ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1536
Committed: Wed Jan 5 14:49:05 2011 UTC (14 years, 3 months ago) by gezelter
File size: 40201 byte(s)
Log Message:
compiles, builds and runs, but is very slow

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 #include "UseTheForce/doForces_interface.h"
59 #include "utils/MemoryUtils.hpp"
60 #include "utils/simError.h"
61 #include "selection/SelectionManager.hpp"
62 #include "io/ForceFieldOptions.hpp"
63 #include "UseTheForce/ForceField.hpp"
64 #include "nonbonded/SwitchingFunction.hpp"
65
66 #ifdef IS_MPI
67 #include "UseTheForce/mpiComponentPlan.h"
68 #include "UseTheForce/DarkSide/simParallel_interface.h"
69 #endif
70
71 using namespace std;
72 namespace OpenMD {
73
74 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 forceField_(ff), simParams_(simParams),
76 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
80 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 calcBoxDipole_(false), useAtomicVirial_(true) {
83
84 MoleculeStamp* molStamp;
85 int nMolWithSameStamp;
86 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 int nGroups = 0; //total cutoff groups defined in meta-data file
88 CutoffGroupStamp* cgStamp;
89 RigidBodyStamp* rbStamp;
90 int nRigidAtoms = 0;
91
92 vector<Component*> components = simParams->getComponents();
93
94 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 molStamp = (*i)->getMoleculeStamp();
96 nMolWithSameStamp = (*i)->getNMol();
97
98 addMoleculeStamp(molStamp, nMolWithSameStamp);
99
100 //calculate atoms in molecules
101 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
102
103 //calculate atoms in cutoff groups
104 int nAtomsInGroups = 0;
105 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106
107 for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 cgStamp = molStamp->getCutoffGroupStamp(j);
109 nAtomsInGroups += cgStamp->getNMembers();
110 }
111
112 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113
114 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
115
116 //calculate atoms in rigid bodies
117 int nAtomsInRigidBodies = 0;
118 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119
120 for (int j=0; j < nRigidBodiesInStamp; j++) {
121 rbStamp = molStamp->getRigidBodyStamp(j);
122 nAtomsInRigidBodies += rbStamp->getNMembers();
123 }
124
125 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
127
128 }
129
130 //every free atom (atom does not belong to cutoff groups) is a cutoff
131 //group therefore the total number of cutoff groups in the system is
132 //equal to the total number of atoms minus number of atoms belong to
133 //cutoff group defined in meta-data file plus the number of cutoff
134 //groups defined in meta-data file
135 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136
137 //every free atom (atom does not belong to rigid bodies) is an
138 //integrable object therefore the total number of integrable objects
139 //in the system is equal to the total number of atoms minus number of
140 //atoms belong to rigid body defined in meta-data file plus the number
141 //of rigid bodies defined in meta-data file
142 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 + nGlobalRigidBodies_;
144
145 nGlobalMols_ = molStampIds_.size();
146 molToProcMap_.resize(nGlobalMols_);
147 }
148
149 SimInfo::~SimInfo() {
150 map<int, Molecule*>::iterator i;
151 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152 delete i->second;
153 }
154 molecules_.clear();
155
156 delete sman_;
157 delete simParams_;
158 delete forceField_;
159 }
160
161
162 bool SimInfo::addMolecule(Molecule* mol) {
163 MoleculeIterator i;
164
165 i = molecules_.find(mol->getGlobalIndex());
166 if (i == molecules_.end() ) {
167
168 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169
170 nAtoms_ += mol->getNAtoms();
171 nBonds_ += mol->getNBonds();
172 nBends_ += mol->getNBends();
173 nTorsions_ += mol->getNTorsions();
174 nInversions_ += mol->getNInversions();
175 nRigidBodies_ += mol->getNRigidBodies();
176 nIntegrableObjects_ += mol->getNIntegrableObjects();
177 nCutoffGroups_ += mol->getNCutoffGroups();
178 nConstraints_ += mol->getNConstraintPairs();
179
180 addInteractionPairs(mol);
181
182 return true;
183 } else {
184 return false;
185 }
186 }
187
188 bool SimInfo::removeMolecule(Molecule* mol) {
189 MoleculeIterator i;
190 i = molecules_.find(mol->getGlobalIndex());
191
192 if (i != molecules_.end() ) {
193
194 assert(mol == i->second);
195
196 nAtoms_ -= mol->getNAtoms();
197 nBonds_ -= mol->getNBonds();
198 nBends_ -= mol->getNBends();
199 nTorsions_ -= mol->getNTorsions();
200 nInversions_ -= mol->getNInversions();
201 nRigidBodies_ -= mol->getNRigidBodies();
202 nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 nCutoffGroups_ -= mol->getNCutoffGroups();
204 nConstraints_ -= mol->getNConstraintPairs();
205
206 removeInteractionPairs(mol);
207 molecules_.erase(mol->getGlobalIndex());
208
209 delete mol;
210
211 return true;
212 } else {
213 return false;
214 }
215 }
216
217
218 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219 i = molecules_.begin();
220 return i == molecules_.end() ? NULL : i->second;
221 }
222
223 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224 ++i;
225 return i == molecules_.end() ? NULL : i->second;
226 }
227
228
229 void SimInfo::calcNdf() {
230 int ndf_local;
231 MoleculeIterator i;
232 vector<StuntDouble*>::iterator j;
233 Molecule* mol;
234 StuntDouble* integrableObject;
235
236 ndf_local = 0;
237
238 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 integrableObject = mol->nextIntegrableObject(j)) {
241
242 ndf_local += 3;
243
244 if (integrableObject->isDirectional()) {
245 if (integrableObject->isLinear()) {
246 ndf_local += 2;
247 } else {
248 ndf_local += 3;
249 }
250 }
251
252 }
253 }
254
255 // n_constraints is local, so subtract them on each processor
256 ndf_local -= nConstraints_;
257
258 #ifdef IS_MPI
259 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
260 #else
261 ndf_ = ndf_local;
262 #endif
263
264 // nZconstraints_ is global, as are the 3 COM translations for the
265 // entire system:
266 ndf_ = ndf_ - 3 - nZconstraint_;
267
268 }
269
270 int SimInfo::getFdf() {
271 #ifdef IS_MPI
272 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 #else
274 fdf_ = fdf_local;
275 #endif
276 return fdf_;
277 }
278
279 void SimInfo::calcNdfRaw() {
280 int ndfRaw_local;
281
282 MoleculeIterator i;
283 vector<StuntDouble*>::iterator j;
284 Molecule* mol;
285 StuntDouble* integrableObject;
286
287 // Raw degrees of freedom that we have to set
288 ndfRaw_local = 0;
289
290 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 integrableObject = mol->nextIntegrableObject(j)) {
293
294 ndfRaw_local += 3;
295
296 if (integrableObject->isDirectional()) {
297 if (integrableObject->isLinear()) {
298 ndfRaw_local += 2;
299 } else {
300 ndfRaw_local += 3;
301 }
302 }
303
304 }
305 }
306
307 #ifdef IS_MPI
308 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309 #else
310 ndfRaw_ = ndfRaw_local;
311 #endif
312 }
313
314 void SimInfo::calcNdfTrans() {
315 int ndfTrans_local;
316
317 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318
319
320 #ifdef IS_MPI
321 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 #else
323 ndfTrans_ = ndfTrans_local;
324 #endif
325
326 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327
328 }
329
330 void SimInfo::addInteractionPairs(Molecule* mol) {
331 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 vector<Bond*>::iterator bondIter;
333 vector<Bend*>::iterator bendIter;
334 vector<Torsion*>::iterator torsionIter;
335 vector<Inversion*>::iterator inversionIter;
336 Bond* bond;
337 Bend* bend;
338 Torsion* torsion;
339 Inversion* inversion;
340 int a;
341 int b;
342 int c;
343 int d;
344
345 // atomGroups can be used to add special interaction maps between
346 // groups of atoms that are in two separate rigid bodies.
347 // However, most site-site interactions between two rigid bodies
348 // are probably not special, just the ones between the physically
349 // bonded atoms. Interactions *within* a single rigid body should
350 // always be excluded. These are done at the bottom of this
351 // function.
352
353 map<int, set<int> > atomGroups;
354 Molecule::RigidBodyIterator rbIter;
355 RigidBody* rb;
356 Molecule::IntegrableObjectIterator ii;
357 StuntDouble* integrableObject;
358
359 for (integrableObject = mol->beginIntegrableObject(ii);
360 integrableObject != NULL;
361 integrableObject = mol->nextIntegrableObject(ii)) {
362
363 if (integrableObject->isRigidBody()) {
364 rb = static_cast<RigidBody*>(integrableObject);
365 vector<Atom*> atoms = rb->getAtoms();
366 set<int> rigidAtoms;
367 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 }
370 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 }
373 } else {
374 set<int> oneAtomSet;
375 oneAtomSet.insert(integrableObject->getGlobalIndex());
376 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
377 }
378 }
379
380 for (bond= mol->beginBond(bondIter); bond != NULL;
381 bond = mol->nextBond(bondIter)) {
382
383 a = bond->getAtomA()->getGlobalIndex();
384 b = bond->getAtomB()->getGlobalIndex();
385
386 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 oneTwoInteractions_.addPair(a, b);
388 } else {
389 excludedInteractions_.addPair(a, b);
390 }
391 }
392
393 for (bend= mol->beginBend(bendIter); bend != NULL;
394 bend = mol->nextBend(bendIter)) {
395
396 a = bend->getAtomA()->getGlobalIndex();
397 b = bend->getAtomB()->getGlobalIndex();
398 c = bend->getAtomC()->getGlobalIndex();
399
400 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 oneTwoInteractions_.addPair(a, b);
402 oneTwoInteractions_.addPair(b, c);
403 } else {
404 excludedInteractions_.addPair(a, b);
405 excludedInteractions_.addPair(b, c);
406 }
407
408 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 oneThreeInteractions_.addPair(a, c);
410 } else {
411 excludedInteractions_.addPair(a, c);
412 }
413 }
414
415 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 torsion = mol->nextTorsion(torsionIter)) {
417
418 a = torsion->getAtomA()->getGlobalIndex();
419 b = torsion->getAtomB()->getGlobalIndex();
420 c = torsion->getAtomC()->getGlobalIndex();
421 d = torsion->getAtomD()->getGlobalIndex();
422
423 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 oneTwoInteractions_.addPair(a, b);
425 oneTwoInteractions_.addPair(b, c);
426 oneTwoInteractions_.addPair(c, d);
427 } else {
428 excludedInteractions_.addPair(a, b);
429 excludedInteractions_.addPair(b, c);
430 excludedInteractions_.addPair(c, d);
431 }
432
433 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 oneThreeInteractions_.addPair(a, c);
435 oneThreeInteractions_.addPair(b, d);
436 } else {
437 excludedInteractions_.addPair(a, c);
438 excludedInteractions_.addPair(b, d);
439 }
440
441 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 oneFourInteractions_.addPair(a, d);
443 } else {
444 excludedInteractions_.addPair(a, d);
445 }
446 }
447
448 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 inversion = mol->nextInversion(inversionIter)) {
450
451 a = inversion->getAtomA()->getGlobalIndex();
452 b = inversion->getAtomB()->getGlobalIndex();
453 c = inversion->getAtomC()->getGlobalIndex();
454 d = inversion->getAtomD()->getGlobalIndex();
455
456 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 oneTwoInteractions_.addPair(a, b);
458 oneTwoInteractions_.addPair(a, c);
459 oneTwoInteractions_.addPair(a, d);
460 } else {
461 excludedInteractions_.addPair(a, b);
462 excludedInteractions_.addPair(a, c);
463 excludedInteractions_.addPair(a, d);
464 }
465
466 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 oneThreeInteractions_.addPair(b, c);
468 oneThreeInteractions_.addPair(b, d);
469 oneThreeInteractions_.addPair(c, d);
470 } else {
471 excludedInteractions_.addPair(b, c);
472 excludedInteractions_.addPair(b, d);
473 excludedInteractions_.addPair(c, d);
474 }
475 }
476
477 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 rb = mol->nextRigidBody(rbIter)) {
479 vector<Atom*> atoms = rb->getAtoms();
480 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482 a = atoms[i]->getGlobalIndex();
483 b = atoms[j]->getGlobalIndex();
484 excludedInteractions_.addPair(a, b);
485 }
486 }
487 }
488
489 }
490
491 void SimInfo::removeInteractionPairs(Molecule* mol) {
492 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 vector<Bond*>::iterator bondIter;
494 vector<Bend*>::iterator bendIter;
495 vector<Torsion*>::iterator torsionIter;
496 vector<Inversion*>::iterator inversionIter;
497 Bond* bond;
498 Bend* bend;
499 Torsion* torsion;
500 Inversion* inversion;
501 int a;
502 int b;
503 int c;
504 int d;
505
506 map<int, set<int> > atomGroups;
507 Molecule::RigidBodyIterator rbIter;
508 RigidBody* rb;
509 Molecule::IntegrableObjectIterator ii;
510 StuntDouble* integrableObject;
511
512 for (integrableObject = mol->beginIntegrableObject(ii);
513 integrableObject != NULL;
514 integrableObject = mol->nextIntegrableObject(ii)) {
515
516 if (integrableObject->isRigidBody()) {
517 rb = static_cast<RigidBody*>(integrableObject);
518 vector<Atom*> atoms = rb->getAtoms();
519 set<int> rigidAtoms;
520 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 }
523 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 }
526 } else {
527 set<int> oneAtomSet;
528 oneAtomSet.insert(integrableObject->getGlobalIndex());
529 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
530 }
531 }
532
533 for (bond= mol->beginBond(bondIter); bond != NULL;
534 bond = mol->nextBond(bondIter)) {
535
536 a = bond->getAtomA()->getGlobalIndex();
537 b = bond->getAtomB()->getGlobalIndex();
538
539 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 oneTwoInteractions_.removePair(a, b);
541 } else {
542 excludedInteractions_.removePair(a, b);
543 }
544 }
545
546 for (bend= mol->beginBend(bendIter); bend != NULL;
547 bend = mol->nextBend(bendIter)) {
548
549 a = bend->getAtomA()->getGlobalIndex();
550 b = bend->getAtomB()->getGlobalIndex();
551 c = bend->getAtomC()->getGlobalIndex();
552
553 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 oneTwoInteractions_.removePair(a, b);
555 oneTwoInteractions_.removePair(b, c);
556 } else {
557 excludedInteractions_.removePair(a, b);
558 excludedInteractions_.removePair(b, c);
559 }
560
561 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 oneThreeInteractions_.removePair(a, c);
563 } else {
564 excludedInteractions_.removePair(a, c);
565 }
566 }
567
568 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 torsion = mol->nextTorsion(torsionIter)) {
570
571 a = torsion->getAtomA()->getGlobalIndex();
572 b = torsion->getAtomB()->getGlobalIndex();
573 c = torsion->getAtomC()->getGlobalIndex();
574 d = torsion->getAtomD()->getGlobalIndex();
575
576 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 oneTwoInteractions_.removePair(a, b);
578 oneTwoInteractions_.removePair(b, c);
579 oneTwoInteractions_.removePair(c, d);
580 } else {
581 excludedInteractions_.removePair(a, b);
582 excludedInteractions_.removePair(b, c);
583 excludedInteractions_.removePair(c, d);
584 }
585
586 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 oneThreeInteractions_.removePair(a, c);
588 oneThreeInteractions_.removePair(b, d);
589 } else {
590 excludedInteractions_.removePair(a, c);
591 excludedInteractions_.removePair(b, d);
592 }
593
594 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 oneFourInteractions_.removePair(a, d);
596 } else {
597 excludedInteractions_.removePair(a, d);
598 }
599 }
600
601 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 inversion = mol->nextInversion(inversionIter)) {
603
604 a = inversion->getAtomA()->getGlobalIndex();
605 b = inversion->getAtomB()->getGlobalIndex();
606 c = inversion->getAtomC()->getGlobalIndex();
607 d = inversion->getAtomD()->getGlobalIndex();
608
609 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 oneTwoInteractions_.removePair(a, b);
611 oneTwoInteractions_.removePair(a, c);
612 oneTwoInteractions_.removePair(a, d);
613 } else {
614 excludedInteractions_.removePair(a, b);
615 excludedInteractions_.removePair(a, c);
616 excludedInteractions_.removePair(a, d);
617 }
618
619 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 oneThreeInteractions_.removePair(b, c);
621 oneThreeInteractions_.removePair(b, d);
622 oneThreeInteractions_.removePair(c, d);
623 } else {
624 excludedInteractions_.removePair(b, c);
625 excludedInteractions_.removePair(b, d);
626 excludedInteractions_.removePair(c, d);
627 }
628 }
629
630 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 rb = mol->nextRigidBody(rbIter)) {
632 vector<Atom*> atoms = rb->getAtoms();
633 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635 a = atoms[i]->getGlobalIndex();
636 b = atoms[j]->getGlobalIndex();
637 excludedInteractions_.removePair(a, b);
638 }
639 }
640 }
641
642 }
643
644
645 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646 int curStampId;
647
648 //index from 0
649 curStampId = moleculeStamps_.size();
650
651 moleculeStamps_.push_back(molStamp);
652 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653 }
654
655
656 /**
657 * update
658 *
659 * Performs the global checks and variable settings after the
660 * objects have been created.
661 *
662 */
663 void SimInfo::update() {
664 setupSimVariables();
665 calcNdf();
666 calcNdfRaw();
667 calcNdfTrans();
668 }
669
670 /**
671 * getSimulatedAtomTypes
672 *
673 * Returns an STL set of AtomType* that are actually present in this
674 * simulation. Must query all processors to assemble this information.
675 *
676 */
677 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678 SimInfo::MoleculeIterator mi;
679 Molecule* mol;
680 Molecule::AtomIterator ai;
681 Atom* atom;
682 set<AtomType*> atomTypes;
683
684 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
685 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686 atomTypes.insert(atom->getAtomType());
687 }
688 }
689
690 #ifdef IS_MPI
691
692 // loop over the found atom types on this processor, and add their
693 // numerical idents to a vector:
694
695 vector<int> foundTypes;
696 set<AtomType*>::iterator i;
697 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 foundTypes.push_back( (*i)->getIdent() );
699
700 // count_local holds the number of found types on this processor
701 int count_local = foundTypes.size();
702
703 // count holds the total number of found types on all processors
704 // (some will be redundant with the ones found locally):
705 int count;
706 MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707
708 // create a vector to hold the globally found types, and resize it:
709 vector<int> ftGlobal;
710 ftGlobal.resize(count);
711 vector<int> counts;
712
713 int nproc = MPI::COMM_WORLD.Get_size();
714 counts.resize(nproc);
715 vector<int> disps;
716 disps.resize(nproc);
717
718 // now spray out the foundTypes to all the other processors:
719
720 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722
723 // foundIdents is a stl set, so inserting an already found ident
724 // will have no effect.
725 set<int> foundIdents;
726 vector<int>::iterator j;
727 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 foundIdents.insert((*j));
729
730 // now iterate over the foundIdents and get the actual atom types
731 // that correspond to these:
732 set<int>::iterator it;
733 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 atomTypes.insert( forceField_->getAtomType((*it)) );
735
736 #endif
737
738 return atomTypes;
739 }
740
741 void SimInfo::setupSimVariables() {
742 useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 calcBoxDipole_ = false;
745 if ( simParams_->haveAccumulateBoxDipole() )
746 if ( simParams_->getAccumulateBoxDipole() ) {
747 calcBoxDipole_ = true;
748 }
749
750 set<AtomType*>::iterator i;
751 set<AtomType*> atomTypes;
752 atomTypes = getSimulatedAtomTypes();
753 int usesElectrostatic = 0;
754 int usesMetallic = 0;
755 int usesDirectional = 0;
756 //loop over all of the atom types
757 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 usesElectrostatic |= (*i)->isElectrostatic();
759 usesMetallic |= (*i)->isMetal();
760 usesDirectional |= (*i)->isDirectional();
761 }
762
763 #ifdef IS_MPI
764 int temp;
765 temp = usesDirectional;
766 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767
768 temp = usesMetallic;
769 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770
771 temp = usesElectrostatic;
772 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773 #endif
774 fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;
775 fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780 }
781
782 void SimInfo::setupFortran() {
783 int isError;
784 int nExclude, nOneTwo, nOneThree, nOneFour;
785 vector<int> fortranGlobalGroupMembership;
786
787 isError = 0;
788
789 //globalGroupMembership_ is filled by SimCreator
790 for (int i = 0; i < nGlobalAtoms_; i++) {
791 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 }
793
794 //calculate mass ratio of cutoff group
795 vector<RealType> mfact;
796 SimInfo::MoleculeIterator mi;
797 Molecule* mol;
798 Molecule::CutoffGroupIterator ci;
799 CutoffGroup* cg;
800 Molecule::AtomIterator ai;
801 Atom* atom;
802 RealType totalMass;
803
804 //to avoid memory reallocation, reserve enough space for mfact
805 mfact.reserve(getNCutoffGroups());
806
807 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
808 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809
810 totalMass = cg->getMass();
811 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 // Check for massless groups - set mfact to 1 if true
813 if (totalMass != 0)
814 mfact.push_back(atom->getMass()/totalMass);
815 else
816 mfact.push_back( 1.0 );
817 }
818 }
819 }
820
821 //fill ident array of local atoms (it is actually ident of
822 //AtomType, it is so confusing !!!)
823 vector<int> identArray;
824
825 //to avoid memory reallocation, reserve enough space identArray
826 identArray.reserve(getNAtoms());
827
828 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
829 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 identArray.push_back(atom->getIdent());
831 }
832 }
833
834 //fill molMembershipArray
835 //molMembershipArray is filled by SimCreator
836 vector<int> molMembershipArray(nGlobalAtoms_);
837 for (int i = 0; i < nGlobalAtoms_; i++) {
838 molMembershipArray[i] = globalMolMembership_[i] + 1;
839 }
840
841 //setup fortran simulation
842
843 nExclude = excludedInteractions_.getSize();
844 nOneTwo = oneTwoInteractions_.getSize();
845 nOneThree = oneThreeInteractions_.getSize();
846 nOneFour = oneFourInteractions_.getSize();
847
848 int* excludeList = excludedInteractions_.getPairList();
849 int* oneTwoList = oneTwoInteractions_.getPairList();
850 int* oneThreeList = oneThreeInteractions_.getPairList();
851 int* oneFourList = oneFourInteractions_.getPairList();
852
853 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
854 &nExclude, excludeList,
855 &nOneTwo, oneTwoList,
856 &nOneThree, oneThreeList,
857 &nOneFour, oneFourList,
858 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
859 &fortranGlobalGroupMembership[0], &isError);
860
861 if( isError ){
862
863 sprintf( painCave.errMsg,
864 "There was an error setting the simulation information in fortran.\n" );
865 painCave.isFatal = 1;
866 painCave.severity = OPENMD_ERROR;
867 simError();
868 }
869
870
871 sprintf( checkPointMsg,
872 "succesfully sent the simulation information to fortran.\n");
873
874 errorCheckPoint();
875
876 // Setup number of neighbors in neighbor list if present
877 if (simParams_->haveNeighborListNeighbors()) {
878 int nlistNeighbors = simParams_->getNeighborListNeighbors();
879 setNeighbors(&nlistNeighbors);
880 }
881
882 #ifdef IS_MPI
883 //SimInfo is responsible for creating localToGlobalAtomIndex and
884 //localToGlobalGroupIndex
885 vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 vector<int> localToGlobalCutoffGroupIndex;
887 mpiSimData parallelData;
888
889 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
890
891 //local index(index in DataStorge) of atom is important
892 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894 }
895
896 //local index of cutoff group is trivial, it only depends on the order of travesing
897 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899 }
900
901 }
902
903 //fill up mpiSimData struct
904 parallelData.nMolGlobal = getNGlobalMolecules();
905 parallelData.nMolLocal = getNMolecules();
906 parallelData.nAtomsGlobal = getNGlobalAtoms();
907 parallelData.nAtomsLocal = getNAtoms();
908 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
909 parallelData.nGroupsLocal = getNCutoffGroups();
910 parallelData.myNode = worldRank;
911 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
912
913 //pass mpiSimData struct and index arrays to fortran
914 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
915 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
916 &localToGlobalCutoffGroupIndex[0], &isError);
917
918 if (isError) {
919 sprintf(painCave.errMsg,
920 "mpiRefresh errror: fortran didn't like something we gave it.\n");
921 painCave.isFatal = 1;
922 simError();
923 }
924
925 sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 errorCheckPoint();
927 #endif
928
929 initFortranFF(&isError);
930 if (isError) {
931 sprintf(painCave.errMsg,
932 "initFortranFF errror: fortran didn't like something we gave it.\n");
933 painCave.isFatal = 1;
934 simError();
935 }
936 fortranInitialized_ = true;
937 }
938
939 void SimInfo::addProperty(GenericData* genData) {
940 properties_.addProperty(genData);
941 }
942
943 void SimInfo::removeProperty(const string& propName) {
944 properties_.removeProperty(propName);
945 }
946
947 void SimInfo::clearProperties() {
948 properties_.clearProperties();
949 }
950
951 vector<string> SimInfo::getPropertyNames() {
952 return properties_.getPropertyNames();
953 }
954
955 vector<GenericData*> SimInfo::getProperties() {
956 return properties_.getProperties();
957 }
958
959 GenericData* SimInfo::getPropertyByName(const string& propName) {
960 return properties_.getPropertyByName(propName);
961 }
962
963 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
964 if (sman_ == sman) {
965 return;
966 }
967 delete sman_;
968 sman_ = sman;
969
970 Molecule* mol;
971 RigidBody* rb;
972 Atom* atom;
973 SimInfo::MoleculeIterator mi;
974 Molecule::RigidBodyIterator rbIter;
975 Molecule::AtomIterator atomIter;;
976
977 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
978
979 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 atom->setSnapshotManager(sman_);
981 }
982
983 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
984 rb->setSnapshotManager(sman_);
985 }
986 }
987
988 }
989
990 Vector3d SimInfo::getComVel(){
991 SimInfo::MoleculeIterator i;
992 Molecule* mol;
993
994 Vector3d comVel(0.0);
995 RealType totalMass = 0.0;
996
997
998 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 RealType mass = mol->getMass();
1000 totalMass += mass;
1001 comVel += mass * mol->getComVel();
1002 }
1003
1004 #ifdef IS_MPI
1005 RealType tmpMass = totalMass;
1006 Vector3d tmpComVel(comVel);
1007 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009 #endif
1010
1011 comVel /= totalMass;
1012
1013 return comVel;
1014 }
1015
1016 Vector3d SimInfo::getCom(){
1017 SimInfo::MoleculeIterator i;
1018 Molecule* mol;
1019
1020 Vector3d com(0.0);
1021 RealType totalMass = 0.0;
1022
1023 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 RealType mass = mol->getMass();
1025 totalMass += mass;
1026 com += mass * mol->getCom();
1027 }
1028
1029 #ifdef IS_MPI
1030 RealType tmpMass = totalMass;
1031 Vector3d tmpCom(com);
1032 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034 #endif
1035
1036 com /= totalMass;
1037
1038 return com;
1039
1040 }
1041
1042 ostream& operator <<(ostream& o, SimInfo& info) {
1043
1044 return o;
1045 }
1046
1047
1048 /*
1049 Returns center of mass and center of mass velocity in one function call.
1050 */
1051
1052 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1053 SimInfo::MoleculeIterator i;
1054 Molecule* mol;
1055
1056
1057 RealType totalMass = 0.0;
1058
1059
1060 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 RealType mass = mol->getMass();
1062 totalMass += mass;
1063 com += mass * mol->getCom();
1064 comVel += mass * mol->getComVel();
1065 }
1066
1067 #ifdef IS_MPI
1068 RealType tmpMass = totalMass;
1069 Vector3d tmpCom(com);
1070 Vector3d tmpComVel(comVel);
1071 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 #endif
1075
1076 com /= totalMass;
1077 comVel /= totalMass;
1078 }
1079
1080 /*
1081 Return intertia tensor for entire system and angular momentum Vector.
1082
1083
1084 [ Ixx -Ixy -Ixz ]
1085 J =| -Iyx Iyy -Iyz |
1086 [ -Izx -Iyz Izz ]
1087 */
1088
1089 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090
1091
1092 RealType xx = 0.0;
1093 RealType yy = 0.0;
1094 RealType zz = 0.0;
1095 RealType xy = 0.0;
1096 RealType xz = 0.0;
1097 RealType yz = 0.0;
1098 Vector3d com(0.0);
1099 Vector3d comVel(0.0);
1100
1101 getComAll(com, comVel);
1102
1103 SimInfo::MoleculeIterator i;
1104 Molecule* mol;
1105
1106 Vector3d thisq(0.0);
1107 Vector3d thisv(0.0);
1108
1109 RealType thisMass = 0.0;
1110
1111
1112
1113
1114 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115
1116 thisq = mol->getCom()-com;
1117 thisv = mol->getComVel()-comVel;
1118 thisMass = mol->getMass();
1119 // Compute moment of intertia coefficients.
1120 xx += thisq[0]*thisq[0]*thisMass;
1121 yy += thisq[1]*thisq[1]*thisMass;
1122 zz += thisq[2]*thisq[2]*thisMass;
1123
1124 // compute products of intertia
1125 xy += thisq[0]*thisq[1]*thisMass;
1126 xz += thisq[0]*thisq[2]*thisMass;
1127 yz += thisq[1]*thisq[2]*thisMass;
1128
1129 angularMomentum += cross( thisq, thisv ) * thisMass;
1130
1131 }
1132
1133
1134 inertiaTensor(0,0) = yy + zz;
1135 inertiaTensor(0,1) = -xy;
1136 inertiaTensor(0,2) = -xz;
1137 inertiaTensor(1,0) = -xy;
1138 inertiaTensor(1,1) = xx + zz;
1139 inertiaTensor(1,2) = -yz;
1140 inertiaTensor(2,0) = -xz;
1141 inertiaTensor(2,1) = -yz;
1142 inertiaTensor(2,2) = xx + yy;
1143
1144 #ifdef IS_MPI
1145 Mat3x3d tmpI(inertiaTensor);
1146 Vector3d tmpAngMom;
1147 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 #endif
1150
1151 return;
1152 }
1153
1154 //Returns the angular momentum of the system
1155 Vector3d SimInfo::getAngularMomentum(){
1156
1157 Vector3d com(0.0);
1158 Vector3d comVel(0.0);
1159 Vector3d angularMomentum(0.0);
1160
1161 getComAll(com,comVel);
1162
1163 SimInfo::MoleculeIterator i;
1164 Molecule* mol;
1165
1166 Vector3d thisr(0.0);
1167 Vector3d thisp(0.0);
1168
1169 RealType thisMass;
1170
1171 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1172 thisMass = mol->getMass();
1173 thisr = mol->getCom()-com;
1174 thisp = (mol->getComVel()-comVel)*thisMass;
1175
1176 angularMomentum += cross( thisr, thisp );
1177
1178 }
1179
1180 #ifdef IS_MPI
1181 Vector3d tmpAngMom;
1182 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183 #endif
1184
1185 return angularMomentum;
1186 }
1187
1188 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 return IOIndexToIntegrableObject.at(index);
1190 }
1191
1192 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 IOIndexToIntegrableObject= v;
1194 }
1195
1196 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 */
1201 void SimInfo::getGyrationalVolume(RealType &volume){
1202 Mat3x3d intTensor;
1203 RealType det;
1204 Vector3d dummyAngMom;
1205 RealType sysconstants;
1206 RealType geomCnst;
1207
1208 geomCnst = 3.0/2.0;
1209 /* Get the inertial tensor and angular momentum for free*/
1210 getInertiaTensor(intTensor,dummyAngMom);
1211
1212 det = intTensor.determinant();
1213 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1215 return;
1216 }
1217
1218 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 Mat3x3d intTensor;
1220 Vector3d dummyAngMom;
1221 RealType sysconstants;
1222 RealType geomCnst;
1223
1224 geomCnst = 3.0/2.0;
1225 /* Get the inertial tensor and angular momentum for free*/
1226 getInertiaTensor(intTensor,dummyAngMom);
1227
1228 detI = intTensor.determinant();
1229 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1231 return;
1232 }
1233 /*
1234 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 assert( v.size() == nAtoms_ + nRigidBodies_);
1236 sdByGlobalIndex_ = v;
1237 }
1238
1239 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 //assert(index < nAtoms_ + nRigidBodies_);
1241 return sdByGlobalIndex_.at(index);
1242 }
1243 */
1244 int SimInfo::getNGlobalConstraints() {
1245 int nGlobalConstraints;
1246 #ifdef IS_MPI
1247 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 MPI_COMM_WORLD);
1249 #else
1250 nGlobalConstraints = nConstraints_;
1251 #endif
1252 return nGlobalConstraints;
1253 }
1254
1255 }//end namespace OpenMD
1256

Properties

Name Value
svn:keywords Author Id Revision Date