ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC vs.
Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 58 | Line 59
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
62 > #include "brains/ForceField.hpp"
63   #include "nonbonded/SwitchingFunction.hpp"
64 + #ifdef IS_MPI
65 + #include <mpi.h>
66 + #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 68 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), topologyDone_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 221 | Line 225 | namespace OpenMD {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230      vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232 +
233      Molecule* mol;
234 <    StuntDouble* integrableObject;
234 >    StuntDouble* sd;
235 >    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
233      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 +           sd = mol->nextIntegrableObject(j)) {
244 +
245          ndf_local += 3;
246  
247 <        if (integrableObject->isDirectional()) {
248 <          if (integrableObject->isLinear()) {
247 >        if (sd->isDirectional()) {
248 >          if (sd->isLinear()) {
249              ndf_local += 2;
250            } else {
251              ndf_local += 3;
252            }
253          }
245            
254        }
255 +
256 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 +           atom = mol->nextFluctuatingCharge(k)) {
258 +        if (atom->isFluctuatingCharge()) {
259 +          nfq_local++;
260 +        }
261 +      }
262      }
263      
264 +    ndfLocal_ = ndf_local;
265 +
266      // n_constraints is local, so subtract them on each processor
267      ndf_local -= nConstraints_;
268  
269   #ifdef IS_MPI
270      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272   #else
273      ndf_ = ndf_local;
274 +    nGlobalFluctuatingCharges_ = nfq_local;
275   #endif
276  
277      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 295 | Line 314 | namespace OpenMD {
314      MoleculeIterator i;
315      vector<StuntDouble*>::iterator j;
316      Molecule* mol;
317 <    StuntDouble* integrableObject;
317 >    StuntDouble* sd;
318  
319      // Raw degrees of freedom that we have to set
320      ndfRaw_local = 0;
321      
322      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
304      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305           integrableObject = mol->nextIntegrableObject(j)) {
323  
324 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 +           sd = mol->nextIntegrableObject(j)) {
326 +
327          ndfRaw_local += 3;
328  
329 <        if (integrableObject->isDirectional()) {
330 <          if (integrableObject->isLinear()) {
329 >        if (sd->isDirectional()) {
330 >          if (sd->isLinear()) {
331              ndfRaw_local += 2;
332            } else {
333              ndfRaw_local += 3;
# Line 367 | Line 387 | namespace OpenMD {
387      Molecule::RigidBodyIterator rbIter;
388      RigidBody* rb;
389      Molecule::IntegrableObjectIterator ii;
390 <    StuntDouble* integrableObject;
390 >    StuntDouble* sd;
391      
392 <    for (integrableObject = mol->beginIntegrableObject(ii);
393 <         integrableObject != NULL;
374 <         integrableObject = mol->nextIntegrableObject(ii)) {
392 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 >         sd = mol->nextIntegrableObject(ii)) {
394        
395 <      if (integrableObject->isRigidBody()) {
396 <        rb = static_cast<RigidBody*>(integrableObject);
395 >      if (sd->isRigidBody()) {
396 >        rb = static_cast<RigidBody*>(sd);
397          vector<Atom*> atoms = rb->getAtoms();
398          set<int> rigidAtoms;
399          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 385 | Line 404 | namespace OpenMD {
404          }      
405        } else {
406          set<int> oneAtomSet;
407 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
408 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >        oneAtomSet.insert(sd->getGlobalIndex());
408 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
409        }
410      }  
411            
# Line 520 | Line 539 | namespace OpenMD {
539      Molecule::RigidBodyIterator rbIter;
540      RigidBody* rb;
541      Molecule::IntegrableObjectIterator ii;
542 <    StuntDouble* integrableObject;
542 >    StuntDouble* sd;
543      
544 <    for (integrableObject = mol->beginIntegrableObject(ii);
545 <         integrableObject != NULL;
527 <         integrableObject = mol->nextIntegrableObject(ii)) {
544 >    for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 >         sd = mol->nextIntegrableObject(ii)) {
546        
547 <      if (integrableObject->isRigidBody()) {
548 <        rb = static_cast<RigidBody*>(integrableObject);
547 >      if (sd->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(sd);
549          vector<Atom*> atoms = rb->getAtoms();
550          set<int> rigidAtoms;
551          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
# Line 538 | Line 556 | namespace OpenMD {
556          }      
557        } else {
558          set<int> oneAtomSet;
559 <        oneAtomSet.insert(integrableObject->getGlobalIndex());
560 <        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        oneAtomSet.insert(sd->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));        
561        }
562      }  
563  
# Line 694 | Line 712 | namespace OpenMD {
712      Atom* atom;
713      set<AtomType*> atomTypes;
714      
715 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719        }      
720      }    
721 <
721 >    
722   #ifdef IS_MPI
723  
724      // loop over the found atom types on this processor, and add their
725      // numerical idents to a vector:
726 <
726 >    
727      vector<int> foundTypes;
728      set<AtomType*>::iterator i;
729      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 713 | Line 732 | namespace OpenMD {
732      // count_local holds the number of found types on this processor
733      int count_local = foundTypes.size();
734  
735 <    // count holds the total number of found types on all processors
717 <    // (some will be redundant with the ones found locally):
718 <    int count;
719 <    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 <    // create a vector to hold the globally found types, and resize it:
738 <    vector<int> ftGlobal;
739 <    ftGlobal.resize(count);
740 <    vector<int> counts;
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741  
742 <    int nproc = MPI::COMM_WORLD.Get_size();
743 <    counts.resize(nproc);
744 <    vector<int> disps;
745 <    disps.resize(nproc);
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752 >    }
753  
754 <    // now spray out the foundTypes to all the other processors:
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756      
757 +    // now spray out the foundTypes to all the other processors:    
758      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 +    vector<int>::iterator j;
763 +
764      // foundIdents is a stl set, so inserting an already found ident
765      // will have no effect.
766      set<int> foundIdents;
767 <    vector<int>::iterator j;
767 >
768      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769        foundIdents.insert((*j));
770      
771      // now iterate over the foundIdents and get the actual atom types
772      // that correspond to these:
773      set<int>::iterator it;
774 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775        atomTypes.insert( forceField_->getAtomType((*it)) );
776  
777   #endif
778 <    
778 >
779      return atomTypes;        
780    }
781  
# Line 759 | Line 787 | namespace OpenMD {
787        if ( simParams_->getAccumulateBoxDipole() ) {
788          calcBoxDipole_ = true;      
789        }
790 <
790 >    
791      set<AtomType*>::iterator i;
792      set<AtomType*> atomTypes;
793      atomTypes = getSimulatedAtomTypes();    
794 <    int usesElectrostatic = 0;
795 <    int usesMetallic = 0;
796 <    int usesDirectional = 0;
794 >    bool usesElectrostatic = false;
795 >    bool usesMetallic = false;
796 >    bool usesDirectional = false;
797 >    bool usesFluctuatingCharges =  false;
798      //loop over all of the atom types
799      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800        usesElectrostatic |= (*i)->isElectrostatic();
801        usesMetallic |= (*i)->isMetal();
802        usesDirectional |= (*i)->isDirectional();
803 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804      }
805  
806 < #ifdef IS_MPI    
807 <    int temp;
806 > #ifdef IS_MPI
807 >    bool temp;
808      temp = usesDirectional;
809 <    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 <
809 >    MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 >                              MPI::LOR);
811 >        
812      temp = usesMetallic;
813 <    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
813 >    MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 >                              MPI::LOR);
815 >    
816      temp = usesElectrostatic;
817 <    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
817 >    MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 >                              MPI::LOR);
819 >
820 >    temp = usesFluctuatingCharges;
821 >    MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 >                              MPI::LOR);
823 > #else
824 >
825 >    usesDirectionalAtoms_ = usesDirectional;
826 >    usesMetallicAtoms_ = usesMetallic;
827 >    usesElectrostaticAtoms_ = usesElectrostatic;
828 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
829 >
830   #endif
831 +    
832 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
835    }
836  
837  
# Line 838 | Line 886 | namespace OpenMD {
886      Atom* atom;
887      RealType totalMass;
888  
889 <    //to avoid memory reallocation, reserve enough space for massFactors_
889 >    /**
890 >     * The mass factor is the relative mass of an atom to the total
891 >     * mass of the cutoff group it belongs to.  By default, all atoms
892 >     * are their own cutoff groups, and therefore have mass factors of
893 >     * 1.  We need some special handling for massless atoms, which
894 >     * will be treated as carrying the entire mass of the cutoff
895 >     * group.
896 >     */
897      massFactors_.clear();
898 <    massFactors_.reserve(getNCutoffGroups());
898 >    massFactors_.resize(getNAtoms(), 1.0);
899      
900      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
901        for (cg = mol->beginCutoffGroup(ci); cg != NULL;
# Line 849 | Line 904 | namespace OpenMD {
904          totalMass = cg->getMass();
905          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906            // Check for massless groups - set mfact to 1 if true
907 <          if (totalMass != 0)
908 <            massFactors_.push_back(atom->getMass()/totalMass);
907 >          if (totalMass != 0)
908 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909            else
910 <            massFactors_.push_back( 1.0 );
910 >            massFactors_[atom->getLocalIndex()] = 1.0;
911          }
912        }      
913      }
# Line 879 | Line 934 | namespace OpenMD {
934      int* oneThreeList = oneThreeInteractions_.getPairList();
935      int* oneFourList = oneFourInteractions_.getPairList();
936  
882    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
883    //               &nExclude, excludeList,
884    //               &nOneTwo, oneTwoList,
885    //               &nOneThree, oneThreeList,
886    //               &nOneFour, oneFourList,
887    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
888    //               &fortranGlobalGroupMembership[0], &isError);
889    
937      topologyDone_ = true;
938    }
939  
# Line 945 | Line 992 | namespace OpenMD {
992        }
993      }    
994      
948  }
949
950  Vector3d SimInfo::getComVel(){
951    SimInfo::MoleculeIterator i;
952    Molecule* mol;
953
954    Vector3d comVel(0.0);
955    RealType totalMass = 0.0;
956    
957
958    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
959      RealType mass = mol->getMass();
960      totalMass += mass;
961      comVel += mass * mol->getComVel();
962    }  
963
964 #ifdef IS_MPI
965    RealType tmpMass = totalMass;
966    Vector3d tmpComVel(comVel);    
967    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
968    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
969 #endif
970
971    comVel /= totalMass;
972
973    return comVel;
995    }
996  
976  Vector3d SimInfo::getCom(){
977    SimInfo::MoleculeIterator i;
978    Molecule* mol;
997  
980    Vector3d com(0.0);
981    RealType totalMass = 0.0;
982    
983    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
984      RealType mass = mol->getMass();
985      totalMass += mass;
986      com += mass * mol->getCom();
987    }  
988
989 #ifdef IS_MPI
990    RealType tmpMass = totalMass;
991    Vector3d tmpCom(com);    
992    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
993    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
994 #endif
995
996    com /= totalMass;
997
998    return com;
999
1000  }        
1001
998    ostream& operator <<(ostream& o, SimInfo& info) {
999  
1000      return o;
1001    }
1002    
1003 <  
1008 <   /*
1009 <   Returns center of mass and center of mass velocity in one function call.
1010 <   */
1011 <  
1012 <   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1013 <      SimInfo::MoleculeIterator i;
1014 <      Molecule* mol;
1015 <      
1016 <    
1017 <      RealType totalMass = 0.0;
1018 <    
1019 <
1020 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1021 <         RealType mass = mol->getMass();
1022 <         totalMass += mass;
1023 <         com += mass * mol->getCom();
1024 <         comVel += mass * mol->getComVel();          
1025 <      }  
1026 <      
1027 < #ifdef IS_MPI
1028 <      RealType tmpMass = totalMass;
1029 <      Vector3d tmpCom(com);  
1030 <      Vector3d tmpComVel(comVel);
1031 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1032 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034 < #endif
1035 <      
1036 <      com /= totalMass;
1037 <      comVel /= totalMass;
1038 <   }        
1039 <  
1040 <   /*
1041 <   Return intertia tensor for entire system and angular momentum Vector.
1042 <
1043 <
1044 <       [  Ixx -Ixy  -Ixz ]
1045 <    J =| -Iyx  Iyy  -Iyz |
1046 <       [ -Izx -Iyz   Izz ]
1047 <    */
1048 <
1049 <   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1050 <      
1051 <
1052 <      RealType xx = 0.0;
1053 <      RealType yy = 0.0;
1054 <      RealType zz = 0.0;
1055 <      RealType xy = 0.0;
1056 <      RealType xz = 0.0;
1057 <      RealType yz = 0.0;
1058 <      Vector3d com(0.0);
1059 <      Vector3d comVel(0.0);
1060 <      
1061 <      getComAll(com, comVel);
1062 <      
1063 <      SimInfo::MoleculeIterator i;
1064 <      Molecule* mol;
1065 <      
1066 <      Vector3d thisq(0.0);
1067 <      Vector3d thisv(0.0);
1068 <
1069 <      RealType thisMass = 0.0;
1070 <    
1071 <      
1072 <      
1073 <  
1074 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1075 <        
1076 <         thisq = mol->getCom()-com;
1077 <         thisv = mol->getComVel()-comVel;
1078 <         thisMass = mol->getMass();
1079 <         // Compute moment of intertia coefficients.
1080 <         xx += thisq[0]*thisq[0]*thisMass;
1081 <         yy += thisq[1]*thisq[1]*thisMass;
1082 <         zz += thisq[2]*thisq[2]*thisMass;
1083 <        
1084 <         // compute products of intertia
1085 <         xy += thisq[0]*thisq[1]*thisMass;
1086 <         xz += thisq[0]*thisq[2]*thisMass;
1087 <         yz += thisq[1]*thisq[2]*thisMass;
1088 <            
1089 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1090 <            
1091 <      }  
1092 <      
1093 <      
1094 <      inertiaTensor(0,0) = yy + zz;
1095 <      inertiaTensor(0,1) = -xy;
1096 <      inertiaTensor(0,2) = -xz;
1097 <      inertiaTensor(1,0) = -xy;
1098 <      inertiaTensor(1,1) = xx + zz;
1099 <      inertiaTensor(1,2) = -yz;
1100 <      inertiaTensor(2,0) = -xz;
1101 <      inertiaTensor(2,1) = -yz;
1102 <      inertiaTensor(2,2) = xx + yy;
1103 <      
1104 < #ifdef IS_MPI
1105 <      Mat3x3d tmpI(inertiaTensor);
1106 <      Vector3d tmpAngMom;
1107 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1108 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1109 < #endif
1110 <              
1111 <      return;
1112 <   }
1113 <
1114 <   //Returns the angular momentum of the system
1115 <   Vector3d SimInfo::getAngularMomentum(){
1116 <      
1117 <      Vector3d com(0.0);
1118 <      Vector3d comVel(0.0);
1119 <      Vector3d angularMomentum(0.0);
1120 <      
1121 <      getComAll(com,comVel);
1122 <      
1123 <      SimInfo::MoleculeIterator i;
1124 <      Molecule* mol;
1125 <      
1126 <      Vector3d thisr(0.0);
1127 <      Vector3d thisp(0.0);
1128 <      
1129 <      RealType thisMass;
1130 <      
1131 <      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1132 <        thisMass = mol->getMass();
1133 <        thisr = mol->getCom()-com;
1134 <        thisp = (mol->getComVel()-comVel)*thisMass;
1135 <        
1136 <        angularMomentum += cross( thisr, thisp );
1137 <        
1138 <      }  
1139 <      
1140 < #ifdef IS_MPI
1141 <      Vector3d tmpAngMom;
1142 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1143 < #endif
1144 <      
1145 <      return angularMomentum;
1146 <   }
1147 <  
1003 >  
1004    StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005      return IOIndexToIntegrableObject.at(index);
1006    }
# Line 1152 | Line 1008 | namespace OpenMD {
1008    void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009      IOIndexToIntegrableObject= v;
1010    }
1155
1156  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1157     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1158     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1159     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1160  */
1161  void SimInfo::getGyrationalVolume(RealType &volume){
1162    Mat3x3d intTensor;
1163    RealType det;
1164    Vector3d dummyAngMom;
1165    RealType sysconstants;
1166    RealType geomCnst;
1167
1168    geomCnst = 3.0/2.0;
1169    /* Get the inertial tensor and angular momentum for free*/
1170    getInertiaTensor(intTensor,dummyAngMom);
1171    
1172    det = intTensor.determinant();
1173    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1174    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1175    return;
1176  }
1177
1178  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1179    Mat3x3d intTensor;
1180    Vector3d dummyAngMom;
1181    RealType sysconstants;
1182    RealType geomCnst;
1183
1184    geomCnst = 3.0/2.0;
1185    /* Get the inertial tensor and angular momentum for free*/
1186    getInertiaTensor(intTensor,dummyAngMom);
1187    
1188    detI = intTensor.determinant();
1189    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1190    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1191    return;
1192  }
1011   /*
1012     void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013        assert( v.size() == nAtoms_ + nRigidBodies_);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines