ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
79 <    calcBoxDipole_(false), useAtomicVirial_(true) {
80 <
81 <
82 <      MoleculeStamp* molStamp;
83 <      int nMolWithSameStamp;
84 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
85 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
86 <      CutoffGroupStamp* cgStamp;    
87 <      RigidBodyStamp* rbStamp;
88 <      int nRigidAtoms = 0;
89 <
90 <      std::vector<Component*> components = simParams->getComponents();
91 <      
92 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
93 <        molStamp = (*i)->getMoleculeStamp();
94 <        nMolWithSameStamp = (*i)->getNMol();
95 <        
96 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
97 <
98 <        //calculate atoms in molecules
99 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 <
101 <        //calculate atoms in cutoff groups
102 <        int nAtomsInGroups = 0;
103 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104 <        
105 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 <          cgStamp = molStamp->getCutoffGroupStamp(j);
107 <          nAtomsInGroups += cgStamp->getNMembers();
108 <        }
109 <
110 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111 <
112 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 <
114 <        //calculate atoms in rigid bodies
115 <        int nAtomsInRigidBodies = 0;
116 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <          rbStamp = molStamp->getRigidBodyStamp(j);
120 <          nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
143 <      }
144 <
145 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
146 <      //group therefore the total number of cutoff groups in the system is
147 <      //equal to the total number of atoms minus number of atoms belong to
148 <      //cutoff group defined in meta-data file plus the number of cutoff
149 <      //groups defined in meta-data file
150 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151 <
152 <      //every free atom (atom does not belong to rigid bodies) is an
153 <      //integrable object therefore the total number of integrable objects
154 <      //in the system is equal to the total number of atoms minus number of
155 <      //atoms belong to rigid body defined in meta-data file plus the number
156 <      //of rigid bodies defined in meta-data file
157 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158 <                                                + nGlobalRigidBodies_;
159 <  
160 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
# Line 173 | Line 156 | namespace oopse {
156      delete forceField_;
157    }
158  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
# Line 201 | Line 174 | namespace oopse {
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 228 | Line 201 | namespace oopse {
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 237 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
240
241
213    }    
214  
215          
# Line 254 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234 <    StuntDouble* integrableObject;
234 >    StuntDouble* sd;
235 >    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 +           sd = mol->nextIntegrableObject(j)) {
244 +
245          ndf_local += 3;
246  
247 <        if (integrableObject->isDirectional()) {
248 <          if (integrableObject->isLinear()) {
247 >        if (sd->isDirectional()) {
248 >          if (sd->isLinear()) {
249              ndf_local += 2;
250            } else {
251              ndf_local += 3;
252            }
253          }
254 <            
254 >      }
255 >
256 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 >           atom = mol->nextFluctuatingCharge(k)) {
258 >        if (atom->isFluctuatingCharge()) {
259 >          nfq_local++;
260 >        }
261        }
262      }
263      
264 +    ndfLocal_ = ndf_local;
265 +
266      // n_constraints is local, so subtract them on each processor
267      ndf_local -= nConstraints_;
268  
269   #ifdef IS_MPI
270      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272   #else
273      ndf_ = ndf_local;
274 +    nGlobalFluctuatingCharges_ = nfq_local;
275   #endif
276  
277      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 302 | Line 288 | namespace oopse {
288   #endif
289      return fdf_;
290    }
291 +  
292 +  unsigned int SimInfo::getNLocalCutoffGroups(){
293 +    int nLocalCutoffAtoms = 0;
294 +    Molecule* mol;
295 +    MoleculeIterator mi;
296 +    CutoffGroup* cg;
297 +    Molecule::CutoffGroupIterator ci;
298      
299 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
300 +      
301 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
302 +           cg = mol->nextCutoffGroup(ci)) {
303 +        nLocalCutoffAtoms += cg->getNumAtom();
304 +        
305 +      }        
306 +    }
307 +    
308 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
309 +  }
310 +    
311    void SimInfo::calcNdfRaw() {
312      int ndfRaw_local;
313  
314      MoleculeIterator i;
315 <    std::vector<StuntDouble*>::iterator j;
315 >    vector<StuntDouble*>::iterator j;
316      Molecule* mol;
317 <    StuntDouble* integrableObject;
317 >    StuntDouble* sd;
318  
319      // Raw degrees of freedom that we have to set
320      ndfRaw_local = 0;
321      
322      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 +           sd = mol->nextIntegrableObject(j)) {
326 +
327          ndfRaw_local += 3;
328  
329 <        if (integrableObject->isDirectional()) {
330 <          if (integrableObject->isLinear()) {
329 >        if (sd->isDirectional()) {
330 >          if (sd->isLinear()) {
331              ndfRaw_local += 2;
332            } else {
333              ndfRaw_local += 3;
# Line 354 | Line 360 | namespace oopse {
360  
361    }
362  
363 <  void SimInfo::addExcludePairs(Molecule* mol) {
364 <    std::vector<Bond*>::iterator bondIter;
365 <    std::vector<Bend*>::iterator bendIter;
366 <    std::vector<Torsion*>::iterator torsionIter;
367 <    std::vector<Inversion*>::iterator inversionIter;
363 >  void SimInfo::addInteractionPairs(Molecule* mol) {
364 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
365 >    vector<Bond*>::iterator bondIter;
366 >    vector<Bend*>::iterator bendIter;
367 >    vector<Torsion*>::iterator torsionIter;
368 >    vector<Inversion*>::iterator inversionIter;
369      Bond* bond;
370      Bend* bend;
371      Torsion* torsion;
# Line 368 | Line 375 | namespace oopse {
375      int c;
376      int d;
377  
378 <    std::map<int, std::set<int> > atomGroups;
378 >    // atomGroups can be used to add special interaction maps between
379 >    // groups of atoms that are in two separate rigid bodies.
380 >    // However, most site-site interactions between two rigid bodies
381 >    // are probably not special, just the ones between the physically
382 >    // bonded atoms.  Interactions *within* a single rigid body should
383 >    // always be excluded.  These are done at the bottom of this
384 >    // function.
385  
386 +    map<int, set<int> > atomGroups;
387      Molecule::RigidBodyIterator rbIter;
388      RigidBody* rb;
389      Molecule::IntegrableObjectIterator ii;
390 <    StuntDouble* integrableObject;
390 >    StuntDouble* sd;
391      
392 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
393 <           integrableObject = mol->nextIntegrableObject(ii)) {
394 <
395 <      if (integrableObject->isRigidBody()) {
396 <          rb = static_cast<RigidBody*>(integrableObject);
397 <          std::vector<Atom*> atoms = rb->getAtoms();
398 <          std::set<int> rigidAtoms;
399 <          for (int i = 0; i < atoms.size(); ++i) {
400 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
401 <          }
402 <          for (int i = 0; i < atoms.size(); ++i) {
403 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
404 <          }      
392 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 >         sd = mol->nextIntegrableObject(ii)) {
394 >      
395 >      if (sd->isRigidBody()) {
396 >        rb = static_cast<RigidBody*>(sd);
397 >        vector<Atom*> atoms = rb->getAtoms();
398 >        set<int> rigidAtoms;
399 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
400 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
401 >        }
402 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
404 >        }      
405        } else {
406 <        std::set<int> oneAtomSet;
407 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
408 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
406 >        set<int> oneAtomSet;
407 >        oneAtomSet.insert(sd->getGlobalIndex());
408 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
409        }
410      }  
411 +          
412 +    for (bond= mol->beginBond(bondIter); bond != NULL;
413 +         bond = mol->nextBond(bondIter)) {
414  
398    
399    
400    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
415        a = bond->getAtomA()->getGlobalIndex();
416 <      b = bond->getAtomB()->getGlobalIndex();        
417 <      exclude_.addPair(a, b);
416 >      b = bond->getAtomB()->getGlobalIndex();  
417 >    
418 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
419 >        oneTwoInteractions_.addPair(a, b);
420 >      } else {
421 >        excludedInteractions_.addPair(a, b);
422 >      }
423      }
424  
425 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
425 >    for (bend= mol->beginBend(bendIter); bend != NULL;
426 >         bend = mol->nextBend(bendIter)) {
427 >
428        a = bend->getAtomA()->getGlobalIndex();
429        b = bend->getAtomB()->getGlobalIndex();        
430        c = bend->getAtomC()->getGlobalIndex();
410      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413
414      exclude_.addPairs(rigidSetA, rigidSetB);
415      exclude_.addPairs(rigidSetA, rigidSetC);
416      exclude_.addPairs(rigidSetB, rigidSetC);
431        
432 <      //exclude_.addPair(a, b);
433 <      //exclude_.addPair(a, c);
434 <      //exclude_.addPair(b, c);        
432 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
433 >        oneTwoInteractions_.addPair(a, b);      
434 >        oneTwoInteractions_.addPair(b, c);
435 >      } else {
436 >        excludedInteractions_.addPair(a, b);
437 >        excludedInteractions_.addPair(b, c);
438 >      }
439 >
440 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
441 >        oneThreeInteractions_.addPair(a, c);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >      }
445      }
446  
447 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
447 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
448 >         torsion = mol->nextTorsion(torsionIter)) {
449 >
450        a = torsion->getAtomA()->getGlobalIndex();
451        b = torsion->getAtomB()->getGlobalIndex();        
452        c = torsion->getAtomC()->getGlobalIndex();        
453 <      d = torsion->getAtomD()->getGlobalIndex();        
428 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
453 >      d = torsion->getAtomD()->getGlobalIndex();      
454  
455 <      exclude_.addPairs(rigidSetA, rigidSetB);
456 <      exclude_.addPairs(rigidSetA, rigidSetC);
457 <      exclude_.addPairs(rigidSetA, rigidSetD);
458 <      exclude_.addPairs(rigidSetB, rigidSetC);
459 <      exclude_.addPairs(rigidSetB, rigidSetD);
460 <      exclude_.addPairs(rigidSetC, rigidSetD);
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(b, c);
458 >        oneTwoInteractions_.addPair(c, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(b, c);
462 >        excludedInteractions_.addPair(c, d);
463 >      }
464  
465 <      /*
466 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
467 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
468 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
469 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
470 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
471 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
472 <        
473 <      
474 <      exclude_.addPair(a, b);
475 <      exclude_.addPair(a, c);
476 <      exclude_.addPair(a, d);
477 <      exclude_.addPair(b, c);
453 <      exclude_.addPair(b, d);
454 <      exclude_.addPair(c, d);        
455 <      */
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(a, c);      
467 >        oneThreeInteractions_.addPair(b, d);      
468 >      } else {
469 >        excludedInteractions_.addPair(a, c);
470 >        excludedInteractions_.addPair(b, d);
471 >      }
472 >
473 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
474 >        oneFourInteractions_.addPair(a, d);      
475 >      } else {
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478      }
479  
480      for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
481           inversion = mol->nextInversion(inversionIter)) {
482 +
483        a = inversion->getAtomA()->getGlobalIndex();
484        b = inversion->getAtomB()->getGlobalIndex();        
485        c = inversion->getAtomC()->getGlobalIndex();        
486        d = inversion->getAtomD()->getGlobalIndex();        
464      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
487  
488 <      exclude_.addPairs(rigidSetA, rigidSetB);
489 <      exclude_.addPairs(rigidSetA, rigidSetC);
490 <      exclude_.addPairs(rigidSetA, rigidSetD);
491 <      exclude_.addPairs(rigidSetB, rigidSetC);
492 <      exclude_.addPairs(rigidSetB, rigidSetD);
493 <      exclude_.addPairs(rigidSetC, rigidSetD);
488 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
489 >        oneTwoInteractions_.addPair(a, b);      
490 >        oneTwoInteractions_.addPair(a, c);
491 >        oneTwoInteractions_.addPair(a, d);
492 >      } else {
493 >        excludedInteractions_.addPair(a, b);
494 >        excludedInteractions_.addPair(a, c);
495 >        excludedInteractions_.addPair(a, d);
496 >      }
497  
498 <      /*
499 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
500 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
501 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
502 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
503 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
504 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
505 <        
506 <      
485 <      exclude_.addPair(a, b);
486 <      exclude_.addPair(a, c);
487 <      exclude_.addPair(a, d);
488 <      exclude_.addPair(b, c);
489 <      exclude_.addPair(b, d);
490 <      exclude_.addPair(c, d);        
491 <      */
498 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
499 >        oneThreeInteractions_.addPair(b, c);    
500 >        oneThreeInteractions_.addPair(b, d);    
501 >        oneThreeInteractions_.addPair(c, d);      
502 >      } else {
503 >        excludedInteractions_.addPair(b, c);
504 >        excludedInteractions_.addPair(b, d);
505 >        excludedInteractions_.addPair(c, d);
506 >      }
507      }
508  
509 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
510 <      std::vector<Atom*> atoms = rb->getAtoms();
511 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
512 <        for (int j = i + 1; j < atoms.size(); ++j) {
509 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
510 >         rb = mol->nextRigidBody(rbIter)) {
511 >      vector<Atom*> atoms = rb->getAtoms();
512 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
513 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
514            a = atoms[i]->getGlobalIndex();
515            b = atoms[j]->getGlobalIndex();
516 <          exclude_.addPair(a, b);
516 >          excludedInteractions_.addPair(a, b);
517          }
518        }
519      }        
520  
521    }
522  
523 <  void SimInfo::removeExcludePairs(Molecule* mol) {
524 <    std::vector<Bond*>::iterator bondIter;
525 <    std::vector<Bend*>::iterator bendIter;
526 <    std::vector<Torsion*>::iterator torsionIter;
527 <    std::vector<Inversion*>::iterator inversionIter;
523 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
524 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
525 >    vector<Bond*>::iterator bondIter;
526 >    vector<Bend*>::iterator bendIter;
527 >    vector<Torsion*>::iterator torsionIter;
528 >    vector<Inversion*>::iterator inversionIter;
529      Bond* bond;
530      Bend* bend;
531      Torsion* torsion;
# Line 518 | Line 535 | namespace oopse {
535      int c;
536      int d;
537  
538 <    std::map<int, std::set<int> > atomGroups;
522 <
538 >    map<int, set<int> > atomGroups;
539      Molecule::RigidBodyIterator rbIter;
540      RigidBody* rb;
541      Molecule::IntegrableObjectIterator ii;
542 <    StuntDouble* integrableObject;
542 >    StuntDouble* sd;
543      
544 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
545 <           integrableObject = mol->nextIntegrableObject(ii)) {
546 <
547 <      if (integrableObject->isRigidBody()) {
548 <          rb = static_cast<RigidBody*>(integrableObject);
549 <          std::vector<Atom*> atoms = rb->getAtoms();
550 <          std::set<int> rigidAtoms;
551 <          for (int i = 0; i < atoms.size(); ++i) {
552 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 <          }
554 <          for (int i = 0; i < atoms.size(); ++i) {
555 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 <          }      
544 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 >         sd = mol->nextIntegrableObject(ii)) {
546 >      
547 >      if (sd->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(sd);
549 >        vector<Atom*> atoms = rb->getAtoms();
550 >        set<int> rigidAtoms;
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 >        }
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 >        }      
557        } else {
558 <        std::set<int> oneAtomSet;
559 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
560 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
558 >        set<int> oneAtomSet;
559 >        oneAtomSet.insert(sd->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
561        }
562      }  
563  
564 <    
565 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
564 >    for (bond= mol->beginBond(bondIter); bond != NULL;
565 >         bond = mol->nextBond(bondIter)) {
566 >      
567        a = bond->getAtomA()->getGlobalIndex();
568 <      b = bond->getAtomB()->getGlobalIndex();        
569 <      exclude_.removePair(a, b);
568 >      b = bond->getAtomB()->getGlobalIndex();  
569 >    
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >      }
575      }
576  
577 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
577 >    for (bend= mol->beginBend(bendIter); bend != NULL;
578 >         bend = mol->nextBend(bendIter)) {
579 >
580        a = bend->getAtomA()->getGlobalIndex();
581        b = bend->getAtomB()->getGlobalIndex();        
582        c = bend->getAtomC()->getGlobalIndex();
559
560      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563
564      exclude_.removePairs(rigidSetA, rigidSetB);
565      exclude_.removePairs(rigidSetA, rigidSetC);
566      exclude_.removePairs(rigidSetB, rigidSetC);
583        
584 <      //exclude_.removePair(a, b);
585 <      //exclude_.removePair(a, c);
586 <      //exclude_.removePair(b, c);        
584 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 >        oneTwoInteractions_.removePair(a, b);      
586 >        oneTwoInteractions_.removePair(b, c);
587 >      } else {
588 >        excludedInteractions_.removePair(a, b);
589 >        excludedInteractions_.removePair(b, c);
590 >      }
591 >
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >      } else {
595 >        excludedInteractions_.removePair(a, c);
596 >      }
597      }
598  
599 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
599 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 >         torsion = mol->nextTorsion(torsionIter)) {
601 >
602        a = torsion->getAtomA()->getGlobalIndex();
603        b = torsion->getAtomB()->getGlobalIndex();        
604        c = torsion->getAtomC()->getGlobalIndex();        
605 <      d = torsion->getAtomD()->getGlobalIndex();        
605 >      d = torsion->getAtomD()->getGlobalIndex();      
606 >  
607 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 >        oneTwoInteractions_.removePair(a, b);      
609 >        oneTwoInteractions_.removePair(b, c);
610 >        oneTwoInteractions_.removePair(c, d);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >        excludedInteractions_.removePair(c, d);
615 >      }
616  
617 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
618 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
619 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
620 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
617 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 >        oneThreeInteractions_.removePair(a, c);      
619 >        oneThreeInteractions_.removePair(b, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(b, d);
623 >      }
624  
625 <      exclude_.removePairs(rigidSetA, rigidSetB);
626 <      exclude_.removePairs(rigidSetA, rigidSetC);
627 <      exclude_.removePairs(rigidSetA, rigidSetD);
628 <      exclude_.removePairs(rigidSetB, rigidSetC);
629 <      exclude_.removePairs(rigidSetB, rigidSetD);
589 <      exclude_.removePairs(rigidSetC, rigidSetD);
590 <
591 <      /*
592 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598 <
599 <      
600 <      exclude_.removePair(a, b);
601 <      exclude_.removePair(a, c);
602 <      exclude_.removePair(a, d);
603 <      exclude_.removePair(b, c);
604 <      exclude_.removePair(b, d);
605 <      exclude_.removePair(c, d);        
606 <      */
625 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 >        oneFourInteractions_.removePair(a, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(a, d);
629 >      }
630      }
631  
632 <    for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
632 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 >         inversion = mol->nextInversion(inversionIter)) {
634 >
635        a = inversion->getAtomA()->getGlobalIndex();
636        b = inversion->getAtomB()->getGlobalIndex();        
637        c = inversion->getAtomC()->getGlobalIndex();        
638        d = inversion->getAtomD()->getGlobalIndex();        
639  
640 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
641 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
642 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
643 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
640 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 >        oneTwoInteractions_.removePair(a, b);      
642 >        oneTwoInteractions_.removePair(a, c);
643 >        oneTwoInteractions_.removePair(a, d);
644 >      } else {
645 >        excludedInteractions_.removePair(a, b);
646 >        excludedInteractions_.removePair(a, c);
647 >        excludedInteractions_.removePair(a, d);
648 >      }
649  
650 <      exclude_.removePairs(rigidSetA, rigidSetB);
651 <      exclude_.removePairs(rigidSetA, rigidSetC);
652 <      exclude_.removePairs(rigidSetA, rigidSetD);
653 <      exclude_.removePairs(rigidSetB, rigidSetC);
654 <      exclude_.removePairs(rigidSetB, rigidSetD);
655 <      exclude_.removePairs(rigidSetC, rigidSetD);
656 <
657 <      /*
658 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634 <
635 <      
636 <      exclude_.removePair(a, b);
637 <      exclude_.removePair(a, c);
638 <      exclude_.removePair(a, d);
639 <      exclude_.removePair(b, c);
640 <      exclude_.removePair(b, d);
641 <      exclude_.removePair(c, d);        
642 <      */
650 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 >        oneThreeInteractions_.removePair(b, c);    
652 >        oneThreeInteractions_.removePair(b, d);    
653 >        oneThreeInteractions_.removePair(c, d);      
654 >      } else {
655 >        excludedInteractions_.removePair(b, c);
656 >        excludedInteractions_.removePair(b, d);
657 >        excludedInteractions_.removePair(c, d);
658 >      }
659      }
660  
661 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
662 <      std::vector<Atom*> atoms = rb->getAtoms();
663 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
664 <        for (int j = i + 1; j < atoms.size(); ++j) {
661 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 >         rb = mol->nextRigidBody(rbIter)) {
663 >      vector<Atom*> atoms = rb->getAtoms();
664 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666            a = atoms[i]->getGlobalIndex();
667            b = atoms[j]->getGlobalIndex();
668 <          exclude_.removePair(a, b);
668 >          excludedInteractions_.removePair(a, b);
669          }
670        }
671      }        
672 <
672 >    
673    }
674 <
675 <
674 >  
675 >  
676    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677      int curStampId;
678 <
678 >    
679      //index from 0
680      curStampId = moleculeStamps_.size();
681  
# Line 666 | Line 683 | namespace oopse {
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684    }
685  
669  void SimInfo::update() {
686  
687 <    setupSimType();
688 <
689 < #ifdef IS_MPI
690 <    setupFortranParallel();
691 < #endif
692 <
693 <    setupFortranSim();
694 <
695 <    //setup fortran force field
680 <    /** @deprecate */    
681 <    int isError = 0;
682 <    
683 <    setupCutoff();
684 <    
685 <    setupElectrostaticSummationMethod( isError );
686 <    setupSwitchingFunction();
687 <    setupAccumulateBoxDipole();
688 <
689 <    if(isError){
690 <      sprintf( painCave.errMsg,
691 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
692 <      painCave.isFatal = 1;
693 <      simError();
694 <    }
695 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699
700    fortranInitialized_ = true;
699    }
700 <
701 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
700 >  
701 >  /**
702 >   * getSimulatedAtomTypes
703 >   *
704 >   * Returns an STL set of AtomType* that are actually present in this
705 >   * simulation.  Must query all processors to assemble this information.
706 >   *
707 >   */
708 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
711      Molecule::AtomIterator ai;
712      Atom* atom;
713 <    std::set<AtomType*> atomTypes;
714 <
713 >    set<AtomType*> atomTypes;
714 >    
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 <
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719 <      }
720 <        
721 <    }
719 >      }      
720 >    }    
721 >    
722 > #ifdef IS_MPI
723  
724 <    return atomTypes;        
725 <  }
720 <
721 <  void SimInfo::setupSimType() {
722 <    std::set<AtomType*>::iterator i;
723 <    std::set<AtomType*> atomTypes;
724 <    atomTypes = getUniqueAtomTypes();
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726      
727 <    int useLennardJones = 0;
728 <    int useElectrostatic = 0;
729 <    int useEAM = 0;
730 <    int useSC = 0;
730 <    int useCharge = 0;
731 <    int useDirectional = 0;
732 <    int useDipole = 0;
733 <    int useGayBerne = 0;
734 <    int useSticky = 0;
735 <    int useStickyPower = 0;
736 <    int useShape = 0;
737 <    int useFLARB = 0; //it is not in AtomType yet
738 <    int useDirectionalAtom = 0;    
739 <    int useElectrostatics = 0;
740 <    //usePBC and useRF are from simParams
741 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
742 <    int useRF;
743 <    int useSF;
744 <    int useSP;
745 <    int useBoxDipole;
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    std::string myMethod;
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734  
735 <    // set the useRF logical
750 <    useRF = 0;
751 <    useSF = 0;
752 <    useSP = 0;
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 +    // we need arrays to hold the counts and displacement vectors for
738 +    // all processors
739 +    vector<int> counts(nproc, 0);
740 +    vector<int> disps(nproc, 0);
741  
742 <    if (simParams_->haveElectrostaticSummationMethod()) {
743 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
744 <      toUpper(myMethod);
745 <      if (myMethod == "REACTION_FIELD"){
746 <        useRF = 1;
747 <      } else if (myMethod == "SHIFTED_FORCE"){
748 <        useSF = 1;
749 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
750 <        useSP = 1;
751 <      }
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753 +
754 +    // we need a (possibly redundant) set of all found types:
755 +    vector<int> ftGlobal(totalCount);
756      
757 <    if (simParams_->haveAccumulateBoxDipole())
758 <      if (simParams_->getAccumulateBoxDipole())
759 <        useBoxDipole = 1;
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
762 >    vector<int>::iterator j;
763  
764 <    //loop over all of the atom types
765 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
766 <      useLennardJones |= (*i)->isLennardJones();
776 <      useElectrostatic |= (*i)->isElectrostatic();
777 <      useEAM |= (*i)->isEAM();
778 <      useSC |= (*i)->isSC();
779 <      useCharge |= (*i)->isCharge();
780 <      useDirectional |= (*i)->isDirectional();
781 <      useDipole |= (*i)->isDipole();
782 <      useGayBerne |= (*i)->isGayBerne();
783 <      useSticky |= (*i)->isSticky();
784 <      useStickyPower |= (*i)->isStickyPower();
785 <      useShape |= (*i)->isShape();
786 <    }
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767  
768 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
769 <      useDirectionalAtom = 1;
770 <    }
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770 >    
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778  
779 <    if (useCharge || useDipole) {
780 <      useElectrostatics = 1;
779 >    return atomTypes;        
780 >  }
781 >
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790 >    
791 >    set<AtomType*>::iterator i;
792 >    set<AtomType*> atomTypes;
793 >    atomTypes = getSimulatedAtomTypes();    
794 >    bool usesElectrostatic = false;
795 >    bool usesMetallic = false;
796 >    bool usesDirectional = false;
797 >    bool usesFluctuatingCharges =  false;
798 >    //loop over all of the atom types
799 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 >      usesElectrostatic |= (*i)->isElectrostatic();
801 >      usesMetallic |= (*i)->isMetal();
802 >      usesDirectional |= (*i)->isDirectional();
803 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804      }
805  
806 < #ifdef IS_MPI    
807 <    int temp;
806 > #ifdef IS_MPI
807 >    bool temp;
808 >    temp = usesDirectional;
809 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 >                              MPI::LOR);
811 >        
812 >    temp = usesMetallic;
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >    
816 >    temp = usesElectrostatic;
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819  
820 <    temp = usePBC;
821 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820 >    temp = usesFluctuatingCharges;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 > #else
824  
825 <    temp = useDirectionalAtom;
826 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825 >    usesDirectionalAtoms_ = usesDirectional;
826 >    usesMetallicAtoms_ = usesMetallic;
827 >    usesElectrostaticAtoms_ = usesElectrostatic;
828 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
829  
830 <    temp = useLennardJones;
831 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 > #endif
831 >    
832 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
835 >  }
836  
808    temp = useElectrostatics;
809    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837  
838 <    temp = useCharge;
839 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838 >  vector<int> SimInfo::getGlobalAtomIndices() {
839 >    SimInfo::MoleculeIterator mi;
840 >    Molecule* mol;
841 >    Molecule::AtomIterator ai;
842 >    Atom* atom;
843  
844 <    temp = useDipole;
815 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
817 <    temp = useSticky;
818 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 <
820 <    temp = useStickyPower;
821 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
844 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
845      
846 <    temp = useGayBerne;
847 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
846 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
847 >      
848 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
849 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
850 >      }
851 >    }
852 >    return GlobalAtomIndices;
853 >  }
854  
826    temp = useEAM;
827    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
855  
856 <    temp = useSC;
857 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
858 <    
859 <    temp = useShape;
860 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
856 >  vector<int> SimInfo::getGlobalGroupIndices() {
857 >    SimInfo::MoleculeIterator mi;
858 >    Molecule* mol;
859 >    Molecule::CutoffGroupIterator ci;
860 >    CutoffGroup* cg;
861  
862 <    temp = useFLARB;
863 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 <
865 <    temp = useRF;
866 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
867 <
868 <    temp = useSF;
869 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
870 <
871 <    temp = useSP;
872 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
873 <
847 <    temp = useBoxDipole;
848 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
849 <
850 <    temp = useAtomicVirial_;
851 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
852 <
853 < #endif
854 <
855 <    fInfo_.SIM_uses_PBC = usePBC;    
856 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
857 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
858 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
859 <    fInfo_.SIM_uses_Charges = useCharge;
860 <    fInfo_.SIM_uses_Dipoles = useDipole;
861 <    fInfo_.SIM_uses_Sticky = useSticky;
862 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
863 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
864 <    fInfo_.SIM_uses_EAM = useEAM;
865 <    fInfo_.SIM_uses_SC = useSC;
866 <    fInfo_.SIM_uses_Shapes = useShape;
867 <    fInfo_.SIM_uses_FLARB = useFLARB;
868 <    fInfo_.SIM_uses_RF = useRF;
869 <    fInfo_.SIM_uses_SF = useSF;
870 <    fInfo_.SIM_uses_SP = useSP;
871 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
862 >    vector<int> GlobalGroupIndices;
863 >    
864 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
865 >      
866 >      //local index of cutoff group is trivial, it only depends on the
867 >      //order of travesing
868 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
869 >           cg = mol->nextCutoffGroup(ci)) {
870 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
871 >      }        
872 >    }
873 >    return GlobalGroupIndices;
874    }
875  
875  void SimInfo::setupFortranSim() {
876    int isError;
877    int nExclude;
878    std::vector<int> fortranGlobalGroupMembership;
879    
880    nExclude = exclude_.getSize();
881    isError = 0;
876  
877 <    //globalGroupMembership_ is filled by SimCreator    
878 <    for (int i = 0; i < nGlobalAtoms_; i++) {
885 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
886 <    }
877 >  void SimInfo::prepareTopology() {
878 >    int nExclude, nOneTwo, nOneThree, nOneFour;
879  
880      //calculate mass ratio of cutoff group
889    std::vector<RealType> mfact;
881      SimInfo::MoleculeIterator mi;
882      Molecule* mol;
883      Molecule::CutoffGroupIterator ci;
# Line 895 | Line 886 | namespace oopse {
886      Atom* atom;
887      RealType totalMass;
888  
889 <    //to avoid memory reallocation, reserve enough space for mfact
890 <    mfact.reserve(getNCutoffGroups());
889 >    /**
890 >     * The mass factor is the relative mass of an atom to the total
891 >     * mass of the cutoff group it belongs to.  By default, all atoms
892 >     * are their own cutoff groups, and therefore have mass factors of
893 >     * 1.  We need some special handling for massless atoms, which
894 >     * will be treated as carrying the entire mass of the cutoff
895 >     * group.
896 >     */
897 >    massFactors_.clear();
898 >    massFactors_.resize(getNAtoms(), 1.0);
899      
900      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
901 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
902 >           cg = mol->nextCutoffGroup(ci)) {
903  
904          totalMass = cg->getMass();
905          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906            // Check for massless groups - set mfact to 1 if true
907 <          if (totalMass != 0)
908 <            mfact.push_back(atom->getMass()/totalMass);
907 >          if (totalMass != 0)
908 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909            else
910 <            mfact.push_back( 1.0 );
910 >            massFactors_[atom->getLocalIndex()] = 1.0;
911          }
912
912        }      
913      }
914  
915 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
917 <    std::vector<int> identArray;
915 >    // Build the identArray_
916  
917 <    //to avoid memory reallocation, reserve enough space identArray
918 <    identArray.reserve(getNAtoms());
921 <    
917 >    identArray_.clear();
918 >    identArray_.reserve(getNAtoms());    
919      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
920        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 <        identArray.push_back(atom->getIdent());
921 >        identArray_.push_back(atom->getIdent());
922        }
923      }    
927
928    //fill molMembershipArray
929    //molMembershipArray is filled by SimCreator    
930    std::vector<int> molMembershipArray(nGlobalAtoms_);
931    for (int i = 0; i < nGlobalAtoms_; i++) {
932      molMembershipArray[i] = globalMolMembership_[i] + 1;
933    }
924      
925 <    //setup fortran simulation
936 <    int nGlobalExcludes = 0;
937 <    int* globalExcludes = NULL;
938 <    int* excludeList = exclude_.getExcludeList();
939 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
940 <                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
941 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
942 <                   &fortranGlobalGroupMembership[0], &isError);
943 <    
944 <    if( isError ){
945 <      
946 <      sprintf( painCave.errMsg,
947 <               "There was an error setting the simulation information in fortran.\n" );
948 <      painCave.isFatal = 1;
949 <      painCave.severity = OOPSE_ERROR;
950 <      simError();
951 <    }
952 <    
953 <    
954 <    sprintf( checkPointMsg,
955 <             "succesfully sent the simulation information to fortran.\n");
956 <    
957 <    errorCheckPoint();
958 <    
959 <    // Setup number of neighbors in neighbor list if present
960 <    if (simParams_->haveNeighborListNeighbors()) {
961 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
962 <      setNeighbors(&nlistNeighbors);
963 <    }
964 <  
925 >    //scan topology
926  
927 <  }
927 >    nExclude = excludedInteractions_.getSize();
928 >    nOneTwo = oneTwoInteractions_.getSize();
929 >    nOneThree = oneThreeInteractions_.getSize();
930 >    nOneFour = oneFourInteractions_.getSize();
931  
932 <
933 <  void SimInfo::setupFortranParallel() {
934 < #ifdef IS_MPI    
935 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
972 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
973 <    std::vector<int> localToGlobalCutoffGroupIndex;
974 <    SimInfo::MoleculeIterator mi;
975 <    Molecule::AtomIterator ai;
976 <    Molecule::CutoffGroupIterator ci;
977 <    Molecule* mol;
978 <    Atom* atom;
979 <    CutoffGroup* cg;
980 <    mpiSimData parallelData;
981 <    int isError;
982 <
983 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
984 <
985 <      //local index(index in DataStorge) of atom is important
986 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
987 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
988 <      }
989 <
990 <      //local index of cutoff group is trivial, it only depends on the order of travesing
991 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
992 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
993 <      }        
994 <        
995 <    }
996 <
997 <    //fill up mpiSimData struct
998 <    parallelData.nMolGlobal = getNGlobalMolecules();
999 <    parallelData.nMolLocal = getNMolecules();
1000 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1001 <    parallelData.nAtomsLocal = getNAtoms();
1002 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1003 <    parallelData.nGroupsLocal = getNCutoffGroups();
1004 <    parallelData.myNode = worldRank;
1005 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1006 <
1007 <    //pass mpiSimData struct and index arrays to fortran
1008 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1009 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1010 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1011 <
1012 <    if (isError) {
1013 <      sprintf(painCave.errMsg,
1014 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1015 <      painCave.isFatal = 1;
1016 <      simError();
1017 <    }
1018 <
1019 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1020 <    errorCheckPoint();
1021 <
1022 < #endif
1023 <  }
1024 <
1025 <  void SimInfo::setupCutoff() {          
1026 <    
1027 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1028 <
1029 <    // Check the cutoff policy
1030 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031 <
1032 <    // Set LJ shifting bools to false
1033 <    ljsp_ = false;
1034 <    ljsf_ = false;
1035 <
1036 <    std::string myPolicy;
1037 <    if (forceFieldOptions_.haveCutoffPolicy()){
1038 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1039 <    }else if (simParams_->haveCutoffPolicy()) {
1040 <      myPolicy = simParams_->getCutoffPolicy();
1041 <    }
1042 <
1043 <    if (!myPolicy.empty()){
1044 <      toUpper(myPolicy);
1045 <      if (myPolicy == "MIX") {
1046 <        cp = MIX_CUTOFF_POLICY;
1047 <      } else {
1048 <        if (myPolicy == "MAX") {
1049 <          cp = MAX_CUTOFF_POLICY;
1050 <        } else {
1051 <          if (myPolicy == "TRADITIONAL") {            
1052 <            cp = TRADITIONAL_CUTOFF_POLICY;
1053 <          } else {
1054 <            // throw error        
1055 <            sprintf( painCave.errMsg,
1056 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057 <            painCave.isFatal = 1;
1058 <            simError();
1059 <          }    
1060 <        }          
1061 <      }
1062 <    }          
1063 <    notifyFortranCutoffPolicy(&cp);
1064 <
1065 <    // Check the Skin Thickness for neighborlists
1066 <    RealType skin;
1067 <    if (simParams_->haveSkinThickness()) {
1068 <      skin = simParams_->getSkinThickness();
1069 <      notifyFortranSkinThickness(&skin);
1070 <    }            
1071 <        
1072 <    // Check if the cutoff was set explicitly:
1073 <    if (simParams_->haveCutoffRadius()) {
1074 <      rcut_ = simParams_->getCutoffRadius();
1075 <      if (simParams_->haveSwitchingRadius()) {
1076 <        rsw_  = simParams_->getSwitchingRadius();
1077 <      } else {
1078 <        if (fInfo_.SIM_uses_Charges |
1079 <            fInfo_.SIM_uses_Dipoles |
1080 <            fInfo_.SIM_uses_RF) {
1081 <          
1082 <          rsw_ = 0.85 * rcut_;
1083 <          sprintf(painCave.errMsg,
1084 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1085 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087 <        painCave.isFatal = 0;
1088 <        simError();
1089 <        } else {
1090 <          rsw_ = rcut_;
1091 <          sprintf(painCave.errMsg,
1092 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1093 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1094 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095 <          painCave.isFatal = 0;
1096 <          simError();
1097 <        }
1098 <      }
1099 <
1100 <      if (simParams_->haveElectrostaticSummationMethod()) {
1101 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102 <        toUpper(myMethod);
1103 <        
1104 <        if (myMethod == "SHIFTED_POTENTIAL") {
1105 <          ljsp_ = true;
1106 <        } else if (myMethod == "SHIFTED_FORCE") {
1107 <          ljsf_ = true;
1108 <        }
1109 <      }
1110 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111 <      
1112 <    } else {
1113 <      
1114 <      // For electrostatic atoms, we'll assume a large safe value:
1115 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116 <        sprintf(painCave.errMsg,
1117 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118 <                "\tOOPSE will use a default value of 15.0 angstroms"
1119 <                "\tfor the cutoffRadius.\n");
1120 <        painCave.isFatal = 0;
1121 <        simError();
1122 <        rcut_ = 15.0;
1123 <      
1124 <        if (simParams_->haveElectrostaticSummationMethod()) {
1125 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126 <          toUpper(myMethod);
1127 <      
1128 <      // For the time being, we're tethering the LJ shifted behavior to the
1129 <      // electrostaticSummationMethod keyword options
1130 <          if (myMethod == "SHIFTED_POTENTIAL") {
1131 <            ljsp_ = true;
1132 <          } else if (myMethod == "SHIFTED_FORCE") {
1133 <            ljsf_ = true;
1134 <          }
1135 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136 <            if (simParams_->haveSwitchingRadius()){
1137 <              sprintf(painCave.errMsg,
1138 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1139 <                      "\teven though the electrostaticSummationMethod was\n"
1140 <                      "\tset to %s\n", myMethod.c_str());
1141 <              painCave.isFatal = 1;
1142 <              simError();            
1143 <            }
1144 <          }
1145 <        }
1146 <      
1147 <        if (simParams_->haveSwitchingRadius()){
1148 <          rsw_ = simParams_->getSwitchingRadius();
1149 <        } else {        
1150 <          sprintf(painCave.errMsg,
1151 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1152 <                  "\tOOPSE will use a default value of\n"
1153 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1154 <          painCave.isFatal = 0;
1155 <          simError();
1156 <          rsw_ = 0.85 * rcut_;
1157 <        }
932 >    int* excludeList = excludedInteractions_.getPairList();
933 >    int* oneTwoList = oneTwoInteractions_.getPairList();
934 >    int* oneThreeList = oneThreeInteractions_.getPairList();
935 >    int* oneFourList = oneFourInteractions_.getPairList();
936  
937 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160 <
1161 <      } else {
1162 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163 <        // We'll punt and let fortran figure out the cutoffs later.
1164 <        
1165 <        notifyFortranYouAreOnYourOwn();
1166 <
1167 <      }
1168 <    }
937 >    topologyDone_ = true;
938    }
939  
1171  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1172    
1173    int errorOut;
1174    int esm =  NONE;
1175    int sm = UNDAMPED;
1176    RealType alphaVal;
1177    RealType dielectric;
1178    
1179    errorOut = isError;
1180
1181    if (simParams_->haveElectrostaticSummationMethod()) {
1182      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183      toUpper(myMethod);
1184      if (myMethod == "NONE") {
1185        esm = NONE;
1186      } else {
1187        if (myMethod == "SWITCHING_FUNCTION") {
1188          esm = SWITCHING_FUNCTION;
1189        } else {
1190          if (myMethod == "SHIFTED_POTENTIAL") {
1191            esm = SHIFTED_POTENTIAL;
1192          } else {
1193            if (myMethod == "SHIFTED_FORCE") {            
1194              esm = SHIFTED_FORCE;
1195            } else {
1196              if (myMethod == "REACTION_FIELD") {
1197                esm = REACTION_FIELD;
1198                dielectric = simParams_->getDielectric();
1199                if (!simParams_->haveDielectric()) {
1200                  // throw warning
1201                  sprintf( painCave.errMsg,
1202                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204                  painCave.isFatal = 0;
1205                  simError();
1206                }
1207              } else {
1208                // throw error        
1209                sprintf( painCave.errMsg,
1210                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211                         "\t(Input file specified %s .)\n"
1212                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1214                         "\t\"reaction_field\".\n", myMethod.c_str() );
1215                painCave.isFatal = 1;
1216                simError();
1217              }    
1218            }          
1219          }
1220        }
1221      }
1222    }
1223    
1224    if (simParams_->haveElectrostaticScreeningMethod()) {
1225      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226      toUpper(myScreen);
1227      if (myScreen == "UNDAMPED") {
1228        sm = UNDAMPED;
1229      } else {
1230        if (myScreen == "DAMPED") {
1231          sm = DAMPED;
1232          if (!simParams_->haveDampingAlpha()) {
1233            // first set a cutoff dependent alpha value
1234            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235            alphaVal = 0.5125 - rcut_* 0.025;
1236            // for values rcut > 20.5, alpha is zero
1237            if (alphaVal < 0) alphaVal = 0;
1238
1239            // throw warning
1240            sprintf( painCave.errMsg,
1241                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243            painCave.isFatal = 0;
1244            simError();
1245          } else {
1246            alphaVal = simParams_->getDampingAlpha();
1247          }
1248          
1249        } else {
1250          // throw error        
1251          sprintf( painCave.errMsg,
1252                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253                   "\t(Input file specified %s .)\n"
1254                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255                   "or \"damped\".\n", myScreen.c_str() );
1256          painCave.isFatal = 1;
1257          simError();
1258        }
1259      }
1260    }
1261    
1262    // let's pass some summation method variables to fortran
1263    setElectrostaticSummationMethod( &esm );
1264    setFortranElectrostaticMethod( &esm );
1265    setScreeningMethod( &sm );
1266    setDampingAlpha( &alphaVal );
1267    setReactionFieldDielectric( &dielectric );
1268    initFortranFF( &errorOut );
1269  }
1270
1271  void SimInfo::setupSwitchingFunction() {    
1272    int ft = CUBIC;
1273
1274    if (simParams_->haveSwitchingFunctionType()) {
1275      std::string funcType = simParams_->getSwitchingFunctionType();
1276      toUpper(funcType);
1277      if (funcType == "CUBIC") {
1278        ft = CUBIC;
1279      } else {
1280        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281          ft = FIFTH_ORDER_POLY;
1282        } else {
1283          // throw error        
1284          sprintf( painCave.errMsg,
1285                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286          painCave.isFatal = 1;
1287          simError();
1288        }          
1289      }
1290    }
1291
1292    // send switching function notification to switcheroo
1293    setFunctionType(&ft);
1294
1295  }
1296
1297  void SimInfo::setupAccumulateBoxDipole() {    
1298
1299    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1300    if ( simParams_->haveAccumulateBoxDipole() )
1301      if ( simParams_->getAccumulateBoxDipole() ) {
1302        setAccumulateBoxDipole();
1303        calcBoxDipole_ = true;
1304      }
1305
1306  }
1307
940    void SimInfo::addProperty(GenericData* genData) {
941      properties_.addProperty(genData);  
942    }
943  
944 <  void SimInfo::removeProperty(const std::string& propName) {
944 >  void SimInfo::removeProperty(const string& propName) {
945      properties_.removeProperty(propName);  
946    }
947  
# Line 1317 | Line 949 | namespace oopse {
949      properties_.clearProperties();
950    }
951  
952 <  std::vector<std::string> SimInfo::getPropertyNames() {
952 >  vector<string> SimInfo::getPropertyNames() {
953      return properties_.getPropertyNames();  
954    }
955        
956 <  std::vector<GenericData*> SimInfo::getProperties() {
956 >  vector<GenericData*> SimInfo::getProperties() {
957      return properties_.getProperties();
958    }
959  
960 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
960 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
961      return properties_.getPropertyByName(propName);
962    }
963  
# Line 1339 | Line 971 | namespace oopse {
971      Molecule* mol;
972      RigidBody* rb;
973      Atom* atom;
974 +    CutoffGroup* cg;
975      SimInfo::MoleculeIterator mi;
976      Molecule::RigidBodyIterator rbIter;
977 <    Molecule::AtomIterator atomIter;;
977 >    Molecule::AtomIterator atomIter;
978 >    Molecule::CutoffGroupIterator cgIter;
979  
980      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
981          
# Line 1352 | Line 986 | namespace oopse {
986        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987          rb->setSnapshotManager(sman_);
988        }
989 +
990 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
991 +        cg->setSnapshotManager(sman_);
992 +      }
993      }    
994      
995    }
996  
1359  Vector3d SimInfo::getComVel(){
1360    SimInfo::MoleculeIterator i;
1361    Molecule* mol;
997  
998 <    Vector3d comVel(0.0);
1364 <    RealType totalMass = 0.0;
1365 <    
1366 <
1367 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1368 <      RealType mass = mol->getMass();
1369 <      totalMass += mass;
1370 <      comVel += mass * mol->getComVel();
1371 <    }  
1372 <
1373 < #ifdef IS_MPI
1374 <    RealType tmpMass = totalMass;
1375 <    Vector3d tmpComVel(comVel);    
1376 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1377 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1378 < #endif
1379 <
1380 <    comVel /= totalMass;
1381 <
1382 <    return comVel;
1383 <  }
1384 <
1385 <  Vector3d SimInfo::getCom(){
1386 <    SimInfo::MoleculeIterator i;
1387 <    Molecule* mol;
1388 <
1389 <    Vector3d com(0.0);
1390 <    RealType totalMass = 0.0;
1391 <    
1392 <    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1393 <      RealType mass = mol->getMass();
1394 <      totalMass += mass;
1395 <      com += mass * mol->getCom();
1396 <    }  
1397 <
1398 < #ifdef IS_MPI
1399 <    RealType tmpMass = totalMass;
1400 <    Vector3d tmpCom(com);    
1401 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1402 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1403 < #endif
998 >  ostream& operator <<(ostream& o, SimInfo& info) {
999  
1405    com /= totalMass;
1406
1407    return com;
1408
1409  }        
1410
1411  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1412
1000      return o;
1001    }
1002    
1003 <  
1417 <   /*
1418 <   Returns center of mass and center of mass velocity in one function call.
1419 <   */
1420 <  
1421 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1422 <      SimInfo::MoleculeIterator i;
1423 <      Molecule* mol;
1424 <      
1425 <    
1426 <      RealType totalMass = 0.0;
1427 <    
1428 <
1429 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1430 <         RealType mass = mol->getMass();
1431 <         totalMass += mass;
1432 <         com += mass * mol->getCom();
1433 <         comVel += mass * mol->getComVel();          
1434 <      }  
1435 <      
1436 < #ifdef IS_MPI
1437 <      RealType tmpMass = totalMass;
1438 <      Vector3d tmpCom(com);  
1439 <      Vector3d tmpComVel(comVel);
1440 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1441 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1442 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 < #endif
1444 <      
1445 <      com /= totalMass;
1446 <      comVel /= totalMass;
1447 <   }        
1448 <  
1449 <   /*
1450 <   Return intertia tensor for entire system and angular momentum Vector.
1451 <
1452 <
1453 <       [  Ixx -Ixy  -Ixz ]
1454 <  J =| -Iyx  Iyy  -Iyz |
1455 <       [ -Izx -Iyz   Izz ]
1456 <    */
1457 <
1458 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1459 <      
1460 <
1461 <      RealType xx = 0.0;
1462 <      RealType yy = 0.0;
1463 <      RealType zz = 0.0;
1464 <      RealType xy = 0.0;
1465 <      RealType xz = 0.0;
1466 <      RealType yz = 0.0;
1467 <      Vector3d com(0.0);
1468 <      Vector3d comVel(0.0);
1469 <      
1470 <      getComAll(com, comVel);
1471 <      
1472 <      SimInfo::MoleculeIterator i;
1473 <      Molecule* mol;
1474 <      
1475 <      Vector3d thisq(0.0);
1476 <      Vector3d thisv(0.0);
1477 <
1478 <      RealType thisMass = 0.0;
1479 <    
1480 <      
1481 <      
1482 <  
1483 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1484 <        
1485 <         thisq = mol->getCom()-com;
1486 <         thisv = mol->getComVel()-comVel;
1487 <         thisMass = mol->getMass();
1488 <         // Compute moment of intertia coefficients.
1489 <         xx += thisq[0]*thisq[0]*thisMass;
1490 <         yy += thisq[1]*thisq[1]*thisMass;
1491 <         zz += thisq[2]*thisq[2]*thisMass;
1492 <        
1493 <         // compute products of intertia
1494 <         xy += thisq[0]*thisq[1]*thisMass;
1495 <         xz += thisq[0]*thisq[2]*thisMass;
1496 <         yz += thisq[1]*thisq[2]*thisMass;
1497 <            
1498 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1499 <            
1500 <      }  
1501 <      
1502 <      
1503 <      inertiaTensor(0,0) = yy + zz;
1504 <      inertiaTensor(0,1) = -xy;
1505 <      inertiaTensor(0,2) = -xz;
1506 <      inertiaTensor(1,0) = -xy;
1507 <      inertiaTensor(1,1) = xx + zz;
1508 <      inertiaTensor(1,2) = -yz;
1509 <      inertiaTensor(2,0) = -xz;
1510 <      inertiaTensor(2,1) = -yz;
1511 <      inertiaTensor(2,2) = xx + yy;
1512 <      
1513 < #ifdef IS_MPI
1514 <      Mat3x3d tmpI(inertiaTensor);
1515 <      Vector3d tmpAngMom;
1516 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1517 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1518 < #endif
1519 <              
1520 <      return;
1521 <   }
1522 <
1523 <   //Returns the angular momentum of the system
1524 <   Vector3d SimInfo::getAngularMomentum(){
1525 <      
1526 <      Vector3d com(0.0);
1527 <      Vector3d comVel(0.0);
1528 <      Vector3d angularMomentum(0.0);
1529 <      
1530 <      getComAll(com,comVel);
1531 <      
1532 <      SimInfo::MoleculeIterator i;
1533 <      Molecule* mol;
1534 <      
1535 <      Vector3d thisr(0.0);
1536 <      Vector3d thisp(0.0);
1537 <      
1538 <      RealType thisMass;
1539 <      
1540 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1541 <        thisMass = mol->getMass();
1542 <        thisr = mol->getCom()-com;
1543 <        thisp = (mol->getComVel()-comVel)*thisMass;
1544 <        
1545 <        angularMomentum += cross( thisr, thisp );
1546 <        
1547 <      }  
1548 <      
1549 < #ifdef IS_MPI
1550 <      Vector3d tmpAngMom;
1551 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1552 < #endif
1553 <      
1554 <      return angularMomentum;
1555 <   }
1556 <  
1003 >  
1004    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005      return IOIndexToIntegrableObject.at(index);
1006    }
1007    
1008 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1008 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009      IOIndexToIntegrableObject= v;
1010    }
1564
1565  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1566     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1567     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1568     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1569  */
1570  void SimInfo::getGyrationalVolume(RealType &volume){
1571    Mat3x3d intTensor;
1572    RealType det;
1573    Vector3d dummyAngMom;
1574    RealType sysconstants;
1575    RealType geomCnst;
1576
1577    geomCnst = 3.0/2.0;
1578    /* Get the inertial tensor and angular momentum for free*/
1579    getInertiaTensor(intTensor,dummyAngMom);
1580    
1581    det = intTensor.determinant();
1582    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1583    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1584    return;
1585  }
1586
1587  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1588    Mat3x3d intTensor;
1589    Vector3d dummyAngMom;
1590    RealType sysconstants;
1591    RealType geomCnst;
1592
1593    geomCnst = 3.0/2.0;
1594    /* Get the inertial tensor and angular momentum for free*/
1595    getInertiaTensor(intTensor,dummyAngMom);
1596    
1597    detI = intTensor.determinant();
1598    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1599    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1600    return;
1601  }
1011   /*
1012 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1012 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013        assert( v.size() == nAtoms_ + nRigidBodies_);
1014        sdByGlobalIndex_ = v;
1015      }
# Line 1610 | Line 1019 | namespace oopse {
1019        return sdByGlobalIndex_.at(index);
1020      }  
1021   */  
1022 < }//end namespace oopse
1022 >  int SimInfo::getNGlobalConstraints() {
1023 >    int nGlobalConstraints;
1024 > #ifdef IS_MPI
1025 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1026 >                  MPI_COMM_WORLD);    
1027 > #else
1028 >    nGlobalConstraints =  nConstraints_;
1029 > #endif
1030 >    return nGlobalConstraints;
1031 >  }
1032  
1033 + }//end namespace OpenMD
1034 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines