rigid body should |
363 |
// always be excluded. These are done at the bottom of this |
364 |
// function. |
365 |
|
366 |
map<int, set<int> > atomGroups; |
367 |
Molecule::RigidBodyIterator rbIter; |
368 |
RigidBody* rb; |
369 |
Molecule::IntegrableObjectIterator ii; |
370 |
StuntDouble* integrableObject; |
371 |
|
372 |
for (integrableObject = mol->beginIntegrableObject(ii); |
373 |
integrableObject != NULL; |
374 |
integrableObject = mol->nextIntegrableObject(ii)) { |
375 |
|
376 |
if (integrableObject->isRigidBody()) { |
377 |
rb = static_cast<RigidBody*>(integrableObject); |
378 |
vector<Atom*> atoms = rb->getAtoms(); |
379 |
set<int> rigidAtoms; |
380 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
381 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
382 |
} |
383 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
384 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
385 |
} |
386 |
} else { |
387 |
set<int> oneAtomSet; |
388 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
389 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
390 |
} |
391 |
} |
392 |
|
393 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
394 |
bond = mol->nextBond(bondIter)) { |
395 |
|
396 |
a = bond->getAtomA()->getGlobalIndex(); |
397 |
b = bond->getAtomB()->getGlobalIndex(); |
398 |
|
399 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
400 |
oneTwoInteractions_.addPair(a, b); |
401 |
} else { |
402 |
excludedInteractions_.addPair(a, b); |
403 |
} |
404 |
} |
405 |
|
406 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
407 |
bend = mol->nextBend(bendIter)) { |
408 |
|
409 |
a = bend->getAtomA()->getGlobalIndex(); |
410 |
b = bend->getAtomB()->getGlobalIndex(); |
411 |
c = bend->getAtomC()->getGlobalIndex(); |
412 |
|
413 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
414 |
oneTwoInteractions_.addPair(a, b); |
415 |
oneTwoInteractions_.addPair(b, c); |
416 |
} else { |
417 |
excludedInteractions_.addPair(a, b); |
418 |
excludedInteractions_.addPair(b, c); |
419 |
} |
420 |
|
421 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
422 |
oneThreeInteractions_.addPair(a, c); |
423 |
} else { |
424 |
excludedInteractions_.addPair(a, c); |
425 |
} |
426 |
} |
427 |
|
428 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
429 |
torsion = mol->nextTorsion(torsionIter)) { |
430 |
|
431 |
a = torsion->getAtomA()->getGlobalIndex(); |
432 |
b = torsion->getAtomB()->getGlobalIndex(); |
433 |
c = torsion->getAtomC()->getGlobalIndex(); |
434 |
d = torsion->getAtomD()->getGlobalIndex(); |
435 |
|
436 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
437 |
oneTwoInteractions_.addPair(a, b); |
438 |
oneTwoInteractions_.addPair(b, c); |
439 |
oneTwoInteractions_.addPair(c, d); |
440 |
} else { |
441 |
excludedInteractions_.addPair(a, b); |
442 |
excludedInteractions_.addPair(b, c); |
443 |
excludedInteractions_.addPair(c, d); |
444 |
} |
445 |
|
446 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
447 |
oneThreeInteractions_.addPair(a, c); |
448 |
oneThreeInteractions_.addPair(b, d); |
449 |
} else { |
450 |
excludedInteractions_.addPair(a, c); |
451 |
excludedInteractions_.addPair(b, d); |
452 |
} |
453 |
|
454 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
455 |
oneFourInteractions_.addPair(a, d); |
456 |
} else { |
457 |
excludedInteractions_.addPair(a, d); |
458 |
} |
459 |
} |
460 |
|
461 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
462 |
inversion = mol->nextInversion(inversionIter)) { |
463 |
|
464 |
a = inversion->getAtomA()->getGlobalIndex(); |
465 |
b = inversion->getAtomB()->getGlobalIndex(); |
466 |
c = inversion->getAtomC()->getGlobalIndex(); |
467 |
d = inversion->getAtomD()->getGlobalIndex(); |
468 |
|
469 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
470 |
oneTwoInteractions_.addPair(a, b); |
471 |
oneTwoInteractions_.addPair(a, c); |
472 |
oneTwoInteractions_.addPair(a, d); |
473 |
} else { |
474 |
excludedInteractions_.addPair(a, b); |
475 |
excludedInteractions_.addPair(a, c); |
476 |
excludedInteractions_.addPair(a, d); |
477 |
} |
478 |
|
479 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
480 |
oneThreeInteractions_.addPair(b, c); |
481 |
oneThreeInteractions_.addPair(b, d); |
482 |
oneThreeInteractions_.addPair(c, d); |
483 |
} else { |
484 |
excludedInteractions_.addPair(b, c); |
485 |
excludedInteractions_.addPair(b, d); |
486 |
excludedInteractions_.addPair(c, d); |
487 |
} |
488 |
} |
489 |
|
490 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
491 |
rb = mol->nextRigidBody(rbIter)) { |
492 |
vector<Atom*> atoms = rb->getAtoms(); |
493 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
494 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
495 |
a = atoms[i]->getGlobalIndex(); |
496 |
b = atoms[j]->getGlobalIndex(); |
497 |
excludedInteractions_.addPair(a, b); |
498 |
} |
499 |
} |
500 |
} |
501 |
|
502 |
} |
503 |
|
504 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
505 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
506 |
vector<Bond*>::iterator bondIter; |
507 |
vector<Bend*>::iterator bendIter; |
508 |
vector<Torsion*>::iterator torsionIter; |
509 |
vector<Inversion*>::iterator inversionIter; |
510 |
Bond* bond; |
511 |
Bend* bend; |
512 |
Torsion* torsion; |
513 |
Inversion* inversion; |
514 |
int a; |
515 |
int b; |
516 |
int c; |
517 |
int d; |
518 |
|
519 |
map<int, set<int> > atomGroups; |
520 |
Molecule::RigidBodyIterator rbIter; |
521 |
RigidBody* rb; |
522 |
Molecule::IntegrableObjectIterator ii; |
523 |
StuntDouble* integrableObject; |
524 |
|
525 |
for (integrableObject = mol->beginIntegrableObject(ii); |
526 |
integrableObject != NULL; |
527 |
integrableObject = mol->nextIntegrableObject(ii)) { |
528 |
|
529 |
if (integrableObject->isRigidBody()) { |
530 |
rb = static_cast<RigidBody*>(integrableObject); |
531 |
vector<Atom*> atoms = rb->getAtoms(); |
532 |
set<int> rigidAtoms; |
533 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
534 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
535 |
} |
536 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
537 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
538 |
} |
539 |
} else { |
540 |
set<int> oneAtomSet; |
541 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
542 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
543 |
} |
544 |
} |
545 |
|
546 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
547 |
bond = mol->nextBond(bondIter)) { |
548 |
|
549 |
a = bond->getAtomA()->getGlobalIndex(); |
550 |
b = bond->getAtomB()->getGlobalIndex(); |
551 |
|
552 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
553 |
oneTwoInteractions_.removePair(a, b); |
554 |
} else { |
555 |
excludedInteractions_.removePair(a, b); |
556 |
} |
557 |
} |
558 |
|
559 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
560 |
bend = mol->nextBend(bendIter)) { |
561 |
|
562 |
a = bend->getAtomA()->getGlobalIndex(); |
563 |
b = bend->getAtomB()->getGlobalIndex(); |
564 |
c = bend->getAtomC()->getGlobalIndex(); |
565 |
|
566 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
567 |
oneTwoInteractions_.removePair(a, b); |
568 |
oneTwoInteractions_.removePair(b, c); |
569 |
} else { |
570 |
excludedInteractions_.removePair(a, b); |
571 |
excludedInteractions_.removePair(b, c); |
572 |
} |
573 |
|
574 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
575 |
oneThreeInteractions_.removePair(a, c); |
576 |
} else { |
577 |
excludedInteractions_.removePair(a, c); |
578 |
} |
579 |
} |
580 |
|
581 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
582 |
torsion = mol->nextTorsion(torsionIter)) { |
583 |
|
584 |
a = torsion->getAtomA()->getGlobalIndex(); |
585 |
b = torsion->getAtomB()->getGlobalIndex(); |
586 |
c = torsion->getAtomC()->getGlobalIndex(); |
587 |
d = torsion->getAtomD()->getGlobalIndex(); |
588 |
|
589 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
590 |
oneTwoInteractions_.removePair(a, b); |
591 |
oneTwoInteractions_.removePair(b, c); |
592 |
oneTwoInteractions_.removePair(c, d); |
593 |
} else { |
594 |
excludedInteractions_.removePair(a, b); |
595 |
excludedInteractions_.removePair(b, c); |
596 |
excludedInteractions_.removePair(c, d); |
597 |
} |
598 |
|
599 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
600 |
oneThreeInteractions_.removePair(a, c); |
601 |
oneThreeInteractions_.removePair(b, d); |
602 |
} else { |
603 |
excludedInteractions_.removePair(a, c); |
604 |
excludedInteractions_.removePair(b, d); |
605 |
} |
606 |
|
607 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
608 |
oneFourInteractions_.removePair(a, d); |
609 |
} else { |
610 |
excludedInteractions_.removePair(a, d); |
611 |
} |
612 |
} |
613 |
|
614 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
615 |
inversion = mol->nextInversion(inversionIter)) { |
616 |
|
617 |
a = inversion->getAtomA()->getGlobalIndex(); |
618 |
b = inversion->getAtomB()->getGlobalIndex(); |
619 |
c = inversion->getAtomC()->getGlobalIndex(); |
620 |
d = inversion->getAtomD()->getGlobalIndex(); |
621 |
|
622 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
623 |
oneTwoInteractions_.removePair(a, b); |
624 |
oneTwoInteractions_.removePair(a, c); |
625 |
oneTwoInteractions_.removePair(a, d); |
626 |
} else { |
627 |
excludedInteractions_.removePair(a, b); |
628 |
excludedInteractions_.removePair(a, c); |
629 |
excludedInteractions_.removePair(a, d); |
630 |
} |
631 |
|
632 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
633 |
oneThreeInteractions_.removePair(b, c); |
634 |
oneThreeInteractions_.removePair(b, d); |
635 |
oneThreeInteractions_.removePair(c, d); |
636 |
} else { |
637 |
excludedInteractions_.removePair(b, c); |
638 |
excludedInteractions_.removePair(b, d); |
639 |
excludedInteractions_.removePair(c, d); |
640 |
} |
641 |
} |
642 |
|
643 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
644 |
rb = mol->nextRigidBody(rbIter)) { |
645 |
vector<Atom*> atoms = rb->getAtoms(); |
646 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
647 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
648 |
a = atoms[i]->getGlobalIndex(); |
649 |
b = atoms[j]->getGlobalIndex(); |
650 |
excludedInteractions_.removePair(a, b); |
651 |
} |
652 |
} |
653 |
} |
654 |
|
655 |
} |
656 |
|
657 |
|
658 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
659 |
int curStampId; |
660 |
|
661 |
//index from 0 |
662 |
curStampId = moleculeStamps_.size(); |
663 |
|
664 |
moleculeStamps_.push_back(molStamp); |
665 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
666 |
} |
667 |
|
668 |
|
669 |
/** |
670 |
* update |
671 |
* |
672 |
* Performs the global checks and variable settings after the |
673 |
* objects have been created. |
674 |
* |
675 |
*/ |
676 |
void SimInfo::update() { |
677 |
setupSimVariables(); |
678 |
calcNdf(); |
679 |
calcNdfRaw(); |
680 |
calcNdfTrans(); |
681 |
} |
682 |
|
683 |
/** |
684 |
* getSimulatedAtomTypes |
685 |
* |
686 |
* Returns an STL set of AtomType* that are actually present in this |
687 |
* simulation. Must query all processors to assemble this information. |
688 |
* |
689 |
*/ |
690 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
691 |
SimInfo::MoleculeIterator mi; |
692 |
Molecule* mol; |
693 |
Molecule::AtomIterator ai; |
694 |
Atom* atom; |
695 |
set<AtomType*> atomTypes; |
696 |
|
697 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
699 |
atomTypes.insert(atom->getAtomType()); |
700 |
} |
701 |
} |
702 |
|
703 |
#ifdef IS_MPI |
704 |
|
705 |
// loop over the found atom types on this processor, and add their |
706 |
// numerical idents to a vector: |
707 |
|
708 |
vector<int> foundTypes; |
709 |
set<AtomType*>::iterator i; |
710 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
711 |
foundTypes.push_back( (*i)->getIdent() ); |
712 |
|
713 |
// count_local holds the number of found types on this processor |
714 |
int count_local = foundTypes.size(); |
715 |
|
716 |
// count holds the total number of found types on all processors |
717 |
// (some will be redundant with the ones found locally): |
718 |
int count; |
719 |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
720 |
|
721 |
// create a vector to hold the globally found types, and resize it: |
722 |
vector<int> ftGlobal; |
723 |
ftGlobal.resize(count); |
724 |
vector<int> counts; |
725 |
|
726 |
int nproc = MPI::COMM_WORLD.Get_size(); |
727 |
counts.resize(nproc); |
728 |
vector<int> disps; |
729 |
disps.resize(nproc); |
730 |
|
731 |
// now spray out the foundTypes to all the other processors: |
732 |
|
733 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
734 |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
735 |
|
736 |
// foundIdents is a stl set, so inserting an already found ident |
737 |
// will have no effect. |
738 |
set<int> foundIdents; |
739 |
vector<int>::iterator j; |
740 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
741 |
foundIdents.insert((*j)); |
742 |
|
743 |
// now iterate over the foundIdents and get the actual atom types |
744 |
// that correspond to these: |
745 |
set<int>::iterator it; |
746 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
747 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
748 |
|
749 |
#endif |
750 |
|
751 |
return atomTypes; |
752 |
} |
753 |
|
754 |
void SimInfo::setupSimVariables() { |
755 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
756 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
757 |
calcBoxDipole_ = false; |
758 |
if ( simParams_->haveAccumulateBoxDipole() ) |
759 |
if ( simParams_->getAccumulateBoxDipole() ) { |
760 |
calcBoxDipole_ = true; |
761 |
} |
762 |
|
763 |
set<AtomType*>::iterator i; |
764 |
set<AtomType*> atomTypes; |
765 |
atomTypes = getSimulatedAtomTypes(); |
766 |
int usesElectrostatic = 0; |
767 |
int usesMetallic = 0; |
768 |
int usesDirectional = 0; |
769 |
//loop over all of the atom types |
770 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
771 |
usesElectrostatic |= (*i)->isElectrostatic(); |
772 |
usesMetallic |= (*i)->isMetal(); |
773 |
usesDirectional |= (*i)->isDirectional(); |
774 |
} |
775 |
|
776 |
#ifdef IS_MPI |
777 |
int temp; |
778 |
temp = usesDirectional; |
779 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
780 |
|
781 |
temp = usesMetallic; |
782 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
783 |
|
784 |
temp = usesElectrostatic; |
785 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
786 |
#else |
787 |
|
788 |
usesDirectionalAtoms_ = usesDirectional; |
789 |
usesMetallicAtoms_ = usesMetallic; |
790 |
usesElectrostaticAtoms_ = usesElectrostatic; |
791 |
|
792 |
#endif |
793 |
|
794 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
795 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
796 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
797 |
} |
798 |
|
799 |
|
800 |
vector<int> SimInfo::getGlobalAtomIndices() { |
801 |
SimInfo::MoleculeIterator mi; |
802 |
Molecule* mol; |
803 |
Molecule::AtomIterator ai; |
804 |
Atom* atom; |
805 |
|
806 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
807 |
|
808 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
809 |
|
810 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
811 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
812 |
} |
813 |
} |
814 |
return GlobalAtomIndices; |
815 |
} |
816 |
|
817 |
|
818 |
vector<int> SimInfo::getGlobalGroupIndices() { |
819 |
SimInfo::MoleculeIterator mi; |
820 |
Molecule* mol; |
821 |
Molecule::CutoffGroupIterator ci; |
822 |
CutoffGroup* cg; |
823 |
|
824 |
vector<int> GlobalGroupIndices; |
825 |
|
826 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
827 |
|
828 |
//local index of cutoff group is trivial, it only depends on the |
829 |
//order of travesing |
830 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
831 |
cg = mol->nextCutoffGroup(ci)) { |
832 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
833 |
} |
834 |
} |
835 |
return GlobalGroupIndices; |
836 |
} |
837 |
|
838 |
|
839 |
void SimInfo::prepareTopology() { |
840 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
841 |
|
842 |
//calculate mass ratio of cutoff group |
843 |
SimInfo::MoleculeIterator mi; |
844 |
Molecule* mol; |
845 |
Molecule::CutoffGroupIterator ci; |
846 |
CutoffGroup* cg; |
847 |
Molecule::AtomIterator ai; |
848 |
Atom* atom; |
849 |
RealType totalMass; |
850 |
|
851 |
/** |
852 |
* The mass factor is the relative mass of an atom to the total |
853 |
* mass of the cutoff group it belongs to. By default, all atoms |
854 |
* are their own cutoff groups, and therefore have mass factors of |
855 |
* 1. We need some special handling for massless atoms, which |
856 |
* will be treated as carrying the entire mass of the cutoff |
857 |
* group. |
858 |
*/ |
859 |
massFactors_.clear(); |
860 |
massFactors_.resize(getNAtoms(), 1.0); |
861 |
|
862 |
cerr << "mfs in si = " << massFactors_.size() << "\n"; |
863 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
864 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
865 |
cg = mol->nextCutoffGroup(ci)) { |
866 |
|
867 |
totalMass = cg->getMass(); |
868 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
869 |
// Check for massless groups - set mfact to 1 if true |
870 |
if (totalMass != 0) |
871 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
872 |
else |
873 |
massFactors_[atom->getLocalIndex()] = 1.0; |
874 |
} |
875 |
} |
876 |
} |
877 |
|
878 |
// Build the identArray_ |
879 |
|
880 |
identArray_.clear(); |
881 |
identArray_.reserve(getNAtoms()); |
882 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
883 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
884 |
identArray_.push_back(atom->getIdent()); |
885 |
} |
886 |
} |
887 |
|
888 |
//scan topology |
889 |
|
890 |
nExclude = excludedInteractions_.getSize(); |
891 |
nOneTwo = oneTwoInteractions_.getSize(); |
892 |
nOneThree = oneThreeInteractions_.getSize(); |
893 |
nOneFour = oneFourInteractions_.getSize(); |
894 |
|
895 |
int* excludeList = excludedInteractions_.getPairList(); |
896 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
897 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
898 |
int* oneFourList = oneFourInteractions_.getPairList(); |
899 |
|
900 |
topologyDone_ = true; |
901 |
} |
902 |
|
903 |
void SimInfo::addProperty(GenericData* genData) { |
904 |
properties_.addProperty(genData); |
905 |
} |
906 |
|
907 |
void SimInfo::removeProperty(const string& propName) { |
908 |
properties_.removeProperty(propName); |
909 |
} |
910 |
|
911 |
void SimInfo::clearProperties() { |
912 |
properties_.clearProperties(); |
913 |
} |
914 |
|
915 |
vector<string> SimInfo::getPropertyNames() { |
916 |
return properties_.getPropertyNames(); |
917 |
} |
918 |
|
919 |
vector<GenericData*> SimInfo::getProperties() { |
920 |
return properties_.getProperties(); |
921 |
} |
922 |
|
923 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
924 |
return properties_.getPropertyByName(propName); |
925 |
} |
926 |
|
927 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
928 |
if (sman_ == sman) { |
929 |
return; |
930 |
} |
931 |
delete sman_; |
932 |
sman_ = sman; |
933 |
|
934 |
Molecule* mol; |
935 |
RigidBody* rb; |
936 |
Atom* atom; |
937 |
CutoffGroup* cg; |
938 |
SimInfo::MoleculeIterator mi; |
939 |
Molecule::RigidBodyIterator rbIter; |
940 |
Molecule::AtomIterator atomIter; |
941 |
Molecule::CutoffGroupIterator cgIter; |
942 |
|
943 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
944 |
|
945 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
946 |
atom->setSnapshotManager(sman_); |
947 |
} |
948 |
|
949 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
950 |
rb->setSnapshotManager(sman_); |
951 |
} |
952 |
|
953 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
954 |
cg->setSnapshotManager(sman_); |
955 |
} |
956 |
} |
957 |
|
958 |
} |
959 |
|
960 |
Vector3d SimInfo::getComVel(){ |
961 |
SimInfo::MoleculeIterator i; |
962 |
Molecule* mol; |
963 |
|
964 |
Vector3d comVel(0.0); |
965 |
RealType totalMass = 0.0; |
966 |
|
967 |
|
968 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
969 |
RealType mass = mol->getMass(); |
970 |
totalMass += mass; |
971 |
comVel += mass * mol->getComVel(); |
972 |
} |
973 |
|
974 |
#ifdef IS_MPI |
975 |
RealType tmpMass = totalMass; |
976 |
Vector3d tmpComVel(comVel); |
977 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
978 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
979 |
#endif |
980 |
|
981 |
comVel /= totalMass; |
982 |
|
983 |
return comVel; |
984 |
} |
985 |
|
986 |
Vector3d SimInfo::getCom(){ |
987 |
SimInfo::MoleculeIterator i; |
988 |
Molecule* mol; |
989 |
|
990 |
Vector3d com(0.0); |
991 |
RealType totalMass = 0.0; |
992 |
|
993 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
994 |
RealType mass = mol->getMass(); |
995 |
totalMass += mass; |
996 |
com += mass * mol->getCom(); |
997 |
} |
998 |
|
999 |
#ifdef IS_MPI |
1000 |
RealType tmpMass = totalMass; |
1001 |
Vector3d tmpCom(com); |
1002 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1003 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1004 |
#endif |
1005 |
|
1006 |
com /= totalMass; |
1007 |
|
1008 |
return com; |
1009 |
|
1010 |
} |
1011 |
|
1012 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1013 |
|
1014 |
return o; |
1015 |
} |
1016 |
|
1017 |
|
1018 |
/* |
1019 |
Returns center of mass and center of mass velocity in one function call. |
1020 |
*/ |
1021 |
|
1022 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1023 |
SimInfo::MoleculeIterator i; |
1024 |
Molecule* mol; |
1025 |
|
1026 |
|
1027 |
RealType totalMass = 0.0; |
1028 |
|
1029 |
|
1030 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1031 |
RealType mass = mol->getMass(); |
1032 |
totalMass += mass; |
1033 |
com += mass * mol->getCom(); |
1034 |
comVel += mass * mol->getComVel(); |
1035 |
} |
1036 |
|
1037 |
#ifdef IS_MPI |
1038 |
RealType tmpMass = totalMass; |
1039 |
Vector3d tmpCom(com); |
1040 |
Vector3d tmpComVel(comVel); |
1041 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1042 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1043 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1044 |
#endif |
1045 |
|
1046 |
com /= totalMass; |
1047 |
comVel /= totalMass; |
1048 |
} |
1049 |
|
1050 |
/* |
1051 |
Return intertia tensor for entire system and angular momentum Vector. |
1052 |
|
1053 |
|
1054 |
[ Ixx -Ixy -Ixz ] |
1055 |
J =| -Iyx Iyy -Iyz | |
1056 |
[ -Izx -Iyz Izz ] |
1057 |
*/ |
1058 |
|
1059 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1060 |
|
1061 |
|
1062 |
RealType xx = 0.0; |
1063 |
RealType yy = 0.0; |
1064 |
RealType zz = 0.0; |
1065 |
RealType xy = 0.0; |
1066 |
RealType xz = 0.0; |
1067 |
RealType yz = 0.0; |
1068 |
Vector3d com(0.0); |
1069 |
Vector3d comVel(0.0); |
1070 |
|
1071 |
getComAll(com, comVel); |
1072 |
|
1073 |
SimInfo::MoleculeIterator i; |
1074 |
Molecule* mol; |
1075 |
|
1076 |
Vector3d thisq(0.0); |
1077 |
Vector3d thisv(0.0); |
1078 |
|
1079 |
RealType thisMass = 0.0; |
1080 |
|
1081 |
|
1082 |
|
1083 |
|
1084 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1085 |
|
1086 |
thisq = mol->getCom()-com; |
1087 |
thisv = mol->getComVel()-comVel; |
1088 |
thisMass = mol->getMass(); |
1089 |
// Compute moment of intertia coefficients. |
1090 |
xx += thisq[0]*thisq[0]*thisMass; |
1091 |
yy += thisq[1]*thisq[1]*thisMass; |
1092 |
zz += thisq[2]*thisq[2]*thisMass; |
1093 |
|
1094 |
// compute products of intertia |
1095 |
xy += thisq[0]*thisq[1]*thisMass; |
1096 |
xz += thisq[0]*thisq[2]*thisMass; |
1097 |
yz += thisq[1]*thisq[2]*thisMass; |
1098 |
|
1099 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1100 |
|
1101 |
} |
1102 |
|
1103 |
|
1104 |
inertiaTensor(0,0) = yy + zz; |
1105 |
inertiaTensor(0,1) = -xy; |
1106 |
inertiaTensor(0,2) = -xz; |
1107 |
inertiaTensor(1,0) = -xy; |
1108 |
inertiaTensor(1,1) = xx + zz; |
1109 |
inertiaTensor(1,2) = -yz; |
1110 |
inertiaTensor(2,0) = -xz; |
1111 |
inertiaTensor(2,1) = -yz; |
1112 |
inertiaTensor(2,2) = xx + yy; |
1113 |
|
1114 |
#ifdef IS_MPI |
1115 |
Mat3x3d tmpI(inertiaTensor); |
1116 |
Vector3d tmpAngMom; |
1117 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1118 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1119 |
#endif |
1120 |
|
1121 |
return; |
1122 |
} |
1123 |
|
1124 |
//Returns the angular momentum of the system |
1125 |
Vector3d SimInfo::getAngularMomentum(){ |
1126 |
|
1127 |
Vector3d com(0.0); |
1128 |
Vector3d comVel(0.0); |
1129 |
Vector3d angularMomentum(0.0); |
1130 |
|
1131 |
getComAll(com,comVel); |
1132 |
|
1133 |
SimInfo::MoleculeIterator i; |
1134 |
Molecule* mol; |
1135 |
|
1136 |
Vector3d thisr(0.0); |
1137 |
Vector3d thisp(0.0); |
1138 |
|
1139 |
RealType thisMass; |
1140 |
|
1141 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1142 |
thisMass = mol->getMass(); |
1143 |
thisr = mol->getCom()-com; |
1144 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1145 |
|
1146 |
angularMomentum += cross( thisr, thisp ); |
1147 |
|
1148 |
} |
1149 |
|
1150 |
#ifdef IS_MPI |
1151 |
Vector3d tmpAngMom; |
1152 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1153 |
#endif |
1154 |
|
1155 |
return angularMomentum; |
1156 |
} |
1157 |
|
1158 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1159 |
return IOIndexToIntegrableObject.at(index); |
1160 |
} |
1161 |
|
1162 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1163 |
IOIndexToIntegrableObject= v; |
1164 |
} |
1165 |
|
1166 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1167 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1168 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1169 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1170 |
*/ |
1171 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1172 |
Mat3x3d intTensor; |
1173 |
RealType det; |
1174 |
Vector3d dummyAngMom; |
1175 |
RealType sysconstants; |
1176 |
RealType geomCnst; |
1177 |
|
1178 |
geomCnst = 3.0/2.0; |
1179 |
/* Get the inertial tensor and angular momentum for free*/ |
1180 |
getInertiaTensor(intTensor,dummyAngMom); |
1181 |
|
1182 |
det = intTensor.determinant(); |
1183 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1184 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1185 |
return; |
1186 |
} |
1187 |
|
1188 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1189 |
Mat3x3d intTensor; |
1190 |
Vector3d dummyAngMom; |
1191 |
RealType sysconstants; |
1192 |
RealType geomCnst; |
1193 |
|
1194 |
geomCnst = 3.0/2.0; |
1195 |
/* Get the inertial tensor and angular momentum for free*/ |
1196 |
getInertiaTensor(intTensor,dummyAngMom); |
1197 |
|
1198 |
detI = intTensor.determinant(); |
1199 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1200 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1201 |
return; |
1202 |
} |
1203 |
/* |
1204 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1205 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1206 |
sdByGlobalIndex_ = v; |
1207 |
} |
1208 |
|
1209 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1210 |
//assert(index < nAtoms_ + nRigidBodies_); |
1211 |
return sdByGlobalIndex_.at(index); |
1212 |
} |
1213 |
*/ |
1214 |
int SimInfo::getNGlobalConstraints() { |
1215 |
int nGlobalConstraints; |
1216 |
#ifdef IS_MPI |
1217 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1218 |
MPI_COMM_WORLD); |
1219 |
#else |
1220 |
nGlobalConstraints = nConstraints_; |
1221 |
#endif |
1222 |
return nGlobalConstraints; |
1223 |
} |
1224 |
|
1225 |
}//end namespace OpenMD |
1226 |
|