ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC vs.
Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 58 | Line 59
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
64 + #ifdef IS_MPI
65 + #include <mpi.h>
66 + #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 68 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 84 | Line 88 | namespace OpenMD {
88      
89      vector<Component*> components = simParams->getComponents();
90      
91 <    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 >    for (vector<Component*>::iterator i = components.begin();
92 >         i !=components.end(); ++i) {
93        molStamp = (*i)->getMoleculeStamp();
94        nMolWithSameStamp = (*i)->getNMol();
95        
# Line 125 | Line 130 | namespace OpenMD {
130      //equal to the total number of atoms minus number of atoms belong to
131      //cutoff group defined in meta-data file plus the number of cutoff
132      //groups defined in meta-data file
128    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130    std::cerr << "nG = " << nGroups << "\n";
133  
134      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133
134    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135      
136      //every free atom (atom does not belong to rigid bodies) is an
137      //integrable object therefore the total number of integrable objects
# Line 226 | Line 226 | namespace OpenMD {
226  
227  
228    void SimInfo::calcNdf() {
229 <    int ndf_local;
229 >    int ndf_local, nfq_local;
230      MoleculeIterator i;
231      vector<StuntDouble*>::iterator j;
232 +    vector<Atom*>::iterator k;
233 +
234      Molecule* mol;
235 <    StuntDouble* integrableObject;
235 >    StuntDouble* sd;
236 >    Atom* atom;
237  
238      ndf_local = 0;
239 +    nfq_local = 0;
240      
241      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
238      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239           integrableObject = mol->nextIntegrableObject(j)) {
242  
243 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 +           sd = mol->nextIntegrableObject(j)) {
245 +
246          ndf_local += 3;
247  
248 <        if (integrableObject->isDirectional()) {
249 <          if (integrableObject->isLinear()) {
248 >        if (sd->isDirectional()) {
249 >          if (sd->isLinear()) {
250              ndf_local += 2;
251            } else {
252              ndf_local += 3;
253            }
254          }
250            
255        }
256 +
257 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 +           atom = mol->nextFluctuatingCharge(k)) {
259 +        if (atom->isFluctuatingCharge()) {
260 +          nfq_local++;
261 +        }
262 +      }
263      }
264      
265 +    ndfLocal_ = ndf_local;
266 +
267      // n_constraints is local, so subtract them on each processor
268      ndf_local -= nConstraints_;
269  
270   #ifdef IS_MPI
271 <    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 >    MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM);
272 >    MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1,
273 >                              MPI::INT, MPI::SUM);
274   #else
275      ndf_ = ndf_local;
276 +    nGlobalFluctuatingCharges_ = nfq_local;
277   #endif
278  
279      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 268 | Line 284 | namespace OpenMD {
284  
285    int SimInfo::getFdf() {
286   #ifdef IS_MPI
287 <    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 >    MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM);
288   #else
289      fdf_ = fdf_local;
290   #endif
291      return fdf_;
292    }
293 +  
294 +  unsigned int SimInfo::getNLocalCutoffGroups(){
295 +    int nLocalCutoffAtoms = 0;
296 +    Molecule* mol;
297 +    MoleculeIterator mi;
298 +    CutoffGroup* cg;
299 +    Molecule::CutoffGroupIterator ci;
300      
301 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
302 +      
303 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
304 +           cg = mol->nextCutoffGroup(ci)) {
305 +        nLocalCutoffAtoms += cg->getNumAtom();
306 +        
307 +      }        
308 +    }
309 +    
310 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
311 +  }
312 +    
313    void SimInfo::calcNdfRaw() {
314      int ndfRaw_local;
315  
316      MoleculeIterator i;
317      vector<StuntDouble*>::iterator j;
318      Molecule* mol;
319 <    StuntDouble* integrableObject;
319 >    StuntDouble* sd;
320  
321      // Raw degrees of freedom that we have to set
322      ndfRaw_local = 0;
323      
324      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291           integrableObject = mol->nextIntegrableObject(j)) {
325  
326 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
327 +           sd = mol->nextIntegrableObject(j)) {
328 +
329          ndfRaw_local += 3;
330  
331 <        if (integrableObject->isDirectional()) {
332 <          if (integrableObject->isLinear()) {
331 >        if (sd->isDirectional()) {
332 >          if (sd->isLinear()) {
333              ndfRaw_local += 2;
334            } else {
335              ndfRaw_local += 3;
# Line 304 | Line 340 | namespace OpenMD {
340      }
341      
342   #ifdef IS_MPI
343 <    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 >    MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM);
344   #else
345      ndfRaw_ = ndfRaw_local;
346   #endif
# Line 317 | Line 353 | namespace OpenMD {
353  
354  
355   #ifdef IS_MPI
356 <    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 >    MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1,
357 >                              MPI::INT, MPI::SUM);
358   #else
359      ndfTrans_ = ndfTrans_local;
360   #endif
# Line 353 | Line 390 | namespace OpenMD {
390      Molecule::RigidBodyIterator rbIter;
391      RigidBody* rb;
392      Molecule::IntegrableObjectIterator ii;
393 <    StuntDouble* integrableObject;
393 >    StuntDouble* sd;
394      
395 <    for (integrableObject = mol->beginIntegrableObject(ii);
396 <         integrableObject != NULL;
360 <         integrableObject = mol->nextIntegrableObject(ii)) {
395 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
396 >         sd = mol->nextIntegrableObject(ii)) {
397        
398 <      if (integrableObject->isRigidBody()) {
399 <        rb = static_cast<RigidBody*>(integrableObject);
398 >      if (sd->isRigidBody()) {
399 >        rb = static_cast<RigidBody*>(sd);
400          vector<Atom*> atoms = rb->getAtoms();
401          set<int> rigidAtoms;
402          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 371 | Line 407 | namespace OpenMD {
407          }      
408        } else {
409          set<int> oneAtomSet;
410 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
411 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
410 >        oneAtomSet.insert(sd->getGlobalIndex());
411 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
412        }
413      }  
414            
# Line 506 | Line 542 | namespace OpenMD {
542      Molecule::RigidBodyIterator rbIter;
543      RigidBody* rb;
544      Molecule::IntegrableObjectIterator ii;
545 <    StuntDouble* integrableObject;
545 >    StuntDouble* sd;
546      
547 <    for (integrableObject = mol->beginIntegrableObject(ii);
548 <         integrableObject != NULL;
513 <         integrableObject = mol->nextIntegrableObject(ii)) {
547 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
548 >         sd = mol->nextIntegrableObject(ii)) {
549        
550 <      if (integrableObject->isRigidBody()) {
551 <        rb = static_cast<RigidBody*>(integrableObject);
550 >      if (sd->isRigidBody()) {
551 >        rb = static_cast<RigidBody*>(sd);
552          vector<Atom*> atoms = rb->getAtoms();
553          set<int> rigidAtoms;
554          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 524 | Line 559 | namespace OpenMD {
559          }      
560        } else {
561          set<int> oneAtomSet;
562 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
563 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
562 >        oneAtomSet.insert(sd->getGlobalIndex());
563 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
564        }
565      }  
566  
# Line 680 | Line 715 | namespace OpenMD {
715      Atom* atom;
716      set<AtomType*> atomTypes;
717      
718 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
719 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
718 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
719 >      for(atom = mol->beginAtom(ai); atom != NULL;
720 >          atom = mol->nextAtom(ai)) {
721          atomTypes.insert(atom->getAtomType());
722        }      
723      }    
724 <
724 >    
725   #ifdef IS_MPI
726  
727      // loop over the found atom types on this processor, and add their
728      // numerical idents to a vector:
729 <
729 >    
730      vector<int> foundTypes;
731      set<AtomType*>::iterator i;
732      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 699 | Line 735 | namespace OpenMD {
735      // count_local holds the number of found types on this processor
736      int count_local = foundTypes.size();
737  
738 <    // count holds the total number of found types on all processors
703 <    // (some will be redundant with the ones found locally):
704 <    int count;
705 <    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
738 >    int nproc = MPI::COMM_WORLD.Get_size();
739  
740 <    // create a vector to hold the globally found types, and resize it:
741 <    vector<int> ftGlobal;
742 <    ftGlobal.resize(count);
743 <    vector<int> counts;
740 >    // we need arrays to hold the counts and displacement vectors for
741 >    // all processors
742 >    vector<int> counts(nproc, 0);
743 >    vector<int> disps(nproc, 0);
744  
745 <    int nproc = MPI::COMM_WORLD.Get_size();
746 <    counts.resize(nproc);
747 <    vector<int> disps;
748 <    disps.resize(nproc);
745 >    // fill the counts array
746 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
747 >                              1, MPI::INT);
748 >  
749 >    // use the processor counts to compute the displacement array
750 >    disps[0] = 0;    
751 >    int totalCount = counts[0];
752 >    for (int iproc = 1; iproc < nproc; iproc++) {
753 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
754 >      totalCount += counts[iproc];
755 >    }
756  
757 <    // now spray out the foundTypes to all the other processors:
757 >    // we need a (possibly redundant) set of all found types:
758 >    vector<int> ftGlobal(totalCount);
759      
760 +    // now spray out the foundTypes to all the other processors:    
761      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
762 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
762 >                               &ftGlobal[0], &counts[0], &disps[0],
763 >                               MPI::INT);
764  
765 +    vector<int>::iterator j;
766 +
767      // foundIdents is a stl set, so inserting an already found ident
768      // will have no effect.
769      set<int> foundIdents;
770 <    vector<int>::iterator j;
770 >
771      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
772        foundIdents.insert((*j));
773      
774      // now iterate over the foundIdents and get the actual atom types
775      // that correspond to these:
776      set<int>::iterator it;
777 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
777 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
778        atomTypes.insert( forceField_->getAtomType((*it)) );
779  
780   #endif
781 <    
781 >
782      return atomTypes;        
783    }
784  
785    void SimInfo::setupSimVariables() {
786      useAtomicVirial_ = simParams_->getUseAtomicVirial();
787 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
787 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole
788 >    // parameter is true
789      calcBoxDipole_ = false;
790      if ( simParams_->haveAccumulateBoxDipole() )
791        if ( simParams_->getAccumulateBoxDipole() ) {
792          calcBoxDipole_ = true;      
793        }
794 <
794 >    
795      set<AtomType*>::iterator i;
796      set<AtomType*> atomTypes;
797      atomTypes = getSimulatedAtomTypes();    
798 <    int usesElectrostatic = 0;
799 <    int usesMetallic = 0;
800 <    int usesDirectional = 0;
798 >    bool usesElectrostatic = false;
799 >    bool usesMetallic = false;
800 >    bool usesDirectional = false;
801 >    bool usesFluctuatingCharges =  false;
802      //loop over all of the atom types
803      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804        usesElectrostatic |= (*i)->isElectrostatic();
805        usesMetallic |= (*i)->isMetal();
806        usesDirectional |= (*i)->isDirectional();
807 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
808      }
809  
810 < #ifdef IS_MPI    
811 <    int temp;
810 > #ifdef IS_MPI
811 >    bool temp;
812      temp = usesDirectional;
813 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >        
816      temp = usesMetallic;
817 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819 >    
820      temp = usesElectrostatic;
821 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 >
824 >    temp = usesFluctuatingCharges;
825 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
826 >                              MPI::LOR);
827 > #else
828 >
829 >    usesDirectionalAtoms_ = usesDirectional;
830 >    usesMetallicAtoms_ = usesMetallic;
831 >    usesElectrostaticAtoms_ = usesElectrostatic;
832 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
833 >
834   #endif
835 +    
836 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
837 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
838 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
839    }
840  
841  
# Line 812 | Line 878 | namespace OpenMD {
878    }
879  
880  
881 <  void SimInfo::setupFortran() {
816 <    int isError;
817 <    int nExclude, nOneTwo, nOneThree, nOneFour;
818 <    vector<int> fortranGlobalGroupMembership;
819 <    
820 <    isError = 0;
881 >  void SimInfo::prepareTopology() {
882  
822    //globalGroupMembership_ is filled by SimCreator    
823    for (int i = 0; i < nGlobalAtoms_; i++) {
824      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
825    }
826
883      //calculate mass ratio of cutoff group
828    vector<RealType> mfact;
884      SimInfo::MoleculeIterator mi;
885      Molecule* mol;
886      Molecule::CutoffGroupIterator ci;
# Line 834 | Line 889 | namespace OpenMD {
889      Atom* atom;
890      RealType totalMass;
891  
892 <    //to avoid memory reallocation, reserve enough space for mfact
893 <    mfact.reserve(getNCutoffGroups());
892 >    /**
893 >     * The mass factor is the relative mass of an atom to the total
894 >     * mass of the cutoff group it belongs to.  By default, all atoms
895 >     * are their own cutoff groups, and therefore have mass factors of
896 >     * 1.  We need some special handling for massless atoms, which
897 >     * will be treated as carrying the entire mass of the cutoff
898 >     * group.
899 >     */
900 >    massFactors_.clear();
901 >    massFactors_.resize(getNAtoms(), 1.0);
902      
903      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
904 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
904 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
905 >           cg = mol->nextCutoffGroup(ci)) {
906  
907          totalMass = cg->getMass();
908          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
909            // Check for massless groups - set mfact to 1 if true
910 <          if (totalMass != 0)
911 <            mfact.push_back(atom->getMass()/totalMass);
910 >          if (totalMass != 0)
911 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
912            else
913 <            mfact.push_back( 1.0 );
913 >            massFactors_[atom->getLocalIndex()] = 1.0;
914          }
915        }      
916      }
# Line 860 | Line 924 | namespace OpenMD {
924          identArray_.push_back(atom->getIdent());
925        }
926      }    
863
864    //fill molMembershipArray
865    //molMembershipArray is filled by SimCreator    
866    vector<int> molMembershipArray(nGlobalAtoms_);
867    for (int i = 0; i < nGlobalAtoms_; i++) {
868      molMembershipArray[i] = globalMolMembership_[i] + 1;
869    }
927      
928 <    //setup fortran simulation
928 >    //scan topology
929  
873    nExclude = excludedInteractions_.getSize();
874    nOneTwo = oneTwoInteractions_.getSize();
875    nOneThree = oneThreeInteractions_.getSize();
876    nOneFour = oneFourInteractions_.getSize();
877
930      int* excludeList = excludedInteractions_.getPairList();
931      int* oneTwoList = oneTwoInteractions_.getPairList();
932      int* oneThreeList = oneThreeInteractions_.getPairList();
933      int* oneFourList = oneFourInteractions_.getPairList();
934  
935 <    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
884 <    //               &nExclude, excludeList,
885 <    //               &nOneTwo, oneTwoList,
886 <    //               &nOneThree, oneThreeList,
887 <    //               &nOneFour, oneFourList,
888 <    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
889 <    //               &fortranGlobalGroupMembership[0], &isError);
890 <    
891 <    // if( isError ){
892 <    //  
893 <    //  sprintf( painCave.errMsg,
894 <    //         "There was an error setting the simulation information in fortran.\n" );
895 <    //  painCave.isFatal = 1;
896 <    //  painCave.severity = OPENMD_ERROR;
897 <    //  simError();
898 <    //}
899 <    
900 <    
901 <    // sprintf( checkPointMsg,
902 <    //          "succesfully sent the simulation information to fortran.\n");
903 <    
904 <    // errorCheckPoint();
905 <    
906 <    // Setup number of neighbors in neighbor list if present
907 <    //if (simParams_->haveNeighborListNeighbors()) {
908 <    //  int nlistNeighbors = simParams_->getNeighborListNeighbors();
909 <    //  setNeighbors(&nlistNeighbors);
910 <    //}
911 <  
912 < #ifdef IS_MPI    
913 <    // mpiSimData parallelData;
914 <
915 <    //fill up mpiSimData struct
916 <    // parallelData.nMolGlobal = getNGlobalMolecules();
917 <    // parallelData.nMolLocal = getNMolecules();
918 <    // parallelData.nAtomsGlobal = getNGlobalAtoms();
919 <    // parallelData.nAtomsLocal = getNAtoms();
920 <    // parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
921 <    // parallelData.nGroupsLocal = getNCutoffGroups();
922 <    // parallelData.myNode = worldRank;
923 <    // MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
924 <
925 <    //pass mpiSimData struct and index arrays to fortran
926 <    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
927 <    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
928 <    //                &localToGlobalCutoffGroupIndex[0], &isError);
929 <
930 <    // if (isError) {
931 <    //   sprintf(painCave.errMsg,
932 <    //           "mpiRefresh errror: fortran didn't like something we gave it.\n");
933 <    //   painCave.isFatal = 1;
934 <    //   simError();
935 <    // }
936 <
937 <    // sprintf(checkPointMsg, " mpiRefresh successful.\n");
938 <    // errorCheckPoint();
939 < #endif
940 <
941 <    // initFortranFF(&isError);
942 <    // if (isError) {
943 <    //   sprintf(painCave.errMsg,
944 <    //           "initFortranFF errror: fortran didn't like something we gave it.\n");
945 <    //   painCave.isFatal = 1;
946 <    //   simError();
947 <    // }
948 <    // fortranInitialized_ = true;
935 >    topologyDone_ = true;
936    }
937  
938    void SimInfo::addProperty(GenericData* genData) {
# Line 990 | Line 977 | namespace OpenMD {
977  
978      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
979          
980 <      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >      for (atom = mol->beginAtom(atomIter); atom != NULL;
981 >           atom = mol->nextAtom(atomIter)) {
982          atom->setSnapshotManager(sman_);
983        }
984          
985 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
985 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
986 >           rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989  
990 <      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
990 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
991 >           cg = mol->nextCutoffGroup(cgIter)) {
992          cg->setSnapshotManager(sman_);
993        }
994      }    
995      
996    }
997  
1008  Vector3d SimInfo::getComVel(){
1009    SimInfo::MoleculeIterator i;
1010    Molecule* mol;
998  
1012    Vector3d comVel(0.0);
1013    RealType totalMass = 0.0;
1014    
1015
1016    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017      RealType mass = mol->getMass();
1018      totalMass += mass;
1019      comVel += mass * mol->getComVel();
1020    }  
1021
1022 #ifdef IS_MPI
1023    RealType tmpMass = totalMass;
1024    Vector3d tmpComVel(comVel);    
1025    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1026    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1027 #endif
1028
1029    comVel /= totalMass;
1030
1031    return comVel;
1032  }
1033
1034  Vector3d SimInfo::getCom(){
1035    SimInfo::MoleculeIterator i;
1036    Molecule* mol;
1037
1038    Vector3d com(0.0);
1039    RealType totalMass = 0.0;
1040    
1041    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1042      RealType mass = mol->getMass();
1043      totalMass += mass;
1044      com += mass * mol->getCom();
1045    }  
1046
1047 #ifdef IS_MPI
1048    RealType tmpMass = totalMass;
1049    Vector3d tmpCom(com);    
1050    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1051    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1052 #endif
1053
1054    com /= totalMass;
1055
1056    return com;
1057
1058  }        
1059
999    ostream& operator <<(ostream& o, SimInfo& info) {
1000  
1001      return o;
1002    }
1003    
1004 <  
1066 <   /*
1067 <   Returns center of mass and center of mass velocity in one function call.
1068 <   */
1069 <  
1070 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1071 <      SimInfo::MoleculeIterator i;
1072 <      Molecule* mol;
1073 <      
1074 <    
1075 <      RealType totalMass = 0.0;
1076 <    
1077 <
1078 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1079 <         RealType mass = mol->getMass();
1080 <         totalMass += mass;
1081 <         com += mass * mol->getCom();
1082 <         comVel += mass * mol->getComVel();          
1083 <      }  
1084 <      
1085 < #ifdef IS_MPI
1086 <      RealType tmpMass = totalMass;
1087 <      Vector3d tmpCom(com);  
1088 <      Vector3d tmpComVel(comVel);
1089 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1090 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1091 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1092 < #endif
1093 <      
1094 <      com /= totalMass;
1095 <      comVel /= totalMass;
1096 <   }        
1097 <  
1098 <   /*
1099 <   Return intertia tensor for entire system and angular momentum Vector.
1100 <
1101 <
1102 <       [  Ixx -Ixy  -Ixz ]
1103 <    J =| -Iyx  Iyy  -Iyz |
1104 <       [ -Izx -Iyz   Izz ]
1105 <    */
1106 <
1107 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1108 <      
1109 <
1110 <      RealType xx = 0.0;
1111 <      RealType yy = 0.0;
1112 <      RealType zz = 0.0;
1113 <      RealType xy = 0.0;
1114 <      RealType xz = 0.0;
1115 <      RealType yz = 0.0;
1116 <      Vector3d com(0.0);
1117 <      Vector3d comVel(0.0);
1118 <      
1119 <      getComAll(com, comVel);
1120 <      
1121 <      SimInfo::MoleculeIterator i;
1122 <      Molecule* mol;
1123 <      
1124 <      Vector3d thisq(0.0);
1125 <      Vector3d thisv(0.0);
1126 <
1127 <      RealType thisMass = 0.0;
1128 <    
1129 <      
1130 <      
1131 <  
1132 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1133 <        
1134 <         thisq = mol->getCom()-com;
1135 <         thisv = mol->getComVel()-comVel;
1136 <         thisMass = mol->getMass();
1137 <         // Compute moment of intertia coefficients.
1138 <         xx += thisq[0]*thisq[0]*thisMass;
1139 <         yy += thisq[1]*thisq[1]*thisMass;
1140 <         zz += thisq[2]*thisq[2]*thisMass;
1141 <        
1142 <         // compute products of intertia
1143 <         xy += thisq[0]*thisq[1]*thisMass;
1144 <         xz += thisq[0]*thisq[2]*thisMass;
1145 <         yz += thisq[1]*thisq[2]*thisMass;
1146 <            
1147 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1148 <            
1149 <      }  
1150 <      
1151 <      
1152 <      inertiaTensor(0,0) = yy + zz;
1153 <      inertiaTensor(0,1) = -xy;
1154 <      inertiaTensor(0,2) = -xz;
1155 <      inertiaTensor(1,0) = -xy;
1156 <      inertiaTensor(1,1) = xx + zz;
1157 <      inertiaTensor(1,2) = -yz;
1158 <      inertiaTensor(2,0) = -xz;
1159 <      inertiaTensor(2,1) = -yz;
1160 <      inertiaTensor(2,2) = xx + yy;
1161 <      
1162 < #ifdef IS_MPI
1163 <      Mat3x3d tmpI(inertiaTensor);
1164 <      Vector3d tmpAngMom;
1165 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1166 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1167 < #endif
1168 <              
1169 <      return;
1170 <   }
1171 <
1172 <   //Returns the angular momentum of the system
1173 <   Vector3d SimInfo::getAngularMomentum(){
1174 <      
1175 <      Vector3d com(0.0);
1176 <      Vector3d comVel(0.0);
1177 <      Vector3d angularMomentum(0.0);
1178 <      
1179 <      getComAll(com,comVel);
1180 <      
1181 <      SimInfo::MoleculeIterator i;
1182 <      Molecule* mol;
1183 <      
1184 <      Vector3d thisr(0.0);
1185 <      Vector3d thisp(0.0);
1186 <      
1187 <      RealType thisMass;
1188 <      
1189 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1190 <        thisMass = mol->getMass();
1191 <        thisr = mol->getCom()-com;
1192 <        thisp = (mol->getComVel()-comVel)*thisMass;
1193 <        
1194 <        angularMomentum += cross( thisr, thisp );
1195 <        
1196 <      }  
1197 <      
1198 < #ifdef IS_MPI
1199 <      Vector3d tmpAngMom;
1200 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201 < #endif
1202 <      
1203 <      return angularMomentum;
1204 <   }
1205 <  
1004 >  
1005    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1006 <    return IOIndexToIntegrableObject.at(index);
1006 >    if (index >= IOIndexToIntegrableObject.size()) {
1007 >      sprintf(painCave.errMsg,
1008 >              "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1009 >              "\tindex exceeds number of known objects!\n");
1010 >      painCave.isFatal = 1;
1011 >      simError();
1012 >      return NULL;
1013 >    } else
1014 >      return IOIndexToIntegrableObject.at(index);
1015    }
1016    
1017    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1018      IOIndexToIntegrableObject= v;
1019    }
1020  
1214  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1215     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1216     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1217     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1218  */
1219  void SimInfo::getGyrationalVolume(RealType &volume){
1220    Mat3x3d intTensor;
1221    RealType det;
1222    Vector3d dummyAngMom;
1223    RealType sysconstants;
1224    RealType geomCnst;
1225
1226    geomCnst = 3.0/2.0;
1227    /* Get the inertial tensor and angular momentum for free*/
1228    getInertiaTensor(intTensor,dummyAngMom);
1229    
1230    det = intTensor.determinant();
1231    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1233    return;
1234  }
1235
1236  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1237    Mat3x3d intTensor;
1238    Vector3d dummyAngMom;
1239    RealType sysconstants;
1240    RealType geomCnst;
1241
1242    geomCnst = 3.0/2.0;
1243    /* Get the inertial tensor and angular momentum for free*/
1244    getInertiaTensor(intTensor,dummyAngMom);
1245    
1246    detI = intTensor.determinant();
1247    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1248    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1249    return;
1250  }
1251 /*
1252   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1253      assert( v.size() == nAtoms_ + nRigidBodies_);
1254      sdByGlobalIndex_ = v;
1255    }
1256
1257    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1258      //assert(index < nAtoms_ + nRigidBodies_);
1259      return sdByGlobalIndex_.at(index);
1260    }  
1261 */  
1021    int SimInfo::getNGlobalConstraints() {
1022      int nGlobalConstraints;
1023   #ifdef IS_MPI
1024 <    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1025 <                  MPI_COMM_WORLD);    
1024 >    MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1,
1025 >                              MPI::INT, MPI::SUM);
1026   #else
1027      nGlobalConstraints =  nConstraints_;
1028   #endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines