ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC vs.
Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 58 | Line 59
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
64 + #ifdef IS_MPI
65 + #include <mpi.h>
66 + #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 68 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), topologyDone_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 84 | Line 88 | namespace OpenMD {
88      
89      vector<Component*> components = simParams->getComponents();
90      
91 <    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93        molStamp = (*i)->getMoleculeStamp();
94        nMolWithSameStamp = (*i)->getNMol();
95        
# Line 125 | Line 130 | namespace OpenMD {
130      //equal to the total number of atoms minus number of atoms belong to
131      //cutoff group defined in meta-data file plus the number of cutoff
132      //groups defined in meta-data file
128    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130    std::cerr << "nG = " << nGroups << "\n";
133  
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133
134    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135      
136      //every free atom (atom does not belong to rigid bodies) is an
137      //integrable object therefore the total number of integrable objects
# Line 226 | Line 226 | namespace OpenMD {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231      vector<StuntDouble*>::iterator j;
232 +    vector<Atom*>::iterator k;
233 +
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
238      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
250            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 268 | Line 284 | namespace OpenMD {
284  
285    int SimInfo::getFdf() {
286   #ifdef IS_MPI
287 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288   #else
289      fdf_ = fdf_local;
290   #endif
291      return fdf_;
292    }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300      
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317      vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 304 | Line 340 | namespace OpenMD {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 317 | Line 353 | namespace OpenMD {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 353 | Line 390 | namespace OpenMD {
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii);
396 <         integrableObject != NULL;
360 <         integrableObject = mol->nextIntegrableObject(ii)) {
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397        
398 <      if (integrableObject->isRigidBody()) {
399 <        rb = static_cast<RigidBody*>(integrableObject);
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400          vector<Atom*> atoms = rb->getAtoms();
401          set<int> rigidAtoms;
402          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 371 | Line 407 | namespace OpenMD {
407          }      
408        } else {
409          set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414            
# Line 506 | Line 542 | namespace OpenMD {
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii);
548 <         integrableObject != NULL;
513 <         integrableObject = mol->nextIntegrableObject(ii)) {
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549        
550 <      if (integrableObject->isRigidBody()) {
551 <        rb = static_cast<RigidBody*>(integrableObject);
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552          vector<Atom*> atoms = rb->getAtoms();
553          set<int> rigidAtoms;
554          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 524 | Line 559 | namespace OpenMD {
559          }      
560        } else {
561          set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
# Line 680 | Line 715 | namespace OpenMD {
715      Atom* atom;
716      set<AtomType*> atomTypes;
717      
718 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
719 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
718 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722        }      
723      }    
724 <
724 >    
725   #ifdef IS_MPI
726  
727      // loop over the found atom types on this processor, and add their
728      // numerical idents to a vector:
729 <
729 >    
730      vector<int> foundTypes;
731      set<AtomType*>::iterator i;
732      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 699 | Line 735 | namespace OpenMD {
735      // count_local holds the number of found types on this processor
736      int count_local = foundTypes.size();
737  
738 <    // count holds the total number of found types on all processors
703 <    // (some will be redundant with the ones found locally):
704 <    int count;
705 <    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 <    // create a vector to hold the globally found types, and resize it:
741 <    vector<int> ftGlobal;
742 <    ftGlobal.resize(count);
743 <    vector<int> counts;
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744  
745 <    int nproc = MPI::COMM_WORLD.Get_size();
746 <    counts.resize(nproc);
747 <    vector<int> disps;
748 <    disps.resize(nproc);
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755 >    }
756  
757 <    // now spray out the foundTypes to all the other processors:
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759      
760 +    // now spray out the foundTypes to all the other processors:    
761      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 +    vector<int>::iterator j;
766 +
767      // foundIdents is a stl set, so inserting an already found ident
768      // will have no effect.
769      set<int> foundIdents;
770 <    vector<int>::iterator j;
770 >
771      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772        foundIdents.insert((*j));
773      
774      // now iterate over the foundIdents and get the actual atom types
775      // that correspond to these:
776      set<int>::iterator it;
777 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778        atomTypes.insert( forceField_->getAtomType((*it)) );
779  
780   #endif
781 <    
781 >
782      return atomTypes;        
783    }
784  
785    void SimInfo::setupSimVariables() {
786      useAtomicVirial_ = simParams_->getUseAtomicVirial();
787 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
787 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
788 >    // parameter is true
789      calcBoxDipole_ = false;
790      if ( simParams_->haveAccumulateBoxDipole() )
791        if ( simParams_->getAccumulateBoxDipole() ) {
792          calcBoxDipole_ = true;      
793        }
794 <
794 >    
795      set<AtomType*>::iterator i;
796      set<AtomType*> atomTypes;
797      atomTypes = getSimulatedAtomTypes();    
798 <    int usesElectrostatic = 0;
799 <    int usesMetallic = 0;
800 <    int usesDirectional = 0;
798 >    bool usesElectrostatic = false;
799 >    bool usesMetallic = false;
800 >    bool usesDirectional = false;
801 >    bool usesFluctuatingCharges =  false;
802      //loop over all of the atom types
803      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804        usesElectrostatic |= (*i)->isElectrostatic();
805        usesMetallic |= (*i)->isMetal();
806        usesDirectional |= (*i)->isDirectional();
807 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
808      }
809  
810 < #ifdef IS_MPI    
811 <    int temp;
810 > #ifdef IS_MPI
811 >    bool temp;
812      temp = usesDirectional;
813 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >        
816      temp = usesMetallic;
817 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819 >    
820      temp = usesElectrostatic;
821 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 >
824 >    temp = usesFluctuatingCharges;
825 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
826 >                              MPI::LOR);
827 > #else
828 >
829 >    usesDirectionalAtoms_ = usesDirectional;
830 >    usesMetallicAtoms_ = usesMetallic;
831 >    usesElectrostaticAtoms_ = usesElectrostatic;
832 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
833 >
834   #endif
835 +    
836 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
837 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
838 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
839    }
840  
841  
# Line 813 | Line 879 | namespace OpenMD {
879  
880  
881    void SimInfo::prepareTopology() {
816    int nExclude, nOneTwo, nOneThree, nOneFour;
882  
883      //calculate mass ratio of cutoff group
884      SimInfo::MoleculeIterator mi;
# Line 824 | Line 889 | namespace OpenMD {
889      Atom* atom;
890      RealType totalMass;
891  
892 <    //to avoid memory reallocation, reserve enough space for massFactors_
892 >    /**
893 >     * The mass factor is the relative mass of an atom to the total
894 >     * mass of the cutoff group it belongs to.  By default, all atoms
895 >     * are their own cutoff groups, and therefore have mass factors of
896 >     * 1.  We need some special handling for massless atoms, which
897 >     * will be treated as carrying the entire mass of the cutoff
898 >     * group.
899 >     */
900      massFactors_.clear();
901 <    massFactors_.reserve(getNCutoffGroups());
901 >    massFactors_.resize(getNAtoms(), 1.0);
902      
903      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
904        for (cg = mol->beginCutoffGroup(ci); cg != NULL;
# Line 835 | Line 907 | namespace OpenMD {
907          totalMass = cg->getMass();
908          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
909            // Check for massless groups - set mfact to 1 if true
910 <          if (totalMass != 0)
911 <            massFactors_.push_back(atom->getMass()/totalMass);
910 >          if (totalMass != 0)
911 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
912            else
913 <            massFactors_.push_back( 1.0 );
913 >            massFactors_[atom->getLocalIndex()] = 1.0;
914          }
915        }      
916      }
# Line 855 | Line 927 | namespace OpenMD {
927      
928      //scan topology
929  
858    nExclude = excludedInteractions_.getSize();
859    nOneTwo = oneTwoInteractions_.getSize();
860    nOneThree = oneThreeInteractions_.getSize();
861    nOneFour = oneFourInteractions_.getSize();
862
930      int* excludeList = excludedInteractions_.getPairList();
931      int* oneTwoList = oneTwoInteractions_.getPairList();
932      int* oneThreeList = oneThreeInteractions_.getPairList();
933      int* oneFourList = oneFourInteractions_.getPairList();
934  
868    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
869    //               &nExclude, excludeList,
870    //               &nOneTwo, oneTwoList,
871    //               &nOneThree, oneThreeList,
872    //               &nOneFour, oneFourList,
873    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874    //               &fortranGlobalGroupMembership[0], &isError);
875    
935      topologyDone_ = true;
936    }
937  
# Line 918 | Line 977 | namespace OpenMD {
977  
978      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
979          
980 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
981 >           atom = mol->nextAtom(atomIter)) {
982          atom->setSnapshotManager(sman_);
983        }
984          
985 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
985 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
986 >           rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989  
990 <      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
991 >           cg = mol->nextCutoffGroup(cgIter)) {
992          cg->setSnapshotManager(sman_);
993        }
994      }    
995      
996    }
997  
936  Vector3d SimInfo::getComVel(){
937    SimInfo::MoleculeIterator i;
938    Molecule* mol;
998  
940    Vector3d comVel(0.0);
941    RealType totalMass = 0.0;
942    
943
944    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
945      RealType mass = mol->getMass();
946      totalMass += mass;
947      comVel += mass * mol->getComVel();
948    }  
949
950 #ifdef IS_MPI
951    RealType tmpMass = totalMass;
952    Vector3d tmpComVel(comVel);    
953    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
954    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
955 #endif
956
957    comVel /= totalMass;
958
959    return comVel;
960  }
961
962  Vector3d SimInfo::getCom(){
963    SimInfo::MoleculeIterator i;
964    Molecule* mol;
965
966    Vector3d com(0.0);
967    RealType totalMass = 0.0;
968    
969    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
970      RealType mass = mol->getMass();
971      totalMass += mass;
972      com += mass * mol->getCom();
973    }  
974
975 #ifdef IS_MPI
976    RealType tmpMass = totalMass;
977    Vector3d tmpCom(com);    
978    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
979    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
980 #endif
981
982    com /= totalMass;
983
984    return com;
985
986  }        
987
999    ostream& operator <<(ostream& o, SimInfo& info) {
1000  
1001      return o;
1002    }
1003    
1004 <  
994 <   /*
995 <   Returns center of mass and center of mass velocity in one function call.
996 <   */
997 <  
998 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
999 <      SimInfo::MoleculeIterator i;
1000 <      Molecule* mol;
1001 <      
1002 <    
1003 <      RealType totalMass = 0.0;
1004 <    
1005 <
1006 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 <         RealType mass = mol->getMass();
1008 <         totalMass += mass;
1009 <         com += mass * mol->getCom();
1010 <         comVel += mass * mol->getComVel();          
1011 <      }  
1012 <      
1013 < #ifdef IS_MPI
1014 <      RealType tmpMass = totalMass;
1015 <      Vector3d tmpCom(com);  
1016 <      Vector3d tmpComVel(comVel);
1017 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1019 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020 < #endif
1021 <      
1022 <      com /= totalMass;
1023 <      comVel /= totalMass;
1024 <   }        
1025 <  
1026 <   /*
1027 <   Return intertia tensor for entire system and angular momentum Vector.
1028 <
1029 <
1030 <       [  Ixx -Ixy  -Ixz ]
1031 <    J =| -Iyx  Iyy  -Iyz |
1032 <       [ -Izx -Iyz   Izz ]
1033 <    */
1034 <
1035 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1036 <      
1037 <
1038 <      RealType xx = 0.0;
1039 <      RealType yy = 0.0;
1040 <      RealType zz = 0.0;
1041 <      RealType xy = 0.0;
1042 <      RealType xz = 0.0;
1043 <      RealType yz = 0.0;
1044 <      Vector3d com(0.0);
1045 <      Vector3d comVel(0.0);
1046 <      
1047 <      getComAll(com, comVel);
1048 <      
1049 <      SimInfo::MoleculeIterator i;
1050 <      Molecule* mol;
1051 <      
1052 <      Vector3d thisq(0.0);
1053 <      Vector3d thisv(0.0);
1054 <
1055 <      RealType thisMass = 0.0;
1056 <    
1057 <      
1058 <      
1059 <  
1060 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 <        
1062 <         thisq = mol->getCom()-com;
1063 <         thisv = mol->getComVel()-comVel;
1064 <         thisMass = mol->getMass();
1065 <         // Compute moment of intertia coefficients.
1066 <         xx += thisq[0]*thisq[0]*thisMass;
1067 <         yy += thisq[1]*thisq[1]*thisMass;
1068 <         zz += thisq[2]*thisq[2]*thisMass;
1069 <        
1070 <         // compute products of intertia
1071 <         xy += thisq[0]*thisq[1]*thisMass;
1072 <         xz += thisq[0]*thisq[2]*thisMass;
1073 <         yz += thisq[1]*thisq[2]*thisMass;
1074 <            
1075 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1076 <            
1077 <      }  
1078 <      
1079 <      
1080 <      inertiaTensor(0,0) = yy + zz;
1081 <      inertiaTensor(0,1) = -xy;
1082 <      inertiaTensor(0,2) = -xz;
1083 <      inertiaTensor(1,0) = -xy;
1084 <      inertiaTensor(1,1) = xx + zz;
1085 <      inertiaTensor(1,2) = -yz;
1086 <      inertiaTensor(2,0) = -xz;
1087 <      inertiaTensor(2,1) = -yz;
1088 <      inertiaTensor(2,2) = xx + yy;
1089 <      
1090 < #ifdef IS_MPI
1091 <      Mat3x3d tmpI(inertiaTensor);
1092 <      Vector3d tmpAngMom;
1093 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1094 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1095 < #endif
1096 <              
1097 <      return;
1098 <   }
1099 <
1100 <   //Returns the angular momentum of the system
1101 <   Vector3d SimInfo::getAngularMomentum(){
1102 <      
1103 <      Vector3d com(0.0);
1104 <      Vector3d comVel(0.0);
1105 <      Vector3d angularMomentum(0.0);
1106 <      
1107 <      getComAll(com,comVel);
1108 <      
1109 <      SimInfo::MoleculeIterator i;
1110 <      Molecule* mol;
1111 <      
1112 <      Vector3d thisr(0.0);
1113 <      Vector3d thisp(0.0);
1114 <      
1115 <      RealType thisMass;
1116 <      
1117 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1118 <        thisMass = mol->getMass();
1119 <        thisr = mol->getCom()-com;
1120 <        thisp = (mol->getComVel()-comVel)*thisMass;
1121 <        
1122 <        angularMomentum += cross( thisr, thisp );
1123 <        
1124 <      }  
1125 <      
1126 < #ifdef IS_MPI
1127 <      Vector3d tmpAngMom;
1128 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1129 < #endif
1130 <      
1131 <      return angularMomentum;
1132 <   }
1133 <  
1004 >  
1005    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1006 <    return IOIndexToIntegrableObject.at(index);
1006 >    if (index >= IOIndexToIntegrableObject.size()) {
1007 >      sprintf(painCave.errMsg,
1008 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1009 >              "\tindex exceeds number of known objects!\n");
1010 >      painCave.isFatal = 1;
1011 >      simError();
1012 >      return NULL;
1013 >    } else
1014 >      return IOIndexToIntegrableObject.at(index);
1015    }
1016    
1017    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1018      IOIndexToIntegrableObject= v;
1019    }
1020  
1142  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1143     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1144     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1145     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1146  */
1147  void SimInfo::getGyrationalVolume(RealType &volume){
1148    Mat3x3d intTensor;
1149    RealType det;
1150    Vector3d dummyAngMom;
1151    RealType sysconstants;
1152    RealType geomCnst;
1153
1154    geomCnst = 3.0/2.0;
1155    /* Get the inertial tensor and angular momentum for free*/
1156    getInertiaTensor(intTensor,dummyAngMom);
1157    
1158    det = intTensor.determinant();
1159    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1160    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1161    return;
1162  }
1163
1164  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1165    Mat3x3d intTensor;
1166    Vector3d dummyAngMom;
1167    RealType sysconstants;
1168    RealType geomCnst;
1169
1170    geomCnst = 3.0/2.0;
1171    /* Get the inertial tensor and angular momentum for free*/
1172    getInertiaTensor(intTensor,dummyAngMom);
1173    
1174    detI = intTensor.determinant();
1175    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1176    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1177    return;
1178  }
1179 /*
1180   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1181      assert( v.size() == nAtoms_ + nRigidBodies_);
1182      sdByGlobalIndex_ = v;
1183    }
1184
1185    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1186      //assert(index < nAtoms_ + nRigidBodies_);
1187      return sdByGlobalIndex_.at(index);
1188    }  
1189 */  
1021    int SimInfo::getNGlobalConstraints() {
1022      int nGlobalConstraints;
1023   #ifdef IS_MPI
1024 <    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 <                  MPI_COMM_WORLD);    
1024 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1025 >                              MPI::INT, MPI::SUM);
1026   #else
1027      nGlobalConstraints =  nConstraints_;
1028   #endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines