801 |
|
usesDirectional |= (*i)->isDirectional(); |
802 |
|
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
803 |
|
} |
804 |
< |
|
804 |
> |
|
805 |
|
#ifdef IS_MPI |
806 |
|
int temp; |
807 |
|
temp = usesDirectional; |
988 |
|
} |
989 |
|
|
990 |
|
} |
991 |
– |
|
992 |
– |
Vector3d SimInfo::getComVel(){ |
993 |
– |
SimInfo::MoleculeIterator i; |
994 |
– |
Molecule* mol; |
995 |
– |
|
996 |
– |
Vector3d comVel(0.0); |
997 |
– |
RealType totalMass = 0.0; |
998 |
– |
|
999 |
– |
|
1000 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1001 |
– |
RealType mass = mol->getMass(); |
1002 |
– |
totalMass += mass; |
1003 |
– |
comVel += mass * mol->getComVel(); |
1004 |
– |
} |
1005 |
– |
|
1006 |
– |
#ifdef IS_MPI |
1007 |
– |
RealType tmpMass = totalMass; |
1008 |
– |
Vector3d tmpComVel(comVel); |
1009 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1010 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1011 |
– |
#endif |
1012 |
– |
|
1013 |
– |
comVel /= totalMass; |
1014 |
– |
|
1015 |
– |
return comVel; |
1016 |
– |
} |
1017 |
– |
|
1018 |
– |
Vector3d SimInfo::getCom(){ |
1019 |
– |
SimInfo::MoleculeIterator i; |
1020 |
– |
Molecule* mol; |
991 |
|
|
1022 |
– |
Vector3d com(0.0); |
1023 |
– |
RealType totalMass = 0.0; |
1024 |
– |
|
1025 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1026 |
– |
RealType mass = mol->getMass(); |
1027 |
– |
totalMass += mass; |
1028 |
– |
com += mass * mol->getCom(); |
1029 |
– |
} |
992 |
|
|
1031 |
– |
#ifdef IS_MPI |
1032 |
– |
RealType tmpMass = totalMass; |
1033 |
– |
Vector3d tmpCom(com); |
1034 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1035 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1036 |
– |
#endif |
1037 |
– |
|
1038 |
– |
com /= totalMass; |
1039 |
– |
|
1040 |
– |
return com; |
1041 |
– |
|
1042 |
– |
} |
1043 |
– |
|
993 |
|
ostream& operator <<(ostream& o, SimInfo& info) { |
994 |
|
|
995 |
|
return o; |
996 |
|
} |
1048 |
– |
|
1049 |
– |
|
1050 |
– |
/* |
1051 |
– |
Returns center of mass and center of mass velocity in one function call. |
1052 |
– |
*/ |
1053 |
– |
|
1054 |
– |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1055 |
– |
SimInfo::MoleculeIterator i; |
1056 |
– |
Molecule* mol; |
1057 |
– |
|
1058 |
– |
|
1059 |
– |
RealType totalMass = 0.0; |
1060 |
– |
|
1061 |
– |
|
1062 |
– |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1063 |
– |
RealType mass = mol->getMass(); |
1064 |
– |
totalMass += mass; |
1065 |
– |
com += mass * mol->getCom(); |
1066 |
– |
comVel += mass * mol->getComVel(); |
1067 |
– |
} |
1068 |
– |
|
1069 |
– |
#ifdef IS_MPI |
1070 |
– |
RealType tmpMass = totalMass; |
1071 |
– |
Vector3d tmpCom(com); |
1072 |
– |
Vector3d tmpComVel(comVel); |
1073 |
– |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1074 |
– |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1075 |
– |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1076 |
– |
#endif |
1077 |
– |
|
1078 |
– |
com /= totalMass; |
1079 |
– |
comVel /= totalMass; |
1080 |
– |
} |
997 |
|
|
998 |
< |
/* |
1083 |
< |
Return intertia tensor for entire system and angular momentum Vector. |
1084 |
< |
|
1085 |
< |
|
1086 |
< |
[ Ixx -Ixy -Ixz ] |
1087 |
< |
J =| -Iyx Iyy -Iyz | |
1088 |
< |
[ -Izx -Iyz Izz ] |
1089 |
< |
*/ |
1090 |
< |
|
1091 |
< |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1092 |
< |
|
1093 |
< |
|
1094 |
< |
RealType xx = 0.0; |
1095 |
< |
RealType yy = 0.0; |
1096 |
< |
RealType zz = 0.0; |
1097 |
< |
RealType xy = 0.0; |
1098 |
< |
RealType xz = 0.0; |
1099 |
< |
RealType yz = 0.0; |
1100 |
< |
Vector3d com(0.0); |
1101 |
< |
Vector3d comVel(0.0); |
1102 |
< |
|
1103 |
< |
getComAll(com, comVel); |
1104 |
< |
|
1105 |
< |
SimInfo::MoleculeIterator i; |
1106 |
< |
Molecule* mol; |
1107 |
< |
|
1108 |
< |
Vector3d thisq(0.0); |
1109 |
< |
Vector3d thisv(0.0); |
1110 |
< |
|
1111 |
< |
RealType thisMass = 0.0; |
1112 |
< |
|
1113 |
< |
|
1114 |
< |
|
1115 |
< |
|
1116 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1117 |
< |
|
1118 |
< |
thisq = mol->getCom()-com; |
1119 |
< |
thisv = mol->getComVel()-comVel; |
1120 |
< |
thisMass = mol->getMass(); |
1121 |
< |
// Compute moment of intertia coefficients. |
1122 |
< |
xx += thisq[0]*thisq[0]*thisMass; |
1123 |
< |
yy += thisq[1]*thisq[1]*thisMass; |
1124 |
< |
zz += thisq[2]*thisq[2]*thisMass; |
1125 |
< |
|
1126 |
< |
// compute products of intertia |
1127 |
< |
xy += thisq[0]*thisq[1]*thisMass; |
1128 |
< |
xz += thisq[0]*thisq[2]*thisMass; |
1129 |
< |
yz += thisq[1]*thisq[2]*thisMass; |
1130 |
< |
|
1131 |
< |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1132 |
< |
|
1133 |
< |
} |
1134 |
< |
|
1135 |
< |
|
1136 |
< |
inertiaTensor(0,0) = yy + zz; |
1137 |
< |
inertiaTensor(0,1) = -xy; |
1138 |
< |
inertiaTensor(0,2) = -xz; |
1139 |
< |
inertiaTensor(1,0) = -xy; |
1140 |
< |
inertiaTensor(1,1) = xx + zz; |
1141 |
< |
inertiaTensor(1,2) = -yz; |
1142 |
< |
inertiaTensor(2,0) = -xz; |
1143 |
< |
inertiaTensor(2,1) = -yz; |
1144 |
< |
inertiaTensor(2,2) = xx + yy; |
1145 |
< |
|
1146 |
< |
#ifdef IS_MPI |
1147 |
< |
Mat3x3d tmpI(inertiaTensor); |
1148 |
< |
Vector3d tmpAngMom; |
1149 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1150 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1151 |
< |
#endif |
1152 |
< |
|
1153 |
< |
return; |
1154 |
< |
} |
1155 |
< |
|
1156 |
< |
//Returns the angular momentum of the system |
1157 |
< |
Vector3d SimInfo::getAngularMomentum(){ |
1158 |
< |
|
1159 |
< |
Vector3d com(0.0); |
1160 |
< |
Vector3d comVel(0.0); |
1161 |
< |
Vector3d angularMomentum(0.0); |
1162 |
< |
|
1163 |
< |
getComAll(com,comVel); |
1164 |
< |
|
1165 |
< |
SimInfo::MoleculeIterator i; |
1166 |
< |
Molecule* mol; |
1167 |
< |
|
1168 |
< |
Vector3d thisr(0.0); |
1169 |
< |
Vector3d thisp(0.0); |
1170 |
< |
|
1171 |
< |
RealType thisMass; |
1172 |
< |
|
1173 |
< |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1174 |
< |
thisMass = mol->getMass(); |
1175 |
< |
thisr = mol->getCom()-com; |
1176 |
< |
thisp = (mol->getComVel()-comVel)*thisMass; |
1177 |
< |
|
1178 |
< |
angularMomentum += cross( thisr, thisp ); |
1179 |
< |
|
1180 |
< |
} |
1181 |
< |
|
1182 |
< |
#ifdef IS_MPI |
1183 |
< |
Vector3d tmpAngMom; |
1184 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1185 |
< |
#endif |
1186 |
< |
|
1187 |
< |
return angularMomentum; |
1188 |
< |
} |
1189 |
< |
|
998 |
> |
|
999 |
|
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1000 |
|
return IOIndexToIntegrableObject.at(index); |
1001 |
|
} |
1003 |
|
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1004 |
|
IOIndexToIntegrableObject= v; |
1005 |
|
} |
1197 |
– |
|
1198 |
– |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1199 |
– |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1200 |
– |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1201 |
– |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1202 |
– |
*/ |
1203 |
– |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1204 |
– |
Mat3x3d intTensor; |
1205 |
– |
RealType det; |
1206 |
– |
Vector3d dummyAngMom; |
1207 |
– |
RealType sysconstants; |
1208 |
– |
RealType geomCnst; |
1209 |
– |
|
1210 |
– |
geomCnst = 3.0/2.0; |
1211 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1212 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1213 |
– |
|
1214 |
– |
det = intTensor.determinant(); |
1215 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1216 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1217 |
– |
return; |
1218 |
– |
} |
1219 |
– |
|
1220 |
– |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1221 |
– |
Mat3x3d intTensor; |
1222 |
– |
Vector3d dummyAngMom; |
1223 |
– |
RealType sysconstants; |
1224 |
– |
RealType geomCnst; |
1225 |
– |
|
1226 |
– |
geomCnst = 3.0/2.0; |
1227 |
– |
/* Get the inertial tensor and angular momentum for free*/ |
1228 |
– |
getInertiaTensor(intTensor,dummyAngMom); |
1229 |
– |
|
1230 |
– |
detI = intTensor.determinant(); |
1231 |
– |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1232 |
– |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1233 |
– |
return; |
1234 |
– |
} |
1006 |
|
/* |
1007 |
|
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1008 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |