ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1715 by gezelter, Tue May 22 21:55:31 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 < #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
84 <            
85 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <      MoleculeStamp* molStamp;
87 <      int nMolWithSameStamp;
88 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 <      CutoffGroupStamp* cgStamp;    
91 <      RigidBodyStamp* rbStamp;
92 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <
102 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
103 <
104 <        //calculate atoms in rigid bodies
105 <        int nAtomsInRigidBodies = 0;
106 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <          rbStamp = molStamp->getRigidBody(j);
123 <          nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
110 <      //group therefore the total number of cutoff groups in the system is
111 <      //equal to the total number of atoms minus number of atoms belong to
112 <      //cutoff group defined in meta-data file plus the number of cutoff
113 <      //groups defined in meta-data file
114 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
115 <
116 <      //every free atom (atom does not belong to rigid bodies) is an
117 <      //integrable object therefore the total number of integrable objects
118 <      //in the system is equal to the total number of atoms minus number of
119 <      //atoms belong to rigid body defined in meta-data file plus the number
120 <      //of rigid bodies defined in meta-data file
121 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
122 <                                                + nGlobalRigidBodies_;
123 <  
124 <      nGlobalMols_ = molStampIds_.size();
147 <
148 < #ifdef IS_MPI    
149 <      molToProcMap_.resize(nGlobalMols_);
150 < #endif
151 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
152      molecules_.clear();
153        
161    delete stamps_;
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157    }
158  
167  int SimInfo::getNGlobalConstraints() {
168    int nGlobalConstraints;
169 #ifdef IS_MPI
170    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171                  MPI_COMM_WORLD);    
172 #else
173    nGlobalConstraints =  nConstraints_;
174 #endif
175    return nGlobalConstraints;
176  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 212 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 226 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
229
230
213    }    
214  
215          
# Line 243 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 264 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
253 <            
254 <      }//end for (integrableObject)
255 <    }// end for (mol)
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261      
262      // n_constraints is local, so subtract them on each processor
263      ndf_local -= nConstraints_;
264  
265   #ifdef IS_MPI
266      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
268   #else
269      ndf_ = ndf_local;
270 +    nGlobalFluctuatingCharges_ = nfq_local;
271   #endif
272  
273      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 283 | Line 276 | namespace oopse {
276  
277    }
278  
279 +  int SimInfo::getFdf() {
280 + #ifdef IS_MPI
281 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
282 + #else
283 +    fdf_ = fdf_local;
284 + #endif
285 +    return fdf_;
286 +  }
287 +  
288 +  unsigned int SimInfo::getNLocalCutoffGroups(){
289 +    int nLocalCutoffAtoms = 0;
290 +    Molecule* mol;
291 +    MoleculeIterator mi;
292 +    CutoffGroup* cg;
293 +    Molecule::CutoffGroupIterator ci;
294 +    
295 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
296 +      
297 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
298 +           cg = mol->nextCutoffGroup(ci)) {
299 +        nLocalCutoffAtoms += cg->getNumAtom();
300 +        
301 +      }        
302 +    }
303 +    
304 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
305 +  }
306 +    
307    void SimInfo::calcNdfRaw() {
308      int ndfRaw_local;
309  
310      MoleculeIterator i;
311 <    std::vector<StuntDouble*>::iterator j;
311 >    vector<StuntDouble*>::iterator j;
312      Molecule* mol;
313      StuntDouble* integrableObject;
314  
# Line 334 | Line 355 | namespace oopse {
355  
356    }
357  
358 <  void SimInfo::addExcludePairs(Molecule* mol) {
359 <    std::vector<Bond*>::iterator bondIter;
360 <    std::vector<Bend*>::iterator bendIter;
361 <    std::vector<Torsion*>::iterator torsionIter;
358 >  void SimInfo::addInteractionPairs(Molecule* mol) {
359 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
360 >    vector<Bond*>::iterator bondIter;
361 >    vector<Bend*>::iterator bendIter;
362 >    vector<Torsion*>::iterator torsionIter;
363 >    vector<Inversion*>::iterator inversionIter;
364      Bond* bond;
365      Bend* bend;
366      Torsion* torsion;
367 +    Inversion* inversion;
368      int a;
369      int b;
370      int c;
371      int d;
372 +
373 +    // atomGroups can be used to add special interaction maps between
374 +    // groups of atoms that are in two separate rigid bodies.
375 +    // However, most site-site interactions between two rigid bodies
376 +    // are probably not special, just the ones between the physically
377 +    // bonded atoms.  Interactions *within* a single rigid body should
378 +    // always be excluded.  These are done at the bottom of this
379 +    // function.
380 +
381 +    map<int, set<int> > atomGroups;
382 +    Molecule::RigidBodyIterator rbIter;
383 +    RigidBody* rb;
384 +    Molecule::IntegrableObjectIterator ii;
385 +    StuntDouble* integrableObject;
386      
387 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
387 >    for (integrableObject = mol->beginIntegrableObject(ii);
388 >         integrableObject != NULL;
389 >         integrableObject = mol->nextIntegrableObject(ii)) {
390 >      
391 >      if (integrableObject->isRigidBody()) {
392 >        rb = static_cast<RigidBody*>(integrableObject);
393 >        vector<Atom*> atoms = rb->getAtoms();
394 >        set<int> rigidAtoms;
395 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
396 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
397 >        }
398 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
399 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
400 >        }      
401 >      } else {
402 >        set<int> oneAtomSet;
403 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
404 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
405 >      }
406 >    }  
407 >          
408 >    for (bond= mol->beginBond(bondIter); bond != NULL;
409 >         bond = mol->nextBond(bondIter)) {
410 >
411        a = bond->getAtomA()->getGlobalIndex();
412 <      b = bond->getAtomB()->getGlobalIndex();        
413 <      exclude_.addPair(a, b);
412 >      b = bond->getAtomB()->getGlobalIndex();  
413 >    
414 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
415 >        oneTwoInteractions_.addPair(a, b);
416 >      } else {
417 >        excludedInteractions_.addPair(a, b);
418 >      }
419      }
420  
421 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
421 >    for (bend= mol->beginBend(bendIter); bend != NULL;
422 >         bend = mol->nextBend(bendIter)) {
423 >
424        a = bend->getAtomA()->getGlobalIndex();
425        b = bend->getAtomB()->getGlobalIndex();        
426        c = bend->getAtomC()->getGlobalIndex();
427 +      
428 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 +        oneTwoInteractions_.addPair(a, b);      
430 +        oneTwoInteractions_.addPair(b, c);
431 +      } else {
432 +        excludedInteractions_.addPair(a, b);
433 +        excludedInteractions_.addPair(b, c);
434 +      }
435  
436 <      exclude_.addPair(a, b);
437 <      exclude_.addPair(a, c);
438 <      exclude_.addPair(b, c);        
436 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
437 >        oneThreeInteractions_.addPair(a, c);      
438 >      } else {
439 >        excludedInteractions_.addPair(a, c);
440 >      }
441      }
442  
443 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
443 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
444 >         torsion = mol->nextTorsion(torsionIter)) {
445 >
446        a = torsion->getAtomA()->getGlobalIndex();
447        b = torsion->getAtomB()->getGlobalIndex();        
448        c = torsion->getAtomC()->getGlobalIndex();        
449 <      d = torsion->getAtomD()->getGlobalIndex();        
449 >      d = torsion->getAtomD()->getGlobalIndex();      
450  
451 <      exclude_.addPair(a, b);
452 <      exclude_.addPair(a, c);
453 <      exclude_.addPair(a, d);
454 <      exclude_.addPair(b, c);
455 <      exclude_.addPair(b, d);
456 <      exclude_.addPair(c, d);        
451 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
452 >        oneTwoInteractions_.addPair(a, b);      
453 >        oneTwoInteractions_.addPair(b, c);
454 >        oneTwoInteractions_.addPair(c, d);
455 >      } else {
456 >        excludedInteractions_.addPair(a, b);
457 >        excludedInteractions_.addPair(b, c);
458 >        excludedInteractions_.addPair(c, d);
459 >      }
460 >
461 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
462 >        oneThreeInteractions_.addPair(a, c);      
463 >        oneThreeInteractions_.addPair(b, d);      
464 >      } else {
465 >        excludedInteractions_.addPair(a, c);
466 >        excludedInteractions_.addPair(b, d);
467 >      }
468 >
469 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
470 >        oneFourInteractions_.addPair(a, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(a, d);
473 >      }
474      }
475  
476 <    Molecule::RigidBodyIterator rbIter;
477 <    RigidBody* rb;
478 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
479 <      std::vector<Atom*> atoms = rb->getAtoms();
480 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
481 <        for (int j = i + 1; j < atoms.size(); ++j) {
476 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
477 >         inversion = mol->nextInversion(inversionIter)) {
478 >
479 >      a = inversion->getAtomA()->getGlobalIndex();
480 >      b = inversion->getAtomB()->getGlobalIndex();        
481 >      c = inversion->getAtomC()->getGlobalIndex();        
482 >      d = inversion->getAtomD()->getGlobalIndex();        
483 >
484 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
485 >        oneTwoInteractions_.addPair(a, b);      
486 >        oneTwoInteractions_.addPair(a, c);
487 >        oneTwoInteractions_.addPair(a, d);
488 >      } else {
489 >        excludedInteractions_.addPair(a, b);
490 >        excludedInteractions_.addPair(a, c);
491 >        excludedInteractions_.addPair(a, d);
492 >      }
493 >
494 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
495 >        oneThreeInteractions_.addPair(b, c);    
496 >        oneThreeInteractions_.addPair(b, d);    
497 >        oneThreeInteractions_.addPair(c, d);      
498 >      } else {
499 >        excludedInteractions_.addPair(b, c);
500 >        excludedInteractions_.addPair(b, d);
501 >        excludedInteractions_.addPair(c, d);
502 >      }
503 >    }
504 >
505 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
506 >         rb = mol->nextRigidBody(rbIter)) {
507 >      vector<Atom*> atoms = rb->getAtoms();
508 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
509 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
510            a = atoms[i]->getGlobalIndex();
511            b = atoms[j]->getGlobalIndex();
512 <          exclude_.addPair(a, b);
512 >          excludedInteractions_.addPair(a, b);
513          }
514        }
515      }        
516  
517    }
518  
519 <  void SimInfo::removeExcludePairs(Molecule* mol) {
520 <    std::vector<Bond*>::iterator bondIter;
521 <    std::vector<Bend*>::iterator bendIter;
522 <    std::vector<Torsion*>::iterator torsionIter;
519 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
520 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
521 >    vector<Bond*>::iterator bondIter;
522 >    vector<Bend*>::iterator bendIter;
523 >    vector<Torsion*>::iterator torsionIter;
524 >    vector<Inversion*>::iterator inversionIter;
525      Bond* bond;
526      Bend* bend;
527      Torsion* torsion;
528 +    Inversion* inversion;
529      int a;
530      int b;
531      int c;
532      int d;
533 +
534 +    map<int, set<int> > atomGroups;
535 +    Molecule::RigidBodyIterator rbIter;
536 +    RigidBody* rb;
537 +    Molecule::IntegrableObjectIterator ii;
538 +    StuntDouble* integrableObject;
539      
540 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
540 >    for (integrableObject = mol->beginIntegrableObject(ii);
541 >         integrableObject != NULL;
542 >         integrableObject = mol->nextIntegrableObject(ii)) {
543 >      
544 >      if (integrableObject->isRigidBody()) {
545 >        rb = static_cast<RigidBody*>(integrableObject);
546 >        vector<Atom*> atoms = rb->getAtoms();
547 >        set<int> rigidAtoms;
548 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
549 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
550 >        }
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
553 >        }      
554 >      } else {
555 >        set<int> oneAtomSet;
556 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
557 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
558 >      }
559 >    }  
560 >
561 >    for (bond= mol->beginBond(bondIter); bond != NULL;
562 >         bond = mol->nextBond(bondIter)) {
563 >      
564        a = bond->getAtomA()->getGlobalIndex();
565 <      b = bond->getAtomB()->getGlobalIndex();        
566 <      exclude_.removePair(a, b);
565 >      b = bond->getAtomB()->getGlobalIndex();  
566 >    
567 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
568 >        oneTwoInteractions_.removePair(a, b);
569 >      } else {
570 >        excludedInteractions_.removePair(a, b);
571 >      }
572      }
573  
574 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
574 >    for (bend= mol->beginBend(bendIter); bend != NULL;
575 >         bend = mol->nextBend(bendIter)) {
576 >
577        a = bend->getAtomA()->getGlobalIndex();
578        b = bend->getAtomB()->getGlobalIndex();        
579        c = bend->getAtomC()->getGlobalIndex();
580 +      
581 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
582 +        oneTwoInteractions_.removePair(a, b);      
583 +        oneTwoInteractions_.removePair(b, c);
584 +      } else {
585 +        excludedInteractions_.removePair(a, b);
586 +        excludedInteractions_.removePair(b, c);
587 +      }
588  
589 <      exclude_.removePair(a, b);
590 <      exclude_.removePair(a, c);
591 <      exclude_.removePair(b, c);        
589 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
590 >        oneThreeInteractions_.removePair(a, c);      
591 >      } else {
592 >        excludedInteractions_.removePair(a, c);
593 >      }
594      }
595  
596 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
596 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
597 >         torsion = mol->nextTorsion(torsionIter)) {
598 >
599        a = torsion->getAtomA()->getGlobalIndex();
600        b = torsion->getAtomB()->getGlobalIndex();        
601        c = torsion->getAtomC()->getGlobalIndex();        
602 <      d = torsion->getAtomD()->getGlobalIndex();        
602 >      d = torsion->getAtomD()->getGlobalIndex();      
603 >  
604 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
605 >        oneTwoInteractions_.removePair(a, b);      
606 >        oneTwoInteractions_.removePair(b, c);
607 >        oneTwoInteractions_.removePair(c, d);
608 >      } else {
609 >        excludedInteractions_.removePair(a, b);
610 >        excludedInteractions_.removePair(b, c);
611 >        excludedInteractions_.removePair(c, d);
612 >      }
613  
614 <      exclude_.removePair(a, b);
615 <      exclude_.removePair(a, c);
616 <      exclude_.removePair(a, d);
617 <      exclude_.removePair(b, c);
618 <      exclude_.removePair(b, d);
619 <      exclude_.removePair(c, d);        
614 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
615 >        oneThreeInteractions_.removePair(a, c);      
616 >        oneThreeInteractions_.removePair(b, d);      
617 >      } else {
618 >        excludedInteractions_.removePair(a, c);
619 >        excludedInteractions_.removePair(b, d);
620 >      }
621 >
622 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
623 >        oneFourInteractions_.removePair(a, d);      
624 >      } else {
625 >        excludedInteractions_.removePair(a, d);
626 >      }
627      }
628  
629 <    Molecule::RigidBodyIterator rbIter;
630 <    RigidBody* rb;
631 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
632 <      std::vector<Atom*> atoms = rb->getAtoms();
633 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
634 <        for (int j = i + 1; j < atoms.size(); ++j) {
629 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
630 >         inversion = mol->nextInversion(inversionIter)) {
631 >
632 >      a = inversion->getAtomA()->getGlobalIndex();
633 >      b = inversion->getAtomB()->getGlobalIndex();        
634 >      c = inversion->getAtomC()->getGlobalIndex();        
635 >      d = inversion->getAtomD()->getGlobalIndex();        
636 >
637 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
638 >        oneTwoInteractions_.removePair(a, b);      
639 >        oneTwoInteractions_.removePair(a, c);
640 >        oneTwoInteractions_.removePair(a, d);
641 >      } else {
642 >        excludedInteractions_.removePair(a, b);
643 >        excludedInteractions_.removePair(a, c);
644 >        excludedInteractions_.removePair(a, d);
645 >      }
646 >
647 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
648 >        oneThreeInteractions_.removePair(b, c);    
649 >        oneThreeInteractions_.removePair(b, d);    
650 >        oneThreeInteractions_.removePair(c, d);      
651 >      } else {
652 >        excludedInteractions_.removePair(b, c);
653 >        excludedInteractions_.removePair(b, d);
654 >        excludedInteractions_.removePair(c, d);
655 >      }
656 >    }
657 >
658 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
659 >         rb = mol->nextRigidBody(rbIter)) {
660 >      vector<Atom*> atoms = rb->getAtoms();
661 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
662 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
663            a = atoms[i]->getGlobalIndex();
664            b = atoms[j]->getGlobalIndex();
665 <          exclude_.removePair(a, b);
665 >          excludedInteractions_.removePair(a, b);
666          }
667        }
668      }        
669 <
669 >    
670    }
671 <
672 <
671 >  
672 >  
673    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
674      int curStampId;
675 <
675 >    
676      //index from 0
677      curStampId = moleculeStamps_.size();
678  
# Line 459 | Line 680 | namespace oopse {
680      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
681    }
682  
462  void SimInfo::update() {
683  
684 <    setupSimType();
685 <
686 < #ifdef IS_MPI
687 <    setupFortranParallel();
688 < #endif
689 <
690 <    setupFortranSim();
691 <
692 <    //setup fortran force field
473 <    /** @deprecate */    
474 <    int isError = 0;
475 <    
476 <    setupElectrostaticSummationMethod( isError );
477 <    setupSwitchingFunction();
478 <
479 <    if(isError){
480 <      sprintf( painCave.errMsg,
481 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 <      painCave.isFatal = 1;
483 <      simError();
484 <    }
485 <  
486 <    
487 <    setupCutoff();
488 <
684 >  /**
685 >   * update
686 >   *
687 >   *  Performs the global checks and variable settings after the
688 >   *  objects have been created.
689 >   *
690 >   */
691 >  void SimInfo::update() {  
692 >    setupSimVariables();
693      calcNdf();
694      calcNdfRaw();
695      calcNdfTrans();
492
493    fortranInitialized_ = true;
696    }
697 <
698 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
697 >  
698 >  /**
699 >   * getSimulatedAtomTypes
700 >   *
701 >   * Returns an STL set of AtomType* that are actually present in this
702 >   * simulation.  Must query all processors to assemble this information.
703 >   *
704 >   */
705 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
706      SimInfo::MoleculeIterator mi;
707      Molecule* mol;
708      Molecule::AtomIterator ai;
709      Atom* atom;
710 <    std::set<AtomType*> atomTypes;
711 <
710 >    set<AtomType*> atomTypes;
711 >    
712      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
713 <
714 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
713 >      for(atom = mol->beginAtom(ai); atom != NULL;
714 >          atom = mol->nextAtom(ai)) {
715          atomTypes.insert(atom->getAtomType());
716 <      }
717 <        
718 <    }
716 >      }      
717 >    }    
718 >    
719 > #ifdef IS_MPI
720  
721 <    return atomTypes;        
722 <  }
513 <
514 <  void SimInfo::setupSimType() {
515 <    std::set<AtomType*>::iterator i;
516 <    std::set<AtomType*> atomTypes;
517 <    atomTypes = getUniqueAtomTypes();
721 >    // loop over the found atom types on this processor, and add their
722 >    // numerical idents to a vector:
723      
724 <    int useLennardJones = 0;
725 <    int useElectrostatic = 0;
726 <    int useEAM = 0;
727 <    int useCharge = 0;
523 <    int useDirectional = 0;
524 <    int useDipole = 0;
525 <    int useGayBerne = 0;
526 <    int useSticky = 0;
527 <    int useStickyPower = 0;
528 <    int useShape = 0;
529 <    int useFLARB = 0; //it is not in AtomType yet
530 <    int useDirectionalAtom = 0;    
531 <    int useElectrostatics = 0;
532 <    //usePBC and useRF are from simParams
533 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
534 <    int useRF;
535 <    int useSF;
536 <    std::string myMethod;
724 >    vector<int> foundTypes;
725 >    set<AtomType*>::iterator i;
726 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
727 >      foundTypes.push_back( (*i)->getIdent() );
728  
729 <    // set the useRF logical
730 <    useRF = 0;
540 <    useSF = 0;
729 >    // count_local holds the number of found types on this processor
730 >    int count_local = foundTypes.size();
731  
732 +    int nproc = MPI::COMM_WORLD.Get_size();
733  
734 <    if (simParams_->haveElectrostaticSummationMethod()) {
735 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
736 <      toUpper(myMethod);
737 <      if (myMethod == "REACTION_FIELD") {
738 <        useRF=1;
739 <      } else {
740 <        if (myMethod == "SHIFTED_FORCE") {
741 <          useSF = 1;
742 <        }
743 <      }
734 >    // we need arrays to hold the counts and displacement vectors for
735 >    // all processors
736 >    vector<int> counts(nproc, 0);
737 >    vector<int> disps(nproc, 0);
738 >
739 >    // fill the counts array
740 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
741 >                              1, MPI::INT);
742 >  
743 >    // use the processor counts to compute the displacement array
744 >    disps[0] = 0;    
745 >    int totalCount = counts[0];
746 >    for (int iproc = 1; iproc < nproc; iproc++) {
747 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
748 >      totalCount += counts[iproc];
749      }
750  
751 <    //loop over all of the atom types
752 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
753 <      useLennardJones |= (*i)->isLennardJones();
754 <      useElectrostatic |= (*i)->isElectrostatic();
755 <      useEAM |= (*i)->isEAM();
756 <      useCharge |= (*i)->isCharge();
757 <      useDirectional |= (*i)->isDirectional();
562 <      useDipole |= (*i)->isDipole();
563 <      useGayBerne |= (*i)->isGayBerne();
564 <      useSticky |= (*i)->isSticky();
565 <      useStickyPower |= (*i)->isStickyPower();
566 <      useShape |= (*i)->isShape();
567 <    }
751 >    // we need a (possibly redundant) set of all found types:
752 >    vector<int> ftGlobal(totalCount);
753 >    
754 >    // now spray out the foundTypes to all the other processors:    
755 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
756 >                               &ftGlobal[0], &counts[0], &disps[0],
757 >                               MPI::INT);
758  
759 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
570 <      useDirectionalAtom = 1;
571 <    }
759 >    vector<int>::iterator j;
760  
761 <    if (useCharge || useDipole) {
762 <      useElectrostatics = 1;
763 <    }
761 >    // foundIdents is a stl set, so inserting an already found ident
762 >    // will have no effect.
763 >    set<int> foundIdents;
764  
765 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
766 +      foundIdents.insert((*j));
767 +    
768 +    // now iterate over the foundIdents and get the actual atom types
769 +    // that correspond to these:
770 +    set<int>::iterator it;
771 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
772 +      atomTypes.insert( forceField_->getAtomType((*it)) );
773 +
774 + #endif
775 +
776 +    return atomTypes;        
777 +  }
778 +
779 +  void SimInfo::setupSimVariables() {
780 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
781 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
782 +    calcBoxDipole_ = false;
783 +    if ( simParams_->haveAccumulateBoxDipole() )
784 +      if ( simParams_->getAccumulateBoxDipole() ) {
785 +        calcBoxDipole_ = true;      
786 +      }
787 +    
788 +    set<AtomType*>::iterator i;
789 +    set<AtomType*> atomTypes;
790 +    atomTypes = getSimulatedAtomTypes();    
791 +    int usesElectrostatic = 0;
792 +    int usesMetallic = 0;
793 +    int usesDirectional = 0;
794 +    int usesFluctuatingCharges =  0;
795 +    //loop over all of the atom types
796 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
797 +      usesElectrostatic |= (*i)->isElectrostatic();
798 +      usesMetallic |= (*i)->isMetal();
799 +      usesDirectional |= (*i)->isDirectional();
800 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
801 +    }
802 +    
803   #ifdef IS_MPI    
804      int temp;
805 +    temp = usesDirectional;
806 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
807 +    
808 +    temp = usesMetallic;
809 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 +    
811 +    temp = usesElectrostatic;
812 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
813  
814 <    temp = usePBC;
815 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >    temp = usesFluctuatingCharges;
815 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816 > #else
817  
818 <    temp = useDirectionalAtom;
819 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    usesDirectionalAtoms_ = usesDirectional;
819 >    usesMetallicAtoms_ = usesMetallic;
820 >    usesElectrostaticAtoms_ = usesElectrostatic;
821 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
822  
823 <    temp = useLennardJones;
824 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
823 > #endif
824 >    
825 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
826 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
827 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
828 >  }
829  
589    temp = useElectrostatics;
590    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830  
831 <    temp = useCharge;
832 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
831 >  vector<int> SimInfo::getGlobalAtomIndices() {
832 >    SimInfo::MoleculeIterator mi;
833 >    Molecule* mol;
834 >    Molecule::AtomIterator ai;
835 >    Atom* atom;
836  
837 <    temp = useDipole;
596 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597 <
598 <    temp = useSticky;
599 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 <
601 <    temp = useStickyPower;
602 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
838      
839 <    temp = useGayBerne;
840 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
840 >      
841 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
842 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
843 >      }
844 >    }
845 >    return GlobalAtomIndices;
846 >  }
847  
607    temp = useEAM;
608    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
848  
849 <    temp = useShape;
850 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
849 >  vector<int> SimInfo::getGlobalGroupIndices() {
850 >    SimInfo::MoleculeIterator mi;
851 >    Molecule* mol;
852 >    Molecule::CutoffGroupIterator ci;
853 >    CutoffGroup* cg;
854  
855 <    temp = useFLARB;
856 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
857 <
616 <    temp = useRF;
617 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <
619 <    temp = useSF;
620 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
621 <
622 < #endif
623 <
624 <    fInfo_.SIM_uses_PBC = usePBC;    
625 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
626 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
627 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
628 <    fInfo_.SIM_uses_Charges = useCharge;
629 <    fInfo_.SIM_uses_Dipoles = useDipole;
630 <    fInfo_.SIM_uses_Sticky = useSticky;
631 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
632 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
633 <    fInfo_.SIM_uses_EAM = useEAM;
634 <    fInfo_.SIM_uses_Shapes = useShape;
635 <    fInfo_.SIM_uses_FLARB = useFLARB;
636 <    fInfo_.SIM_uses_RF = useRF;
637 <    fInfo_.SIM_uses_SF = useSF;
638 <
639 <    if( myMethod == "REACTION_FIELD") {
855 >    vector<int> GlobalGroupIndices;
856 >    
857 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
858        
859 <      if (simParams_->haveDielectric()) {
860 <        fInfo_.dielect = simParams_->getDielectric();
861 <      } else {
862 <        sprintf(painCave.errMsg,
863 <                "SimSetup Error: No Dielectric constant was set.\n"
864 <                "\tYou are trying to use Reaction Field without"
647 <                "\tsetting a dielectric constant!\n");
648 <        painCave.isFatal = 1;
649 <        simError();
650 <      }      
859 >      //local index of cutoff group is trivial, it only depends on the
860 >      //order of travesing
861 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
862 >           cg = mol->nextCutoffGroup(ci)) {
863 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
864 >      }        
865      }
866 <
866 >    return GlobalGroupIndices;
867    }
868  
655  void SimInfo::setupFortranSim() {
656    int isError;
657    int nExclude;
658    std::vector<int> fortranGlobalGroupMembership;
659    
660    nExclude = exclude_.getSize();
661    isError = 0;
869  
870 <    //globalGroupMembership_ is filled by SimCreator    
871 <    for (int i = 0; i < nGlobalAtoms_; i++) {
665 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
666 <    }
870 >  void SimInfo::prepareTopology() {
871 >    int nExclude, nOneTwo, nOneThree, nOneFour;
872  
873      //calculate mass ratio of cutoff group
669    std::vector<double> mfact;
874      SimInfo::MoleculeIterator mi;
875      Molecule* mol;
876      Molecule::CutoffGroupIterator ci;
877      CutoffGroup* cg;
878      Molecule::AtomIterator ai;
879      Atom* atom;
880 <    double totalMass;
880 >    RealType totalMass;
881  
882 <    //to avoid memory reallocation, reserve enough space for mfact
883 <    mfact.reserve(getNCutoffGroups());
882 >    /**
883 >     * The mass factor is the relative mass of an atom to the total
884 >     * mass of the cutoff group it belongs to.  By default, all atoms
885 >     * are their own cutoff groups, and therefore have mass factors of
886 >     * 1.  We need some special handling for massless atoms, which
887 >     * will be treated as carrying the entire mass of the cutoff
888 >     * group.
889 >     */
890 >    massFactors_.clear();
891 >    massFactors_.resize(getNAtoms(), 1.0);
892      
893      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
894 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
894 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
895 >           cg = mol->nextCutoffGroup(ci)) {
896  
897          totalMass = cg->getMass();
898          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
899            // Check for massless groups - set mfact to 1 if true
900 <          if (totalMass != 0)
901 <            mfact.push_back(atom->getMass()/totalMass);
900 >          if (totalMass != 0)
901 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
902            else
903 <            mfact.push_back( 1.0 );
903 >            massFactors_[atom->getLocalIndex()] = 1.0;
904          }
692
905        }      
906      }
907  
908 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
697 <    std::vector<int> identArray;
908 >    // Build the identArray_
909  
910 <    //to avoid memory reallocation, reserve enough space identArray
911 <    identArray.reserve(getNAtoms());
701 <    
910 >    identArray_.clear();
911 >    identArray_.reserve(getNAtoms());    
912      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
913        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
914 <        identArray.push_back(atom->getIdent());
914 >        identArray_.push_back(atom->getIdent());
915        }
916      }    
707
708    //fill molMembershipArray
709    //molMembershipArray is filled by SimCreator    
710    std::vector<int> molMembershipArray(nGlobalAtoms_);
711    for (int i = 0; i < nGlobalAtoms_; i++) {
712      molMembershipArray[i] = globalMolMembership_[i] + 1;
713    }
917      
918 <    //setup fortran simulation
716 <    int nGlobalExcludes = 0;
717 <    int* globalExcludes = NULL;
718 <    int* excludeList = exclude_.getExcludeList();
719 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
918 >    //scan topology
919  
920 <    if( isError ){
920 >    nExclude = excludedInteractions_.getSize();
921 >    nOneTwo = oneTwoInteractions_.getSize();
922 >    nOneThree = oneThreeInteractions_.getSize();
923 >    nOneFour = oneFourInteractions_.getSize();
924  
925 <      sprintf( painCave.errMsg,
926 <               "There was an error setting the simulation information in fortran.\n" );
927 <      painCave.isFatal = 1;
928 <      painCave.severity = OOPSE_ERROR;
729 <      simError();
730 <    }
731 <
732 < #ifdef IS_MPI
733 <    sprintf( checkPointMsg,
734 <             "succesfully sent the simulation information to fortran.\n");
735 <    MPIcheckPoint();
736 < #endif // is_mpi
737 <  }
738 <
739 <
740 < #ifdef IS_MPI
741 <  void SimInfo::setupFortranParallel() {
742 <    
743 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
744 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
745 <    std::vector<int> localToGlobalCutoffGroupIndex;
746 <    SimInfo::MoleculeIterator mi;
747 <    Molecule::AtomIterator ai;
748 <    Molecule::CutoffGroupIterator ci;
749 <    Molecule* mol;
750 <    Atom* atom;
751 <    CutoffGroup* cg;
752 <    mpiSimData parallelData;
753 <    int isError;
754 <
755 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
756 <
757 <      //local index(index in DataStorge) of atom is important
758 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
759 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
760 <      }
761 <
762 <      //local index of cutoff group is trivial, it only depends on the order of travesing
763 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
764 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
765 <      }        
766 <        
767 <    }
768 <
769 <    //fill up mpiSimData struct
770 <    parallelData.nMolGlobal = getNGlobalMolecules();
771 <    parallelData.nMolLocal = getNMolecules();
772 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
773 <    parallelData.nAtomsLocal = getNAtoms();
774 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
775 <    parallelData.nGroupsLocal = getNCutoffGroups();
776 <    parallelData.myNode = worldRank;
777 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
778 <
779 <    //pass mpiSimData struct and index arrays to fortran
780 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
781 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
782 <                    &localToGlobalCutoffGroupIndex[0], &isError);
783 <
784 <    if (isError) {
785 <      sprintf(painCave.errMsg,
786 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
787 <      painCave.isFatal = 1;
788 <      simError();
789 <    }
790 <
791 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
792 <    MPIcheckPoint();
793 <
794 <
795 <  }
796 <
797 < #endif
798 <
799 <  double SimInfo::calcMaxCutoffRadius() {
800 <
801 <
802 <    std::set<AtomType*> atomTypes;
803 <    std::set<AtomType*>::iterator i;
804 <    std::vector<double> cutoffRadius;
805 <
806 <    //get the unique atom types
807 <    atomTypes = getUniqueAtomTypes();
808 <
809 <    //query the max cutoff radius among these atom types
810 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812 <    }
813 <
814 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
815 < #ifdef IS_MPI
816 <    //pick the max cutoff radius among the processors
817 < #endif
925 >    int* excludeList = excludedInteractions_.getPairList();
926 >    int* oneTwoList = oneTwoInteractions_.getPairList();
927 >    int* oneThreeList = oneThreeInteractions_.getPairList();
928 >    int* oneFourList = oneFourInteractions_.getPairList();
929  
930 <    return maxCutoffRadius;
820 <  }
821 <
822 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
823 <    
824 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825 <        
826 <      if (!simParams_->haveCutoffRadius()){
827 <        sprintf(painCave.errMsg,
828 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
829 <                "\tOOPSE will use a default value of 15.0 angstroms"
830 <                "\tfor the cutoffRadius.\n");
831 <        painCave.isFatal = 0;
832 <        simError();
833 <        rcut = 15.0;
834 <      } else{
835 <        rcut = simParams_->getCutoffRadius();
836 <      }
837 <
838 <      if (!simParams_->haveSwitchingRadius()){
839 <        sprintf(painCave.errMsg,
840 <                "SimCreator Warning: No value was set for switchingRadius.\n"
841 <                "\tOOPSE will use a default value of\n"
842 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
843 <        painCave.isFatal = 0;
844 <        simError();
845 <        rsw = 0.85 * rcut;
846 <      } else{
847 <        rsw = simParams_->getSwitchingRadius();
848 <      }
849 <
850 <    } else {
851 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853 <        
854 <      if (simParams_->haveCutoffRadius()) {
855 <        rcut = simParams_->getCutoffRadius();
856 <      } else {
857 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858 <        rcut = calcMaxCutoffRadius();
859 <      }
860 <
861 <      if (simParams_->haveSwitchingRadius()) {
862 <        rsw  = simParams_->getSwitchingRadius();
863 <      } else {
864 <        rsw = rcut;
865 <      }
866 <    
867 <    }
868 <  }
869 <
870 <  void SimInfo::setupCutoff() {    
871 <    getCutoff(rcut_, rsw_);    
872 <    double rnblist = rcut_ + 1; // skin of neighbor list
873 <
874 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875 <    
876 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
877 <    if (simParams_->haveCutoffPolicy()) {
878 <      std::string myPolicy = simParams_->getCutoffPolicy();
879 <      toUpper(myPolicy);
880 <      if (myPolicy == "MIX") {
881 <        cp = MIX_CUTOFF_POLICY;
882 <      } else {
883 <        if (myPolicy == "MAX") {
884 <          cp = MAX_CUTOFF_POLICY;
885 <        } else {
886 <          if (myPolicy == "TRADITIONAL") {            
887 <            cp = TRADITIONAL_CUTOFF_POLICY;
888 <          } else {
889 <            // throw error        
890 <            sprintf( painCave.errMsg,
891 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892 <            painCave.isFatal = 1;
893 <            simError();
894 <          }    
895 <        }          
896 <      }
897 <    }
898 <
899 <
900 <    if (simParams_->haveSkinThickness()) {
901 <      double skinThickness = simParams_->getSkinThickness();
902 <    }
903 <
904 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905 <    // also send cutoff notification to electrostatics
906 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
907 <  }
908 <
909 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
910 <    
911 <    int errorOut;
912 <    int esm =  NONE;
913 <    int sm = UNDAMPED;
914 <    double alphaVal;
915 <    double dielectric;
916 <
917 <    errorOut = isError;
918 <    alphaVal = simParams_->getDampingAlpha();
919 <    dielectric = simParams_->getDielectric();
920 <
921 <    if (simParams_->haveElectrostaticSummationMethod()) {
922 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
923 <      toUpper(myMethod);
924 <      if (myMethod == "NONE") {
925 <        esm = NONE;
926 <      } else {
927 <        if (myMethod == "SWITCHING_FUNCTION") {
928 <          esm = SWITCHING_FUNCTION;
929 <        } else {
930 <          if (myMethod == "SHIFTED_POTENTIAL") {
931 <            esm = SHIFTED_POTENTIAL;
932 <          } else {
933 <            if (myMethod == "SHIFTED_FORCE") {            
934 <              esm = SHIFTED_FORCE;
935 <            } else {
936 <              if (myMethod == "REACTION_FIELD") {            
937 <                esm = REACTION_FIELD;
938 <              } else {
939 <                // throw error        
940 <                sprintf( painCave.errMsg,
941 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942 <                painCave.isFatal = 1;
943 <                simError();
944 <              }    
945 <            }          
946 <          }
947 <        }
948 <      }
949 <    }
950 <    
951 <    if (simParams_->haveElectrostaticScreeningMethod()) {
952 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953 <      toUpper(myScreen);
954 <      if (myScreen == "UNDAMPED") {
955 <        sm = UNDAMPED;
956 <      } else {
957 <        if (myScreen == "DAMPED") {
958 <          sm = DAMPED;
959 <          if (!simParams_->haveDampingAlpha()) {
960 <            //throw error
961 <            sprintf( painCave.errMsg,
962 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963 <            painCave.isFatal = 0;
964 <            simError();
965 <          }
966 <        } else {
967 <          // throw error        
968 <          sprintf( painCave.errMsg,
969 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970 <          painCave.isFatal = 1;
971 <          simError();
972 <        }
973 <      }
974 <    }
975 <    
976 <    // let's pass some summation method variables to fortran
977 <    setElectrostaticSummationMethod( &esm );
978 <    setScreeningMethod( &sm );
979 <    setDampingAlpha( &alphaVal );
980 <    setReactionFieldDielectric( &dielectric );
981 <    initFortranFF( &esm, &errorOut );
982 <  }
983 <
984 <  void SimInfo::setupSwitchingFunction() {    
985 <    int ft = CUBIC;
986 <
987 <    if (simParams_->haveSwitchingFunctionType()) {
988 <      std::string funcType = simParams_->getSwitchingFunctionType();
989 <      toUpper(funcType);
990 <      if (funcType == "CUBIC") {
991 <        ft = CUBIC;
992 <      } else {
993 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
994 <          ft = FIFTH_ORDER_POLY;
995 <        } else {
996 <          // throw error        
997 <          sprintf( painCave.errMsg,
998 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
999 <          painCave.isFatal = 1;
1000 <          simError();
1001 <        }          
1002 <      }
1003 <    }
1004 <
1005 <    // send switching function notification to switcheroo
1006 <    setFunctionType(&ft);
1007 <
930 >    topologyDone_ = true;
931    }
932  
933    void SimInfo::addProperty(GenericData* genData) {
934      properties_.addProperty(genData);  
935    }
936  
937 <  void SimInfo::removeProperty(const std::string& propName) {
937 >  void SimInfo::removeProperty(const string& propName) {
938      properties_.removeProperty(propName);  
939    }
940  
# Line 1019 | Line 942 | namespace oopse {
942      properties_.clearProperties();
943    }
944  
945 <  std::vector<std::string> SimInfo::getPropertyNames() {
945 >  vector<string> SimInfo::getPropertyNames() {
946      return properties_.getPropertyNames();  
947    }
948        
949 <  std::vector<GenericData*> SimInfo::getProperties() {
949 >  vector<GenericData*> SimInfo::getProperties() {
950      return properties_.getProperties();
951    }
952  
953 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
953 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
954      return properties_.getPropertyByName(propName);
955    }
956  
# Line 1041 | Line 964 | namespace oopse {
964      Molecule* mol;
965      RigidBody* rb;
966      Atom* atom;
967 +    CutoffGroup* cg;
968      SimInfo::MoleculeIterator mi;
969      Molecule::RigidBodyIterator rbIter;
970 <    Molecule::AtomIterator atomIter;;
970 >    Molecule::AtomIterator atomIter;
971 >    Molecule::CutoffGroupIterator cgIter;
972  
973      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
974          
# Line 1054 | Line 979 | namespace oopse {
979        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
980          rb->setSnapshotManager(sman_);
981        }
982 +
983 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
984 +        cg->setSnapshotManager(sman_);
985 +      }
986      }    
987      
988    }
# Line 1063 | Line 992 | namespace oopse {
992      Molecule* mol;
993  
994      Vector3d comVel(0.0);
995 <    double totalMass = 0.0;
995 >    RealType totalMass = 0.0;
996      
997  
998      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 <      double mass = mol->getMass();
999 >      RealType mass = mol->getMass();
1000        totalMass += mass;
1001        comVel += mass * mol->getComVel();
1002      }  
1003  
1004   #ifdef IS_MPI
1005 <    double tmpMass = totalMass;
1005 >    RealType tmpMass = totalMass;
1006      Vector3d tmpComVel(comVel);    
1007 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009   #endif
1010  
1011      comVel /= totalMass;
# Line 1089 | Line 1018 | namespace oopse {
1018      Molecule* mol;
1019  
1020      Vector3d com(0.0);
1021 <    double totalMass = 0.0;
1021 >    RealType totalMass = 0.0;
1022      
1023      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 <      double mass = mol->getMass();
1024 >      RealType mass = mol->getMass();
1025        totalMass += mass;
1026        com += mass * mol->getCom();
1027      }  
1028  
1029   #ifdef IS_MPI
1030 <    double tmpMass = totalMass;
1030 >    RealType tmpMass = totalMass;
1031      Vector3d tmpCom(com);    
1032 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1032 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034   #endif
1035  
1036      com /= totalMass;
# Line 1110 | Line 1039 | namespace oopse {
1039  
1040    }        
1041  
1042 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043  
1044      return o;
1045    }
# Line 1125 | Line 1054 | namespace oopse {
1054        Molecule* mol;
1055        
1056      
1057 <      double totalMass = 0.0;
1057 >      RealType totalMass = 0.0;
1058      
1059  
1060        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 <         double mass = mol->getMass();
1061 >         RealType mass = mol->getMass();
1062           totalMass += mass;
1063           com += mass * mol->getCom();
1064           comVel += mass * mol->getComVel();          
1065        }  
1066        
1067   #ifdef IS_MPI
1068 <      double tmpMass = totalMass;
1068 >      RealType tmpMass = totalMass;
1069        Vector3d tmpCom(com);  
1070        Vector3d tmpComVel(comVel);
1071 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1072 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1073 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1071 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074   #endif
1075        
1076        com /= totalMass;
# Line 1153 | Line 1082 | namespace oopse {
1082  
1083  
1084         [  Ixx -Ixy  -Ixz ]
1085 <  J =| -Iyx  Iyy  -Iyz |
1085 >    J =| -Iyx  Iyy  -Iyz |
1086         [ -Izx -Iyz   Izz ]
1087      */
1088  
1089     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090        
1091  
1092 <      double xx = 0.0;
1093 <      double yy = 0.0;
1094 <      double zz = 0.0;
1095 <      double xy = 0.0;
1096 <      double xz = 0.0;
1097 <      double yz = 0.0;
1092 >      RealType xx = 0.0;
1093 >      RealType yy = 0.0;
1094 >      RealType zz = 0.0;
1095 >      RealType xy = 0.0;
1096 >      RealType xz = 0.0;
1097 >      RealType yz = 0.0;
1098        Vector3d com(0.0);
1099        Vector3d comVel(0.0);
1100        
# Line 1177 | Line 1106 | namespace oopse {
1106        Vector3d thisq(0.0);
1107        Vector3d thisv(0.0);
1108  
1109 <      double thisMass = 0.0;
1109 >      RealType thisMass = 0.0;
1110      
1111        
1112        
# Line 1215 | Line 1144 | namespace oopse {
1144   #ifdef IS_MPI
1145        Mat3x3d tmpI(inertiaTensor);
1146        Vector3d tmpAngMom;
1147 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1148 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1147 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149   #endif
1150                
1151        return;
# Line 1237 | Line 1166 | namespace oopse {
1166        Vector3d thisr(0.0);
1167        Vector3d thisp(0.0);
1168        
1169 <      double thisMass;
1169 >      RealType thisMass;
1170        
1171        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172          thisMass = mol->getMass();
# Line 1250 | Line 1179 | namespace oopse {
1179        
1180   #ifdef IS_MPI
1181        Vector3d tmpAngMom;
1182 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1182 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183   #endif
1184        
1185        return angularMomentum;
1186     }
1187    
1188 <  
1189 < }//end namespace oopse
1188 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 >    return IOIndexToIntegrableObject.at(index);
1190 >  }
1191 >  
1192 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 >    IOIndexToIntegrableObject= v;
1194 >  }
1195  
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237 +    }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253 +  }
1254 +
1255 + }//end namespace OpenMD
1256 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1715 by gezelter, Tue May 22 21:55:31 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines