ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 580 by chrisfen, Tue Aug 30 18:23:50 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
78 <            
79 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
102 <
103 <        //calculate atoms in rigid bodies
104 <        int nAtomsInRigidBodies = 0;
105 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
106 <        
114 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 <          rbStamp = molStamp->getRigidBody(j);
116 <          nAtomsInRigidBodies += rbStamp->getNMembers();
117 <        }
118 <
119 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
110 <      //therefore the total number of cutoff groups in the system is equal to
111 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
112 <      //file plus the number of cutoff groups defined in meta-data file
113 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
114 <
115 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
116 <      //therefore the total number of  integrable objects in the system is equal to
117 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
118 <      //file plus the number of  rigid bodies defined in meta-data file
119 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
120 <
121 <      nGlobalMols_ = molStampIds_.size();
122 <
123 < #ifdef IS_MPI    
124 <      molToProcMap_.resize(nGlobalMols_);
140 < #endif
141 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
152      molecules_.clear();
153        
151    delete stamps_;
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157    }
158  
157  int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 202 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 216 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
219
220
213    }    
214  
215          
# Line 233 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234 <    StuntDouble* integrableObject;
234 >    StuntDouble* sd;
235 >    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 +           sd = mol->nextIntegrableObject(j)) {
244 +
245          ndf_local += 3;
246  
247 <        if (integrableObject->isDirectional()) {
248 <          if (integrableObject->isLinear()) {
247 >        if (sd->isDirectional()) {
248 >          if (sd->isLinear()) {
249              ndf_local += 2;
250            } else {
251              ndf_local += 3;
252            }
253          }
254 <            
255 <      }//end for (integrableObject)
256 <    }// end for (mol)
254 >      }
255 >
256 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 >           atom = mol->nextFluctuatingCharge(k)) {
258 >        if (atom->isFluctuatingCharge()) {
259 >          nfq_local++;
260 >        }
261 >      }
262 >    }
263      
264 +    ndfLocal_ = ndf_local;
265 +
266      // n_constraints is local, so subtract them on each processor
267      ndf_local -= nConstraints_;
268  
269   #ifdef IS_MPI
270      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272   #else
273      ndf_ = ndf_local;
274 +    nGlobalFluctuatingCharges_ = nfq_local;
275   #endif
276  
277      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 273 | Line 280 | namespace oopse {
280  
281    }
282  
283 +  int SimInfo::getFdf() {
284 + #ifdef IS_MPI
285 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 + #else
287 +    fdf_ = fdf_local;
288 + #endif
289 +    return fdf_;
290 +  }
291 +  
292 +  unsigned int SimInfo::getNLocalCutoffGroups(){
293 +    int nLocalCutoffAtoms = 0;
294 +    Molecule* mol;
295 +    MoleculeIterator mi;
296 +    CutoffGroup* cg;
297 +    Molecule::CutoffGroupIterator ci;
298 +    
299 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
300 +      
301 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
302 +           cg = mol->nextCutoffGroup(ci)) {
303 +        nLocalCutoffAtoms += cg->getNumAtom();
304 +        
305 +      }        
306 +    }
307 +    
308 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
309 +  }
310 +    
311    void SimInfo::calcNdfRaw() {
312      int ndfRaw_local;
313  
314      MoleculeIterator i;
315 <    std::vector<StuntDouble*>::iterator j;
315 >    vector<StuntDouble*>::iterator j;
316      Molecule* mol;
317 <    StuntDouble* integrableObject;
317 >    StuntDouble* sd;
318  
319      // Raw degrees of freedom that we have to set
320      ndfRaw_local = 0;
321      
322      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
288      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
289           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 +           sd = mol->nextIntegrableObject(j)) {
326 +
327          ndfRaw_local += 3;
328  
329 <        if (integrableObject->isDirectional()) {
330 <          if (integrableObject->isLinear()) {
329 >        if (sd->isDirectional()) {
330 >          if (sd->isLinear()) {
331              ndfRaw_local += 2;
332            } else {
333              ndfRaw_local += 3;
# Line 324 | Line 360 | namespace oopse {
360  
361    }
362  
363 <  void SimInfo::addExcludePairs(Molecule* mol) {
364 <    std::vector<Bond*>::iterator bondIter;
365 <    std::vector<Bend*>::iterator bendIter;
366 <    std::vector<Torsion*>::iterator torsionIter;
363 >  void SimInfo::addInteractionPairs(Molecule* mol) {
364 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
365 >    vector<Bond*>::iterator bondIter;
366 >    vector<Bend*>::iterator bendIter;
367 >    vector<Torsion*>::iterator torsionIter;
368 >    vector<Inversion*>::iterator inversionIter;
369      Bond* bond;
370      Bend* bend;
371      Torsion* torsion;
372 +    Inversion* inversion;
373      int a;
374      int b;
375      int c;
376      int d;
377 +
378 +    // atomGroups can be used to add special interaction maps between
379 +    // groups of atoms that are in two separate rigid bodies.
380 +    // However, most site-site interactions between two rigid bodies
381 +    // are probably not special, just the ones between the physically
382 +    // bonded atoms.  Interactions *within* a single rigid body should
383 +    // always be excluded.  These are done at the bottom of this
384 +    // function.
385 +
386 +    map<int, set<int> > atomGroups;
387 +    Molecule::RigidBodyIterator rbIter;
388 +    RigidBody* rb;
389 +    Molecule::IntegrableObjectIterator ii;
390 +    StuntDouble* sd;
391      
392 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
392 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 >         sd = mol->nextIntegrableObject(ii)) {
394 >      
395 >      if (sd->isRigidBody()) {
396 >        rb = static_cast<RigidBody*>(sd);
397 >        vector<Atom*> atoms = rb->getAtoms();
398 >        set<int> rigidAtoms;
399 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
400 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
401 >        }
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
404 >        }      
405 >      } else {
406 >        set<int> oneAtomSet;
407 >        oneAtomSet.insert(sd->getGlobalIndex());
408 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
409 >      }
410 >    }  
411 >          
412 >    for (bond= mol->beginBond(bondIter); bond != NULL;
413 >         bond = mol->nextBond(bondIter)) {
414 >
415        a = bond->getAtomA()->getGlobalIndex();
416 <      b = bond->getAtomB()->getGlobalIndex();        
417 <      exclude_.addPair(a, b);
416 >      b = bond->getAtomB()->getGlobalIndex();  
417 >    
418 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
419 >        oneTwoInteractions_.addPair(a, b);
420 >      } else {
421 >        excludedInteractions_.addPair(a, b);
422 >      }
423      }
424  
425 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
425 >    for (bend= mol->beginBend(bendIter); bend != NULL;
426 >         bend = mol->nextBend(bendIter)) {
427 >
428        a = bend->getAtomA()->getGlobalIndex();
429        b = bend->getAtomB()->getGlobalIndex();        
430        c = bend->getAtomC()->getGlobalIndex();
431 <
432 <      exclude_.addPair(a, b);
433 <      exclude_.addPair(a, c);
434 <      exclude_.addPair(b, c);        
431 >      
432 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
433 >        oneTwoInteractions_.addPair(a, b);      
434 >        oneTwoInteractions_.addPair(b, c);
435 >      } else {
436 >        excludedInteractions_.addPair(a, b);
437 >        excludedInteractions_.addPair(b, c);
438 >      }
439 >
440 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
441 >        oneThreeInteractions_.addPair(a, c);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >      }
445      }
446  
447 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
447 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
448 >         torsion = mol->nextTorsion(torsionIter)) {
449 >
450        a = torsion->getAtomA()->getGlobalIndex();
451        b = torsion->getAtomB()->getGlobalIndex();        
452        c = torsion->getAtomC()->getGlobalIndex();        
453 <      d = torsion->getAtomD()->getGlobalIndex();        
453 >      d = torsion->getAtomD()->getGlobalIndex();      
454  
455 <      exclude_.addPair(a, b);
456 <      exclude_.addPair(a, c);
457 <      exclude_.addPair(a, d);
458 <      exclude_.addPair(b, c);
459 <      exclude_.addPair(b, d);
460 <      exclude_.addPair(c, d);        
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(b, c);
458 >        oneTwoInteractions_.addPair(c, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(b, c);
462 >        excludedInteractions_.addPair(c, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(a, c);      
467 >        oneThreeInteractions_.addPair(b, d);      
468 >      } else {
469 >        excludedInteractions_.addPair(a, c);
470 >        excludedInteractions_.addPair(b, d);
471 >      }
472 >
473 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
474 >        oneFourInteractions_.addPair(a, d);      
475 >      } else {
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478      }
479  
480 <    Molecule::RigidBodyIterator rbIter;
481 <    RigidBody* rb;
482 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
483 <      std::vector<Atom*> atoms = rb->getAtoms();
484 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
485 <        for (int j = i + 1; j < atoms.size(); ++j) {
480 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
481 >         inversion = mol->nextInversion(inversionIter)) {
482 >
483 >      a = inversion->getAtomA()->getGlobalIndex();
484 >      b = inversion->getAtomB()->getGlobalIndex();        
485 >      c = inversion->getAtomC()->getGlobalIndex();        
486 >      d = inversion->getAtomD()->getGlobalIndex();        
487 >
488 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
489 >        oneTwoInteractions_.addPair(a, b);      
490 >        oneTwoInteractions_.addPair(a, c);
491 >        oneTwoInteractions_.addPair(a, d);
492 >      } else {
493 >        excludedInteractions_.addPair(a, b);
494 >        excludedInteractions_.addPair(a, c);
495 >        excludedInteractions_.addPair(a, d);
496 >      }
497 >
498 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
499 >        oneThreeInteractions_.addPair(b, c);    
500 >        oneThreeInteractions_.addPair(b, d);    
501 >        oneThreeInteractions_.addPair(c, d);      
502 >      } else {
503 >        excludedInteractions_.addPair(b, c);
504 >        excludedInteractions_.addPair(b, d);
505 >        excludedInteractions_.addPair(c, d);
506 >      }
507 >    }
508 >
509 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
510 >         rb = mol->nextRigidBody(rbIter)) {
511 >      vector<Atom*> atoms = rb->getAtoms();
512 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
513 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
514            a = atoms[i]->getGlobalIndex();
515            b = atoms[j]->getGlobalIndex();
516 <          exclude_.addPair(a, b);
516 >          excludedInteractions_.addPair(a, b);
517          }
518        }
519      }        
520  
521    }
522  
523 <  void SimInfo::removeExcludePairs(Molecule* mol) {
524 <    std::vector<Bond*>::iterator bondIter;
525 <    std::vector<Bend*>::iterator bendIter;
526 <    std::vector<Torsion*>::iterator torsionIter;
523 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
524 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
525 >    vector<Bond*>::iterator bondIter;
526 >    vector<Bend*>::iterator bendIter;
527 >    vector<Torsion*>::iterator torsionIter;
528 >    vector<Inversion*>::iterator inversionIter;
529      Bond* bond;
530      Bend* bend;
531      Torsion* torsion;
532 +    Inversion* inversion;
533      int a;
534      int b;
535      int c;
536      int d;
537 +
538 +    map<int, set<int> > atomGroups;
539 +    Molecule::RigidBodyIterator rbIter;
540 +    RigidBody* rb;
541 +    Molecule::IntegrableObjectIterator ii;
542 +    StuntDouble* sd;
543      
544 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
544 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 >         sd = mol->nextIntegrableObject(ii)) {
546 >      
547 >      if (sd->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(sd);
549 >        vector<Atom*> atoms = rb->getAtoms();
550 >        set<int> rigidAtoms;
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 >        }
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 >        }      
557 >      } else {
558 >        set<int> oneAtomSet;
559 >        oneAtomSet.insert(sd->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
561 >      }
562 >    }  
563 >
564 >    for (bond= mol->beginBond(bondIter); bond != NULL;
565 >         bond = mol->nextBond(bondIter)) {
566 >      
567        a = bond->getAtomA()->getGlobalIndex();
568 <      b = bond->getAtomB()->getGlobalIndex();        
569 <      exclude_.removePair(a, b);
568 >      b = bond->getAtomB()->getGlobalIndex();  
569 >    
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >      }
575      }
576  
577 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
577 >    for (bend= mol->beginBend(bendIter); bend != NULL;
578 >         bend = mol->nextBend(bendIter)) {
579 >
580        a = bend->getAtomA()->getGlobalIndex();
581        b = bend->getAtomB()->getGlobalIndex();        
582        c = bend->getAtomC()->getGlobalIndex();
583 +      
584 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 +        oneTwoInteractions_.removePair(a, b);      
586 +        oneTwoInteractions_.removePair(b, c);
587 +      } else {
588 +        excludedInteractions_.removePair(a, b);
589 +        excludedInteractions_.removePair(b, c);
590 +      }
591  
592 <      exclude_.removePair(a, b);
593 <      exclude_.removePair(a, c);
594 <      exclude_.removePair(b, c);        
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >      } else {
595 >        excludedInteractions_.removePair(a, c);
596 >      }
597      }
598  
599 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
599 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 >         torsion = mol->nextTorsion(torsionIter)) {
601 >
602        a = torsion->getAtomA()->getGlobalIndex();
603        b = torsion->getAtomB()->getGlobalIndex();        
604        c = torsion->getAtomC()->getGlobalIndex();        
605 <      d = torsion->getAtomD()->getGlobalIndex();        
605 >      d = torsion->getAtomD()->getGlobalIndex();      
606 >  
607 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 >        oneTwoInteractions_.removePair(a, b);      
609 >        oneTwoInteractions_.removePair(b, c);
610 >        oneTwoInteractions_.removePair(c, d);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >        excludedInteractions_.removePair(c, d);
615 >      }
616  
617 <      exclude_.removePair(a, b);
618 <      exclude_.removePair(a, c);
619 <      exclude_.removePair(a, d);
620 <      exclude_.removePair(b, c);
621 <      exclude_.removePair(b, d);
622 <      exclude_.removePair(c, d);        
617 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 >        oneThreeInteractions_.removePair(a, c);      
619 >        oneThreeInteractions_.removePair(b, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(b, d);
623 >      }
624 >
625 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 >        oneFourInteractions_.removePair(a, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(a, d);
629 >      }
630      }
631  
632 <    Molecule::RigidBodyIterator rbIter;
633 <    RigidBody* rb;
634 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
635 <      std::vector<Atom*> atoms = rb->getAtoms();
636 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
637 <        for (int j = i + 1; j < atoms.size(); ++j) {
632 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 >         inversion = mol->nextInversion(inversionIter)) {
634 >
635 >      a = inversion->getAtomA()->getGlobalIndex();
636 >      b = inversion->getAtomB()->getGlobalIndex();        
637 >      c = inversion->getAtomC()->getGlobalIndex();        
638 >      d = inversion->getAtomD()->getGlobalIndex();        
639 >
640 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 >        oneTwoInteractions_.removePair(a, b);      
642 >        oneTwoInteractions_.removePair(a, c);
643 >        oneTwoInteractions_.removePair(a, d);
644 >      } else {
645 >        excludedInteractions_.removePair(a, b);
646 >        excludedInteractions_.removePair(a, c);
647 >        excludedInteractions_.removePair(a, d);
648 >      }
649 >
650 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 >        oneThreeInteractions_.removePair(b, c);    
652 >        oneThreeInteractions_.removePair(b, d);    
653 >        oneThreeInteractions_.removePair(c, d);      
654 >      } else {
655 >        excludedInteractions_.removePair(b, c);
656 >        excludedInteractions_.removePair(b, d);
657 >        excludedInteractions_.removePair(c, d);
658 >      }
659 >    }
660 >
661 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 >         rb = mol->nextRigidBody(rbIter)) {
663 >      vector<Atom*> atoms = rb->getAtoms();
664 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666            a = atoms[i]->getGlobalIndex();
667            b = atoms[j]->getGlobalIndex();
668 <          exclude_.removePair(a, b);
668 >          excludedInteractions_.removePair(a, b);
669          }
670        }
671      }        
672 <
672 >    
673    }
674 <
675 <
674 >  
675 >  
676    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677      int curStampId;
678 <
678 >    
679      //index from 0
680      curStampId = moleculeStamps_.size();
681  
# Line 449 | Line 683 | namespace oopse {
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684    }
685  
452  void SimInfo::update() {
686  
687 <    setupSimType();
688 <
689 < #ifdef IS_MPI
690 <    setupFortranParallel();
691 < #endif
692 <
693 <    setupFortranSim();
694 <
695 <    //setup fortran force field
463 <    /** @deprecate */    
464 <    int isError = 0;
465 <    initFortranFF( &fInfo_.SIM_uses_RF, &fInfo_.SIM_uses_UW,
466 <                   &fInfo_.SIM_uses_DW, &isError );
467 <    if(isError){
468 <      sprintf( painCave.errMsg,
469 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
470 <      painCave.isFatal = 1;
471 <      simError();
472 <    }
473 <  
474 <    
475 <    setupCutoff();
476 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
480
481    fortranInitialized_ = true;
699    }
700 <
701 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
700 >  
701 >  /**
702 >   * getSimulatedAtomTypes
703 >   *
704 >   * Returns an STL set of AtomType* that are actually present in this
705 >   * simulation.  Must query all processors to assemble this information.
706 >   *
707 >   */
708 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
711      Molecule::AtomIterator ai;
712      Atom* atom;
713 <    std::set<AtomType*> atomTypes;
714 <
713 >    set<AtomType*> atomTypes;
714 >    
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 <
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719 <      }
720 <        
719 >      }      
720 >    }    
721 >    
722 > #ifdef IS_MPI
723 >
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726 >    
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731 >
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734 >
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736 >
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741 >
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753  
754 +    // we need a (possibly redundant) set of all found types:
755 +    vector<int> ftGlobal(totalCount);
756 +    
757 +    // now spray out the foundTypes to all the other processors:    
758 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 +                               &ftGlobal[0], &counts[0], &disps[0],
760 +                               MPI::INT);
761 +
762 +    vector<int>::iterator j;
763 +
764 +    // foundIdents is a stl set, so inserting an already found ident
765 +    // will have no effect.
766 +    set<int> foundIdents;
767 +
768 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 +      foundIdents.insert((*j));
770 +    
771 +    // now iterate over the foundIdents and get the actual atom types
772 +    // that correspond to these:
773 +    set<int>::iterator it;
774 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 +      atomTypes.insert( forceField_->getAtomType((*it)) );
776 +
777 + #endif
778 +
779      return atomTypes;        
780    }
781  
782 <  void SimInfo::setupSimType() {
783 <    std::set<AtomType*>::iterator i;
784 <    std::set<AtomType*> atomTypes;
785 <    atomTypes = getUniqueAtomTypes();
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790      
791 <    int useLennardJones = 0;
792 <    int useElectrostatic = 0;
793 <    int useEAM = 0;
794 <    int useCharge = 0;
795 <    int useDirectional = 0;
796 <    int useDipole = 0;
797 <    int useGayBerne = 0;
514 <    int useSticky = 0;
515 <    int useStickyPower = 0;
516 <    int useShape = 0;
517 <    int useFLARB = 0; //it is not in AtomType yet
518 <    int useDirectionalAtom = 0;    
519 <    int useElectrostatics = 0;
520 <    //usePBC and useRF are from simParams
521 <    int usePBC = simParams_->getPBC();
522 <    int useRF = simParams_->getUseRF();
523 <    int useUW = simParams_->getUseUndampedWolf();
524 <    int useDW = simParams_->getUseDampedWolf();
525 <
791 >    set<AtomType*>::iterator i;
792 >    set<AtomType*> atomTypes;
793 >    atomTypes = getSimulatedAtomTypes();    
794 >    bool usesElectrostatic = false;
795 >    bool usesMetallic = false;
796 >    bool usesDirectional = false;
797 >    bool usesFluctuatingCharges =  false;
798      //loop over all of the atom types
799      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 <      useLennardJones |= (*i)->isLennardJones();
801 <      useElectrostatic |= (*i)->isElectrostatic();
802 <      useEAM |= (*i)->isEAM();
803 <      useCharge |= (*i)->isCharge();
532 <      useDirectional |= (*i)->isDirectional();
533 <      useDipole |= (*i)->isDipole();
534 <      useGayBerne |= (*i)->isGayBerne();
535 <      useSticky |= (*i)->isSticky();
536 <      useStickyPower |= (*i)->isStickyPower();
537 <      useShape |= (*i)->isShape();
800 >      usesElectrostatic |= (*i)->isElectrostatic();
801 >      usesMetallic |= (*i)->isMetal();
802 >      usesDirectional |= (*i)->isDirectional();
803 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804      }
805  
806 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
807 <      useDirectionalAtom = 1;
808 <    }
806 > #ifdef IS_MPI
807 >    bool temp;
808 >    temp = usesDirectional;
809 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 >                              MPI::LOR);
811 >        
812 >    temp = usesMetallic;
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >    
816 >    temp = usesElectrostatic;
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819  
820 <    if (useCharge || useDipole) {
821 <      useElectrostatics = 1;
822 <    }
820 >    temp = usesFluctuatingCharges;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 > #else
824  
825 < #ifdef IS_MPI    
826 <    int temp;
825 >    usesDirectionalAtoms_ = usesDirectional;
826 >    usesMetallicAtoms_ = usesMetallic;
827 >    usesElectrostaticAtoms_ = usesElectrostatic;
828 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
829  
830 <    temp = usePBC;
552 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useDirectionalAtom;
555 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useLennardJones;
558 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useElectrostatics;
561 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useCharge;
564 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useDipole;
567 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useSticky;
570 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
571 <
572 <    temp = useStickyPower;
573 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 > #endif
831      
832 <    temp = useGayBerne;
833 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
835 >  }
836  
578    temp = useEAM;
579    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837  
838 <    temp = useShape;
839 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
838 >  vector<int> SimInfo::getGlobalAtomIndices() {
839 >    SimInfo::MoleculeIterator mi;
840 >    Molecule* mol;
841 >    Molecule::AtomIterator ai;
842 >    Atom* atom;
843  
844 <    temp = useFLARB;
585 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
586 <
587 <    temp = useRF;
588 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
589 <
590 <    temp = useUW;
591 <    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
592 <
593 <    temp = useDW;
594 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
844 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
845      
846 < #endif
846 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
847 >      
848 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
849 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
850 >      }
851 >    }
852 >    return GlobalAtomIndices;
853 >  }
854  
598    fInfo_.SIM_uses_PBC = usePBC;    
599    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
600    fInfo_.SIM_uses_LennardJones = useLennardJones;
601    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
602    fInfo_.SIM_uses_Charges = useCharge;
603    fInfo_.SIM_uses_Dipoles = useDipole;
604    fInfo_.SIM_uses_Sticky = useSticky;
605    fInfo_.SIM_uses_StickyPower = useStickyPower;
606    fInfo_.SIM_uses_GayBerne = useGayBerne;
607    fInfo_.SIM_uses_EAM = useEAM;
608    fInfo_.SIM_uses_Shapes = useShape;
609    fInfo_.SIM_uses_FLARB = useFLARB;
610    fInfo_.SIM_uses_RF = useRF;
611    fInfo_.SIM_uses_UW = useUW;
612    fInfo_.SIM_uses_DW = useDW;
855  
856 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
856 >  vector<int> SimInfo::getGlobalGroupIndices() {
857 >    SimInfo::MoleculeIterator mi;
858 >    Molecule* mol;
859 >    Molecule::CutoffGroupIterator ci;
860 >    CutoffGroup* cg;
861  
862 <      if (simParams_->haveDielectric()) {
863 <        fInfo_.dielect = simParams_->getDielectric();
864 <      } else {
865 <        sprintf(painCave.errMsg,
866 <                "SimSetup Error: No Dielectric constant was set.\n"
867 <                "\tYou are trying to use Reaction Field without"
868 <                "\tsetting a dielectric constant!\n");
869 <        painCave.isFatal = 1;
870 <        simError();
871 <      }
626 <        
627 <    } else {
628 <      fInfo_.dielect = 0.0;
862 >    vector<int> GlobalGroupIndices;
863 >    
864 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
865 >      
866 >      //local index of cutoff group is trivial, it only depends on the
867 >      //order of travesing
868 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
869 >           cg = mol->nextCutoffGroup(ci)) {
870 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
871 >      }        
872      }
873 <
873 >    return GlobalGroupIndices;
874    }
875  
633  void SimInfo::setupFortranSim() {
634    int isError;
635    int nExclude;
636    std::vector<int> fortranGlobalGroupMembership;
637    
638    nExclude = exclude_.getSize();
639    isError = 0;
876  
877 <    //globalGroupMembership_ is filled by SimCreator    
878 <    for (int i = 0; i < nGlobalAtoms_; i++) {
643 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
644 <    }
877 >  void SimInfo::prepareTopology() {
878 >    int nExclude, nOneTwo, nOneThree, nOneFour;
879  
880      //calculate mass ratio of cutoff group
647    std::vector<double> mfact;
881      SimInfo::MoleculeIterator mi;
882      Molecule* mol;
883      Molecule::CutoffGroupIterator ci;
884      CutoffGroup* cg;
885      Molecule::AtomIterator ai;
886      Atom* atom;
887 <    double totalMass;
887 >    RealType totalMass;
888  
889 <    //to avoid memory reallocation, reserve enough space for mfact
890 <    mfact.reserve(getNCutoffGroups());
889 >    /**
890 >     * The mass factor is the relative mass of an atom to the total
891 >     * mass of the cutoff group it belongs to.  By default, all atoms
892 >     * are their own cutoff groups, and therefore have mass factors of
893 >     * 1.  We need some special handling for massless atoms, which
894 >     * will be treated as carrying the entire mass of the cutoff
895 >     * group.
896 >     */
897 >    massFactors_.clear();
898 >    massFactors_.resize(getNAtoms(), 1.0);
899      
900      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
901 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
902 >           cg = mol->nextCutoffGroup(ci)) {
903  
904          totalMass = cg->getMass();
905          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 <          mfact.push_back(atom->getMass()/totalMass);
906 >          // Check for massless groups - set mfact to 1 if true
907 >          if (totalMass != 0)
908 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909 >          else
910 >            massFactors_[atom->getLocalIndex()] = 1.0;
911          }
666
912        }      
913      }
914  
915 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
671 <    std::vector<int> identArray;
915 >    // Build the identArray_
916  
917 <    //to avoid memory reallocation, reserve enough space identArray
918 <    identArray.reserve(getNAtoms());
675 <    
917 >    identArray_.clear();
918 >    identArray_.reserve(getNAtoms());    
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 <        identArray.push_back(atom->getIdent());
921 >        identArray_.push_back(atom->getIdent());
922        }
923      }    
681
682    //fill molMembershipArray
683    //molMembershipArray is filled by SimCreator    
684    std::vector<int> molMembershipArray(nGlobalAtoms_);
685    for (int i = 0; i < nGlobalAtoms_; i++) {
686      molMembershipArray[i] = globalMolMembership_[i] + 1;
687    }
924      
925 <    //setup fortran simulation
690 <    int nGlobalExcludes = 0;
691 <    int* globalExcludes = NULL;
692 <    int* excludeList = exclude_.getExcludeList();
693 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
694 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
695 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
925 >    //scan topology
926  
927 <    if( isError ){
928 <
929 <      sprintf( painCave.errMsg,
930 <               "There was an error setting the simulation information in fortran.\n" );
701 <      painCave.isFatal = 1;
702 <      painCave.severity = OOPSE_ERROR;
703 <      simError();
704 <    }
705 <
706 < #ifdef IS_MPI
707 <    sprintf( checkPointMsg,
708 <             "succesfully sent the simulation information to fortran.\n");
709 <    MPIcheckPoint();
710 < #endif // is_mpi
711 <  }
712 <
713 <
714 < #ifdef IS_MPI
715 <  void SimInfo::setupFortranParallel() {
716 <    
717 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
718 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
719 <    std::vector<int> localToGlobalCutoffGroupIndex;
720 <    SimInfo::MoleculeIterator mi;
721 <    Molecule::AtomIterator ai;
722 <    Molecule::CutoffGroupIterator ci;
723 <    Molecule* mol;
724 <    Atom* atom;
725 <    CutoffGroup* cg;
726 <    mpiSimData parallelData;
727 <    int isError;
728 <
729 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
730 <
731 <      //local index(index in DataStorge) of atom is important
732 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
733 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
734 <      }
735 <
736 <      //local index of cutoff group is trivial, it only depends on the order of travesing
737 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
738 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
739 <      }        
740 <        
741 <    }
742 <
743 <    //fill up mpiSimData struct
744 <    parallelData.nMolGlobal = getNGlobalMolecules();
745 <    parallelData.nMolLocal = getNMolecules();
746 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
747 <    parallelData.nAtomsLocal = getNAtoms();
748 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
749 <    parallelData.nGroupsLocal = getNCutoffGroups();
750 <    parallelData.myNode = worldRank;
751 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
752 <
753 <    //pass mpiSimData struct and index arrays to fortran
754 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
755 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
756 <                    &localToGlobalCutoffGroupIndex[0], &isError);
757 <
758 <    if (isError) {
759 <      sprintf(painCave.errMsg,
760 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
761 <      painCave.isFatal = 1;
762 <      simError();
763 <    }
764 <
765 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
766 <    MPIcheckPoint();
927 >    nExclude = excludedInteractions_.getSize();
928 >    nOneTwo = oneTwoInteractions_.getSize();
929 >    nOneThree = oneThreeInteractions_.getSize();
930 >    nOneFour = oneFourInteractions_.getSize();
931  
932 +    int* excludeList = excludedInteractions_.getPairList();
933 +    int* oneTwoList = oneTwoInteractions_.getPairList();
934 +    int* oneThreeList = oneThreeInteractions_.getPairList();
935 +    int* oneFourList = oneFourInteractions_.getPairList();
936  
937 +    topologyDone_ = true;
938    }
939  
771 #endif
772
773  double SimInfo::calcMaxCutoffRadius() {
774
775
776    std::set<AtomType*> atomTypes;
777    std::set<AtomType*>::iterator i;
778    std::vector<double> cutoffRadius;
779
780    //get the unique atom types
781    atomTypes = getUniqueAtomTypes();
782
783    //query the max cutoff radius among these atom types
784    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
786    }
787
788    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
789 #ifdef IS_MPI
790    //pick the max cutoff radius among the processors
791 #endif
792
793    return maxCutoffRadius;
794  }
795
796  void SimInfo::getCutoff(double& rcut, double& rsw) {
797    
798    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
799        
800      if (!simParams_->haveRcut()){
801        sprintf(painCave.errMsg,
802                "SimCreator Warning: No value was set for the cutoffRadius.\n"
803                "\tOOPSE will use a default value of 15.0 angstroms"
804                "\tfor the cutoffRadius.\n");
805        painCave.isFatal = 0;
806        simError();
807        rcut = 15.0;
808      } else{
809        rcut = simParams_->getRcut();
810      }
811
812      if (!simParams_->haveRsw()){
813        sprintf(painCave.errMsg,
814                "SimCreator Warning: No value was set for switchingRadius.\n"
815                "\tOOPSE will use a default value of\n"
816                "\t0.95 * cutoffRadius for the switchingRadius\n");
817        painCave.isFatal = 0;
818        simError();
819        rsw = 0.95 * rcut;
820      } else{
821        rsw = simParams_->getRsw();
822      }
823
824    } else {
825      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
826      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
827        
828      if (simParams_->haveRcut()) {
829        rcut = simParams_->getRcut();
830      } else {
831        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
832        rcut = calcMaxCutoffRadius();
833      }
834
835      if (simParams_->haveRsw()) {
836        rsw  = simParams_->getRsw();
837      } else {
838        rsw = rcut;
839      }
840    
841    }
842  }
843
844  void SimInfo::setupCutoff() {
845    getCutoff(rcut_, rsw_);    
846    double rnblist = rcut_ + 1; // skin of neighbor list
847
848    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
849    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
850  }
851
940    void SimInfo::addProperty(GenericData* genData) {
941      properties_.addProperty(genData);  
942    }
943  
944 <  void SimInfo::removeProperty(const std::string& propName) {
944 >  void SimInfo::removeProperty(const string& propName) {
945      properties_.removeProperty(propName);  
946    }
947  
# Line 861 | Line 949 | namespace oopse {
949      properties_.clearProperties();
950    }
951  
952 <  std::vector<std::string> SimInfo::getPropertyNames() {
952 >  vector<string> SimInfo::getPropertyNames() {
953      return properties_.getPropertyNames();  
954    }
955        
956 <  std::vector<GenericData*> SimInfo::getProperties() {
956 >  vector<GenericData*> SimInfo::getProperties() {
957      return properties_.getProperties();
958    }
959  
960 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
960 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
961      return properties_.getPropertyByName(propName);
962    }
963  
# Line 883 | Line 971 | namespace oopse {
971      Molecule* mol;
972      RigidBody* rb;
973      Atom* atom;
974 +    CutoffGroup* cg;
975      SimInfo::MoleculeIterator mi;
976      Molecule::RigidBodyIterator rbIter;
977 <    Molecule::AtomIterator atomIter;;
977 >    Molecule::AtomIterator atomIter;
978 >    Molecule::CutoffGroupIterator cgIter;
979  
980      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
981          
# Line 896 | Line 986 | namespace oopse {
986        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989 +
990 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
991 +        cg->setSnapshotManager(sman_);
992 +      }
993      }    
994      
995    }
996  
903  Vector3d SimInfo::getComVel(){
904    SimInfo::MoleculeIterator i;
905    Molecule* mol;
997  
998 <    Vector3d comVel(0.0);
908 <    double totalMass = 0.0;
909 <    
910 <
911 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
912 <      double mass = mol->getMass();
913 <      totalMass += mass;
914 <      comVel += mass * mol->getComVel();
915 <    }  
998 >  ostream& operator <<(ostream& o, SimInfo& info) {
999  
917 #ifdef IS_MPI
918    double tmpMass = totalMass;
919    Vector3d tmpComVel(comVel);    
920    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
921    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
922 #endif
923
924    comVel /= totalMass;
925
926    return comVel;
927  }
928
929  Vector3d SimInfo::getCom(){
930    SimInfo::MoleculeIterator i;
931    Molecule* mol;
932
933    Vector3d com(0.0);
934    double totalMass = 0.0;
935    
936    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
937      double mass = mol->getMass();
938      totalMass += mass;
939      com += mass * mol->getCom();
940    }  
941
942 #ifdef IS_MPI
943    double tmpMass = totalMass;
944    Vector3d tmpCom(com);    
945    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
946    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
947 #endif
948
949    com /= totalMass;
950
951    return com;
952
953  }        
954
955  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
956
1000      return o;
1001    }
1002    
1003 <  
1004 <   /*
1005 <   Returns center of mass and center of mass velocity in one function call.
1006 <   */
1007 <  
1008 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1009 <      SimInfo::MoleculeIterator i;
1010 <      Molecule* mol;
1011 <      
1012 <    
1013 <      double totalMass = 0.0;
1014 <    
1003 >  
1004 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005 >    return IOIndexToIntegrableObject.at(index);
1006 >  }
1007 >  
1008 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009 >    IOIndexToIntegrableObject= v;
1010 >  }
1011 > /*
1012 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1014 >      sdByGlobalIndex_ = v;
1015 >    }
1016  
1017 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1018 <         double mass = mol->getMass();
1019 <         totalMass += mass;
1020 <         com += mass * mol->getCom();
1021 <         comVel += mass * mol->getComVel();          
1022 <      }  
1023 <      
1017 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1018 >      //assert(index < nAtoms_ + nRigidBodies_);
1019 >      return sdByGlobalIndex_.at(index);
1020 >    }  
1021 > */  
1022 >  int SimInfo::getNGlobalConstraints() {
1023 >    int nGlobalConstraints;
1024   #ifdef IS_MPI
1025 <      double tmpMass = totalMass;
1026 <      Vector3d tmpCom(com);  
1027 <      Vector3d tmpComVel(comVel);
1028 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
985 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1025 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1026 >                  MPI_COMM_WORLD);    
1027 > #else
1028 >    nGlobalConstraints =  nConstraints_;
1029   #endif
1030 <      
1031 <      com /= totalMass;
990 <      comVel /= totalMass;
991 <   }        
992 <  
993 <   /*
994 <   Return intertia tensor for entire system and angular momentum Vector.
1030 >    return nGlobalConstraints;
1031 >  }
1032  
1033 + }//end namespace OpenMD
1034  
997       [  Ixx -Ixy  -Ixz ]
998  J =| -Iyx  Iyy  -Iyz |
999       [ -Izx -Iyz   Izz ]
1000    */
1001
1002   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1003      
1004
1005      double xx = 0.0;
1006      double yy = 0.0;
1007      double zz = 0.0;
1008      double xy = 0.0;
1009      double xz = 0.0;
1010      double yz = 0.0;
1011      Vector3d com(0.0);
1012      Vector3d comVel(0.0);
1013      
1014      getComAll(com, comVel);
1015      
1016      SimInfo::MoleculeIterator i;
1017      Molecule* mol;
1018      
1019      Vector3d thisq(0.0);
1020      Vector3d thisv(0.0);
1021
1022      double thisMass = 0.0;
1023    
1024      
1025      
1026  
1027      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1028        
1029         thisq = mol->getCom()-com;
1030         thisv = mol->getComVel()-comVel;
1031         thisMass = mol->getMass();
1032         // Compute moment of intertia coefficients.
1033         xx += thisq[0]*thisq[0]*thisMass;
1034         yy += thisq[1]*thisq[1]*thisMass;
1035         zz += thisq[2]*thisq[2]*thisMass;
1036        
1037         // compute products of intertia
1038         xy += thisq[0]*thisq[1]*thisMass;
1039         xz += thisq[0]*thisq[2]*thisMass;
1040         yz += thisq[1]*thisq[2]*thisMass;
1041            
1042         angularMomentum += cross( thisq, thisv ) * thisMass;
1043            
1044      }  
1045      
1046      
1047      inertiaTensor(0,0) = yy + zz;
1048      inertiaTensor(0,1) = -xy;
1049      inertiaTensor(0,2) = -xz;
1050      inertiaTensor(1,0) = -xy;
1051      inertiaTensor(1,1) = xx + zz;
1052      inertiaTensor(1,2) = -yz;
1053      inertiaTensor(2,0) = -xz;
1054      inertiaTensor(2,1) = -yz;
1055      inertiaTensor(2,2) = xx + yy;
1056      
1057 #ifdef IS_MPI
1058      Mat3x3d tmpI(inertiaTensor);
1059      Vector3d tmpAngMom;
1060      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1061      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1062 #endif
1063              
1064      return;
1065   }
1066
1067   //Returns the angular momentum of the system
1068   Vector3d SimInfo::getAngularMomentum(){
1069      
1070      Vector3d com(0.0);
1071      Vector3d comVel(0.0);
1072      Vector3d angularMomentum(0.0);
1073      
1074      getComAll(com,comVel);
1075      
1076      SimInfo::MoleculeIterator i;
1077      Molecule* mol;
1078      
1079      Vector3d thisr(0.0);
1080      Vector3d thisp(0.0);
1081      
1082      double thisMass;
1083      
1084      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1085        thisMass = mol->getMass();
1086        thisr = mol->getCom()-com;
1087        thisp = (mol->getComVel()-comVel)*thisMass;
1088        
1089        angularMomentum += cross( thisr, thisp );
1090        
1091      }  
1092      
1093 #ifdef IS_MPI
1094      Vector3d tmpAngMom;
1095      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1096 #endif
1097      
1098      return angularMomentum;
1099   }
1100  
1101  
1102 }//end namespace oopse
1103

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 580 by chrisfen, Tue Aug 30 18:23:50 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines