36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
– |
#include "UseTheForce/doForces_interface.h" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
|
#include "io/ForceFieldOptions.hpp" |
62 |
< |
#include "UseTheForce/ForceField.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
|
#include "nonbonded/SwitchingFunction.hpp" |
65 |
– |
|
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
69 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
72 |
|
forceField_(ff), simParams_(simParams), |
73 |
|
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
|
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
|
MoleculeStamp* molStamp; |
129 |
|
//equal to the total number of atoms minus number of atoms belong to |
130 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
|
//groups defined in meta-data file |
135 |
– |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
136 |
– |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
137 |
– |
std::cerr << "nG = " << nGroups << "\n"; |
132 |
|
|
133 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
140 |
– |
|
141 |
– |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
134 |
|
|
135 |
|
//every free atom (atom does not belong to rigid bodies) is an |
136 |
|
//integrable object therefore the total number of integrable objects |
225 |
|
|
226 |
|
|
227 |
|
void SimInfo::calcNdf() { |
228 |
< |
int ndf_local; |
228 |
> |
int ndf_local, nfq_local; |
229 |
|
MoleculeIterator i; |
230 |
|
vector<StuntDouble*>::iterator j; |
231 |
+ |
vector<Atom*>::iterator k; |
232 |
+ |
|
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
+ |
Atom* atom; |
236 |
|
|
237 |
|
ndf_local = 0; |
238 |
+ |
nfq_local = 0; |
239 |
|
|
240 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
250 |
|
ndf_local += 3; |
251 |
|
} |
252 |
|
} |
257 |
– |
|
253 |
|
} |
254 |
+ |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 |
+ |
atom = mol->nextFluctuatingCharge(k)) { |
256 |
+ |
if (atom->isFluctuatingCharge()) { |
257 |
+ |
nfq_local++; |
258 |
+ |
} |
259 |
+ |
} |
260 |
|
} |
261 |
|
|
262 |
+ |
ndfLocal_ = ndf_local; |
263 |
+ |
|
264 |
|
// n_constraints is local, so subtract them on each processor |
265 |
|
ndf_local -= nConstraints_; |
266 |
|
|
267 |
|
#ifdef IS_MPI |
268 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
269 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
270 |
|
#else |
271 |
|
ndf_ = ndf_local; |
272 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
273 |
|
#endif |
274 |
|
|
275 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
286 |
|
#endif |
287 |
|
return fdf_; |
288 |
|
} |
289 |
+ |
|
290 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
291 |
+ |
int nLocalCutoffAtoms = 0; |
292 |
+ |
Molecule* mol; |
293 |
+ |
MoleculeIterator mi; |
294 |
+ |
CutoffGroup* cg; |
295 |
+ |
Molecule::CutoffGroupIterator ci; |
296 |
|
|
297 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
298 |
+ |
|
299 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
300 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
301 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
302 |
+ |
|
303 |
+ |
} |
304 |
+ |
} |
305 |
+ |
|
306 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
307 |
+ |
} |
308 |
+ |
|
309 |
|
void SimInfo::calcNdfRaw() { |
310 |
|
int ndfRaw_local; |
311 |
|
|
711 |
|
Atom* atom; |
712 |
|
set<AtomType*> atomTypes; |
713 |
|
|
714 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
714 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
716 |
> |
atom = mol->nextAtom(ai)) { |
717 |
|
atomTypes.insert(atom->getAtomType()); |
718 |
|
} |
719 |
|
} |
720 |
< |
|
720 |
> |
|
721 |
|
#ifdef IS_MPI |
722 |
|
|
723 |
|
// loop over the found atom types on this processor, and add their |
724 |
|
// numerical idents to a vector: |
725 |
< |
|
725 |
> |
|
726 |
|
vector<int> foundTypes; |
727 |
|
set<AtomType*>::iterator i; |
728 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
731 |
|
// count_local holds the number of found types on this processor |
732 |
|
int count_local = foundTypes.size(); |
733 |
|
|
734 |
< |
// count holds the total number of found types on all processors |
710 |
< |
// (some will be redundant with the ones found locally): |
711 |
< |
int count; |
712 |
< |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
734 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
735 |
|
|
736 |
< |
// create a vector to hold the globally found types, and resize it: |
737 |
< |
vector<int> ftGlobal; |
738 |
< |
ftGlobal.resize(count); |
739 |
< |
vector<int> counts; |
736 |
> |
// we need arrays to hold the counts and displacement vectors for |
737 |
> |
// all processors |
738 |
> |
vector<int> counts(nproc, 0); |
739 |
> |
vector<int> disps(nproc, 0); |
740 |
|
|
741 |
< |
int nproc = MPI::COMM_WORLD.Get_size(); |
742 |
< |
counts.resize(nproc); |
743 |
< |
vector<int> disps; |
744 |
< |
disps.resize(nproc); |
741 |
> |
// fill the counts array |
742 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
743 |
> |
1, MPI::INT); |
744 |
> |
|
745 |
> |
// use the processor counts to compute the displacement array |
746 |
> |
disps[0] = 0; |
747 |
> |
int totalCount = counts[0]; |
748 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
749 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
750 |
> |
totalCount += counts[iproc]; |
751 |
> |
} |
752 |
|
|
753 |
< |
// now spray out the foundTypes to all the other processors: |
753 |
> |
// we need a (possibly redundant) set of all found types: |
754 |
> |
vector<int> ftGlobal(totalCount); |
755 |
|
|
756 |
+ |
// now spray out the foundTypes to all the other processors: |
757 |
|
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
758 |
< |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
758 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
759 |
> |
MPI::INT); |
760 |
|
|
761 |
+ |
vector<int>::iterator j; |
762 |
+ |
|
763 |
|
// foundIdents is a stl set, so inserting an already found ident |
764 |
|
// will have no effect. |
765 |
|
set<int> foundIdents; |
766 |
< |
vector<int>::iterator j; |
766 |
> |
|
767 |
|
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
768 |
|
foundIdents.insert((*j)); |
769 |
|
|
770 |
|
// now iterate over the foundIdents and get the actual atom types |
771 |
|
// that correspond to these: |
772 |
|
set<int>::iterator it; |
773 |
< |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
773 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
774 |
|
atomTypes.insert( forceField_->getAtomType((*it)) ); |
775 |
|
|
776 |
|
#endif |
777 |
< |
|
777 |
> |
|
778 |
|
return atomTypes; |
779 |
|
} |
780 |
|
|
786 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
787 |
|
calcBoxDipole_ = true; |
788 |
|
} |
789 |
< |
|
789 |
> |
|
790 |
|
set<AtomType*>::iterator i; |
791 |
|
set<AtomType*> atomTypes; |
792 |
|
atomTypes = getSimulatedAtomTypes(); |
793 |
< |
int usesElectrostatic = 0; |
794 |
< |
int usesMetallic = 0; |
795 |
< |
int usesDirectional = 0; |
793 |
> |
bool usesElectrostatic = false; |
794 |
> |
bool usesMetallic = false; |
795 |
> |
bool usesDirectional = false; |
796 |
> |
bool usesFluctuatingCharges = false; |
797 |
|
//loop over all of the atom types |
798 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
799 |
|
usesElectrostatic |= (*i)->isElectrostatic(); |
800 |
|
usesMetallic |= (*i)->isMetal(); |
801 |
|
usesDirectional |= (*i)->isDirectional(); |
802 |
+ |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
803 |
|
} |
804 |
|
|
805 |
< |
#ifdef IS_MPI |
806 |
< |
int temp; |
805 |
> |
#ifdef IS_MPI |
806 |
> |
bool temp; |
807 |
|
temp = usesDirectional; |
808 |
< |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
809 |
< |
|
808 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
809 |
> |
MPI::LOR); |
810 |
> |
|
811 |
|
temp = usesMetallic; |
812 |
< |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
< |
|
812 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
813 |
> |
MPI::LOR); |
814 |
> |
|
815 |
|
temp = usesElectrostatic; |
816 |
< |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
817 |
> |
MPI::LOR); |
818 |
> |
|
819 |
> |
temp = usesFluctuatingCharges; |
820 |
> |
MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
821 |
> |
MPI::LOR); |
822 |
> |
#else |
823 |
> |
|
824 |
> |
usesDirectionalAtoms_ = usesDirectional; |
825 |
> |
usesMetallicAtoms_ = usesMetallic; |
826 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
827 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
828 |
> |
|
829 |
|
#endif |
830 |
< |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
831 |
< |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
832 |
< |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
833 |
< |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
784 |
< |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
785 |
< |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
830 |
> |
|
831 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
832 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
833 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
834 |
|
} |
835 |
|
|
836 |
< |
void SimInfo::setupFortran() { |
837 |
< |
int isError; |
838 |
< |
int nExclude, nOneTwo, nOneThree, nOneFour; |
839 |
< |
vector<int> fortranGlobalGroupMembership; |
836 |
> |
|
837 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
838 |
> |
SimInfo::MoleculeIterator mi; |
839 |
> |
Molecule* mol; |
840 |
> |
Molecule::AtomIterator ai; |
841 |
> |
Atom* atom; |
842 |
> |
|
843 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
844 |
|
|
845 |
< |
isError = 0; |
845 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
846 |
> |
|
847 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
848 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
849 |
> |
} |
850 |
> |
} |
851 |
> |
return GlobalAtomIndices; |
852 |
> |
} |
853 |
|
|
854 |
< |
//globalGroupMembership_ is filled by SimCreator |
855 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
856 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
854 |
> |
|
855 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
856 |
> |
SimInfo::MoleculeIterator mi; |
857 |
> |
Molecule* mol; |
858 |
> |
Molecule::CutoffGroupIterator ci; |
859 |
> |
CutoffGroup* cg; |
860 |
> |
|
861 |
> |
vector<int> GlobalGroupIndices; |
862 |
> |
|
863 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
864 |
> |
|
865 |
> |
//local index of cutoff group is trivial, it only depends on the |
866 |
> |
//order of travesing |
867 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
868 |
> |
cg = mol->nextCutoffGroup(ci)) { |
869 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
870 |
> |
} |
871 |
|
} |
872 |
+ |
return GlobalGroupIndices; |
873 |
+ |
} |
874 |
|
|
875 |
+ |
|
876 |
+ |
void SimInfo::prepareTopology() { |
877 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
878 |
+ |
|
879 |
|
//calculate mass ratio of cutoff group |
801 |
– |
vector<RealType> mfact; |
880 |
|
SimInfo::MoleculeIterator mi; |
881 |
|
Molecule* mol; |
882 |
|
Molecule::CutoffGroupIterator ci; |
885 |
|
Atom* atom; |
886 |
|
RealType totalMass; |
887 |
|
|
888 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
889 |
< |
mfact.reserve(getNCutoffGroups()); |
888 |
> |
/** |
889 |
> |
* The mass factor is the relative mass of an atom to the total |
890 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
891 |
> |
* are their own cutoff groups, and therefore have mass factors of |
892 |
> |
* 1. We need some special handling for massless atoms, which |
893 |
> |
* will be treated as carrying the entire mass of the cutoff |
894 |
> |
* group. |
895 |
> |
*/ |
896 |
> |
massFactors_.clear(); |
897 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
898 |
|
|
899 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
900 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
900 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
901 |
> |
cg = mol->nextCutoffGroup(ci)) { |
902 |
|
|
903 |
|
totalMass = cg->getMass(); |
904 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
905 |
|
// Check for massless groups - set mfact to 1 if true |
906 |
< |
if (totalMass != 0) |
907 |
< |
mfact.push_back(atom->getMass()/totalMass); |
906 |
> |
if (totalMass != 0) |
907 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
908 |
|
else |
909 |
< |
mfact.push_back( 1.0 ); |
909 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
910 |
|
} |
911 |
|
} |
912 |
|
} |
920 |
|
identArray_.push_back(atom->getIdent()); |
921 |
|
} |
922 |
|
} |
836 |
– |
|
837 |
– |
//fill molMembershipArray |
838 |
– |
//molMembershipArray is filled by SimCreator |
839 |
– |
vector<int> molMembershipArray(nGlobalAtoms_); |
840 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
841 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
842 |
– |
} |
923 |
|
|
924 |
< |
//setup fortran simulation |
924 |
> |
//scan topology |
925 |
|
|
926 |
|
nExclude = excludedInteractions_.getSize(); |
927 |
|
nOneTwo = oneTwoInteractions_.getSize(); |
933 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
934 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
935 |
|
|
936 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
857 |
< |
&nExclude, excludeList, |
858 |
< |
&nOneTwo, oneTwoList, |
859 |
< |
&nOneThree, oneThreeList, |
860 |
< |
&nOneFour, oneFourList, |
861 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
862 |
< |
&fortranGlobalGroupMembership[0], &isError); |
863 |
< |
|
864 |
< |
if( isError ){ |
865 |
< |
|
866 |
< |
sprintf( painCave.errMsg, |
867 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
868 |
< |
painCave.isFatal = 1; |
869 |
< |
painCave.severity = OPENMD_ERROR; |
870 |
< |
simError(); |
871 |
< |
} |
872 |
< |
|
873 |
< |
|
874 |
< |
sprintf( checkPointMsg, |
875 |
< |
"succesfully sent the simulation information to fortran.\n"); |
876 |
< |
|
877 |
< |
errorCheckPoint(); |
878 |
< |
|
879 |
< |
// Setup number of neighbors in neighbor list if present |
880 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
881 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
882 |
< |
setNeighbors(&nlistNeighbors); |
883 |
< |
} |
884 |
< |
|
885 |
< |
#ifdef IS_MPI |
886 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and |
887 |
< |
//localToGlobalGroupIndex |
888 |
< |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
889 |
< |
vector<int> localToGlobalCutoffGroupIndex; |
890 |
< |
mpiSimData parallelData; |
891 |
< |
|
892 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
893 |
< |
|
894 |
< |
//local index(index in DataStorge) of atom is important |
895 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
896 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
897 |
< |
} |
898 |
< |
|
899 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
900 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
901 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
902 |
< |
} |
903 |
< |
|
904 |
< |
} |
905 |
< |
|
906 |
< |
//fill up mpiSimData struct |
907 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
908 |
< |
parallelData.nMolLocal = getNMolecules(); |
909 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
910 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
911 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
912 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
913 |
< |
parallelData.myNode = worldRank; |
914 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
915 |
< |
|
916 |
< |
//pass mpiSimData struct and index arrays to fortran |
917 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
918 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
919 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
920 |
< |
|
921 |
< |
if (isError) { |
922 |
< |
sprintf(painCave.errMsg, |
923 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
924 |
< |
painCave.isFatal = 1; |
925 |
< |
simError(); |
926 |
< |
} |
927 |
< |
|
928 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
929 |
< |
errorCheckPoint(); |
930 |
< |
#endif |
931 |
< |
|
932 |
< |
initFortranFF(&isError); |
933 |
< |
if (isError) { |
934 |
< |
sprintf(painCave.errMsg, |
935 |
< |
"initFortranFF errror: fortran didn't like something we gave it.\n"); |
936 |
< |
painCave.isFatal = 1; |
937 |
< |
simError(); |
938 |
< |
} |
939 |
< |
fortranInitialized_ = true; |
936 |
> |
topologyDone_ = true; |
937 |
|
} |
938 |
|
|
939 |
|
void SimInfo::addProperty(GenericData* genData) { |
993 |
|
|
994 |
|
} |
995 |
|
|
999 |
– |
Vector3d SimInfo::getComVel(){ |
1000 |
– |
SimInfo::MoleculeIterator i; |
1001 |
– |
Molecule* mol; |
996 |
|
|
1003 |
– |
Vector3d comVel(0.0); |
1004 |
– |
RealType totalMass = 0.0; |
1005 |
– |
|
1006 |
– |
|
1007 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1008 |
– |
RealType mass = mol->getMass(); |
1009 |
– |
totalMass += mass; |
1010 |
– |
comVel += mass * mol->getComVel(); |
1011 |
– |
} |
1012 |
– |
|
1013 |
– |
#ifdef IS_MPI |
1014 |
– |
RealType tmpMass = totalMass; |
1015 |
– |
Vector3d tmpComVel(comVel); |
1016 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1017 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1018 |
– |
#endif |
1019 |
– |
|
1020 |
– |
comVel /= totalMass; |
1021 |
– |
|
1022 |
– |
return comVel; |
1023 |
– |
} |
1024 |
– |
|
1025 |
– |
Vector3d SimInfo::getCom(){ |
1026 |
– |
SimInfo::MoleculeIterator i; |
1027 |
– |
Molecule* mol; |
1028 |
– |
|
1029 |
– |
Vector3d com(0.0); |
1030 |
– |
RealType totalMass = 0.0; |
1031 |
– |
|
1032 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1033 |
– |
RealType mass = mol->getMass(); |
1034 |
– |
totalMass += mass; |
1035 |
– |
com += mass * mol->getCom(); |
1036 |
– |
} |
1037 |
– |
|
1038 |
– |
#ifdef IS_MPI |
1039 |
– |
RealType tmpMass = totalMass; |
1040 |
– |
Vector3d tmpCom(com); |
1041 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1042 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1043 |
– |
#endif |
1044 |
– |
|
1045 |
– |
com /= totalMass; |
1046 |
– |
|
1047 |
– |
return com; |
1048 |
– |
|
1049 |
– |
} |
1050 |
– |
|
997 |
|
ostream& operator <<(ostream& o, SimInfo& info) { |
998 |
|
|
999 |
|
return o; |
1000 |
|
} |
1001 |
|
|
1002 |
< |
|
1057 |
< |
/* |
1058 |
< |
Returns center of mass and center of mass velocity in one function call. |
1059 |
< |
*/ |
1060 |
< |
|
1061 |
< |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1062 |
< |
SimInfo::MoleculeIterator i; |
1063 |
< |
Molecule* mol; |
1064 |
< |
|
1065 |
< |
|
1066 |
< |
RealType totalMass = 0.0; |
1067 |
< |
|
1068 |
< |
|
1069 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1070 |
< |
RealType mass = mol->getMass(); |
1071 |
< |
totalMass += mass; |
1072 |
< |
com += mass * mol->getCom(); |
1073 |
< |
comVel += mass * mol->getComVel(); |
1074 |
< |
} |
1075 |
< |
|
1076 |
< |
#ifdef IS_MPI |
1077 |
< |
RealType tmpMass = totalMass; |
1078 |
< |
Vector3d tmpCom(com); |
1079 |
< |
Vector3d tmpComVel(comVel); |
1080 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1081 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1082 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1083 |
< |
#endif |
1084 |
< |
|
1085 |
< |
com /= totalMass; |
1086 |
< |
comVel /= totalMass; |
1087 |
< |
} |
1088 |
< |
|
1089 |
< |
/* |
1090 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1091 |
< |
|
1092 |
< |
|
1093 |
< |
[ Ixx -Ixy -Ixz ] |
1094 |
< |
J =| -Iyx Iyy -Iyz | |
1095 |
< |
[ -Izx -Iyz Izz ] |
1096 |
< |
*/ |
1097 |
< |
|
1098 |
< |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1099 |
< |
|
1100 |
< |
|
1101 |
< |
RealType xx = 0.0; |
1102 |
< |
RealType yy = 0.0; |
1103 |
< |
RealType zz = 0.0; |
1104 |
< |
RealType xy = 0.0; |
1105 |
< |
RealType xz = 0.0; |
1106 |
< |
RealType yz = 0.0; |
1107 |
< |
Vector3d com(0.0); |
1108 |
< |
Vector3d comVel(0.0); |
1109 |
< |
|
1110 |
< |
getComAll(com, comVel); |
1111 |
< |
|
1112 |
< |
SimInfo::MoleculeIterator i; |
1113 |
< |
Molecule* mol; |
1114 |
< |
|
1115 |
< |
Vector3d thisq(0.0); |
1116 |
< |
Vector3d thisv(0.0); |
1117 |
< |
|
1118 |
< |
RealType thisMass = 0.0; |
1119 |
< |
|
1120 |
< |
|
1121 |
< |
|
1122 |
< |
|
1123 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1124 |
< |
|
1125 |
< |
thisq = mol->getCom()-com; |
1126 |
< |
thisv = mol->getComVel()-comVel; |
1127 |
< |
thisMass = mol->getMass(); |
1128 |
< |
// Compute moment of intertia coefficients. |
1129 |
< |
xx += thisq[0]*thisq[0]*thisMass; |
1130 |
< |
yy += thisq[1]*thisq[1]*thisMass; |
1131 |
< |
zz += thisq[2]*thisq[2]*thisMass; |
1132 |
< |
|
1133 |
< |
// compute products of intertia |
1134 |
< |
xy += thisq[0]*thisq[1]*thisMass; |
1135 |
< |
xz += thisq[0]*thisq[2]*thisMass; |
1136 |
< |
yz += thisq[1]*thisq[2]*thisMass; |
1137 |
< |
|
1138 |
< |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1139 |
< |
|
1140 |
< |
} |
1141 |
< |
|
1142 |
< |
|
1143 |
< |
inertiaTensor(0,0) = yy + zz; |
1144 |
< |
inertiaTensor(0,1) = -xy; |
1145 |
< |
inertiaTensor(0,2) = -xz; |
1146 |
< |
inertiaTensor(1,0) = -xy; |
1147 |
< |
inertiaTensor(1,1) = xx + zz; |
1148 |
< |
inertiaTensor(1,2) = -yz; |
1149 |
< |
inertiaTensor(2,0) = -xz; |
1150 |
< |
inertiaTensor(2,1) = -yz; |
1151 |
< |
inertiaTensor(2,2) = xx + yy; |
1152 |
< |
|
1153 |
< |
#ifdef IS_MPI |
1154 |
< |
Mat3x3d tmpI(inertiaTensor); |
1155 |
< |
Vector3d tmpAngMom; |
1156 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1157 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1158 |
< |
#endif |
1159 |
< |
|
1160 |
< |
return; |
1161 |
< |
} |
1162 |
< |
|
1163 |
< |
//Returns the angular momentum of the system |
1164 |
< |
Vector3d SimInfo::getAngularMomentum(){ |
1165 |
< |
|
1166 |
< |
Vector3d com(0.0); |
1167 |
< |
Vector3d comVel(0.0); |
1168 |
< |
Vector3d angularMomentum(0.0); |
1169 |
< |
|
1170 |
< |
getComAll(com,comVel); |
1171 |
< |
|
1172 |
< |
SimInfo::MoleculeIterator i; |
1173 |
< |
Molecule* mol; |
1174 |
< |
|
1175 |
< |
Vector3d thisr(0.0); |
1176 |
< |
Vector3d thisp(0.0); |
1177 |
< |
|
1178 |
< |
RealType thisMass; |
1179 |
< |
|
1180 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1181 |
< |
thisMass = mol->getMass(); |
1182 |
< |
thisr = mol->getCom()-com; |
1183 |
< |
thisp = (mol->getComVel()-comVel)*thisMass; |
1184 |
< |
|
1185 |
< |
angularMomentum += cross( thisr, thisp ); |
1186 |
< |
|
1187 |
< |
} |
1188 |
< |
|
1189 |
< |
#ifdef IS_MPI |
1190 |
< |
Vector3d tmpAngMom; |
1191 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1192 |
< |
#endif |
1193 |
< |
|
1194 |
< |
return angularMomentum; |
1195 |
< |
} |
1196 |
< |
|
1002 |
> |
|
1003 |
|
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1004 |
|
return IOIndexToIntegrableObject.at(index); |
1005 |
|
} |
1007 |
|
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1008 |
|
IOIndexToIntegrableObject= v; |
1009 |
|
} |
1204 |
– |
|
1205 |
– |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1206 |
– |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1207 |
– |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1208 |
– |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1209 |
– |
*/ |
1210 |
– |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1211 |
– |
Mat3x3d intTensor; |
1212 |
– |
RealType det; |
1213 |
– |
Vector3d dummyAngMom; |
1214 |
– |
RealType sysconstants; |
1215 |
– |
RealType geomCnst; |
1216 |
– |
|
1217 |
– |
geomCnst = 3.0/2.0; |
1218 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1219 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1220 |
– |
|
1221 |
– |
det = intTensor.determinant(); |
1222 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1223 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1224 |
– |
return; |
1225 |
– |
} |
1226 |
– |
|
1227 |
– |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1228 |
– |
Mat3x3d intTensor; |
1229 |
– |
Vector3d dummyAngMom; |
1230 |
– |
RealType sysconstants; |
1231 |
– |
RealType geomCnst; |
1232 |
– |
|
1233 |
– |
geomCnst = 3.0/2.0; |
1234 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1235 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1236 |
– |
|
1237 |
– |
detI = intTensor.determinant(); |
1238 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1239 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1240 |
– |
return; |
1241 |
– |
} |
1010 |
|
/* |
1011 |
|
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1012 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |