ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1505 by gezelter, Sun Oct 3 22:18:59 2010 UTC vs.
Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60   #include "io/ForceFieldOptions.hpp"
61   #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 <
69 < #ifdef IS_MPI
70 < #include "UseTheForce/mpiComponentPlan.h"
71 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
73 <
64 > using namespace std;
65   namespace OpenMD {
75  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76    std::map<int, std::set<int> >::iterator i = container.find(index);
77    std::set<int> result;
78    if (i != container.end()) {
79        result = i->second;
80    }
81
82    return result;
83  }
66    
67    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68      forceField_(ff), simParams_(simParams),
# Line 89 | Line 71 | namespace OpenMD {
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
75 <    calcBoxDipole_(false), useAtomicVirial_(true) {
76 <
77 <
78 <      MoleculeStamp* molStamp;
79 <      int nMolWithSameStamp;
80 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
81 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
82 <      CutoffGroupStamp* cgStamp;    
83 <      RigidBodyStamp* rbStamp;
84 <      int nRigidAtoms = 0;
85 <
86 <      std::vector<Component*> components = simParams->getComponents();
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90        
91 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 <        molStamp = (*i)->getMoleculeStamp();
93 <        nMolWithSameStamp = (*i)->getNMol();
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
96 <
97 <        //calculate atoms in molecules
98 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 <
100 <        //calculate atoms in cutoff groups
101 <        int nAtomsInGroups = 0;
102 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
122 <        }
123 <
124 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 <
126 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 <
128 <        //calculate atoms in rigid bodies
129 <        int nAtomsInRigidBodies = 0;
130 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 <        
132 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBodyStamp(j);
134 <          nAtomsInRigidBodies += rbStamp->getNMembers();
135 <        }
136 <
137 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 <        
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
158 <      molToProcMap_.resize(nGlobalMols_);
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
129 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 +    
131 +    //every free atom (atom does not belong to rigid bodies) is an
132 +    //integrable object therefore the total number of integrable objects
133 +    //in the system is equal to the total number of atoms minus number of
134 +    //atoms belong to rigid body defined in meta-data file plus the number
135 +    //of rigid bodies defined in meta-data file
136 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 +      + nGlobalRigidBodies_;
138 +    
139 +    nGlobalMols_ = molStampIds_.size();
140 +    molToProcMap_.resize(nGlobalMols_);
141 +  }
142 +  
143    SimInfo::~SimInfo() {
144 <    std::map<int, Molecule*>::iterator i;
144 >    map<int, Molecule*>::iterator i;
145      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146        delete i->second;
147      }
# Line 170 | Line 152 | namespace OpenMD {
152      delete forceField_;
153    }
154  
173  int SimInfo::getNGlobalConstraints() {
174    int nGlobalConstraints;
175 #ifdef IS_MPI
176    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
177                  MPI_COMM_WORLD);    
178 #else
179    nGlobalConstraints =  nConstraints_;
180 #endif
181    return nGlobalConstraints;
182  }
155  
156    bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164        nAtoms_ += mol->getNAtoms();
165        nBonds_ += mol->getNBonds();
166        nBends_ += mol->getNBends();
# Line 198 | Line 170 | namespace OpenMD {
170        nIntegrableObjects_ += mol->getNIntegrableObjects();
171        nCutoffGroups_ += mol->getNCutoffGroups();
172        nConstraints_ += mol->getNConstraintPairs();
173 <
173 >      
174        addInteractionPairs(mol);
175 <  
175 >      
176        return true;
177      } else {
178        return false;
179      }
180    }
181 <
181 >  
182    bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
# Line 234 | Line 206 | namespace OpenMD {
206      } else {
207        return false;
208      }
237
238
209    }    
210  
211          
# Line 253 | Line 223 | namespace OpenMD {
223    void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
# Line 299 | Line 269 | namespace OpenMD {
269   #endif
270      return fdf_;
271    }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279      
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 353 | Line 342 | namespace OpenMD {
342  
343    void SimInfo::addInteractionPairs(Molecule* mol) {
344      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 <    std::vector<Bond*>::iterator bondIter;
346 <    std::vector<Bend*>::iterator bendIter;
347 <    std::vector<Torsion*>::iterator torsionIter;
348 <    std::vector<Inversion*>::iterator inversionIter;
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
# Line 374 | Line 363 | namespace OpenMD {
363      // always be excluded.  These are done at the bottom of this
364      // function.
365  
366 <    std::map<int, std::set<int> > atomGroups;
366 >    map<int, set<int> > atomGroups;
367      Molecule::RigidBodyIterator rbIter;
368      RigidBody* rb;
369      Molecule::IntegrableObjectIterator ii;
# Line 386 | Line 375 | namespace OpenMD {
375        
376        if (integrableObject->isRigidBody()) {
377          rb = static_cast<RigidBody*>(integrableObject);
378 <        std::vector<Atom*> atoms = rb->getAtoms();
379 <        std::set<int> rigidAtoms;
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382          }
383          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385          }      
386        } else {
387 <        std::set<int> oneAtomSet;
387 >        set<int> oneAtomSet;
388          oneAtomSet.insert(integrableObject->getGlobalIndex());
389 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390        }
391      }  
392            
# Line 500 | Line 489 | namespace OpenMD {
489  
490      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491           rb = mol->nextRigidBody(rbIter)) {
492 <      std::vector<Atom*> atoms = rb->getAtoms();
492 >      vector<Atom*> atoms = rb->getAtoms();
493        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495            a = atoms[i]->getGlobalIndex();
# Line 514 | Line 503 | namespace OpenMD {
503  
504    void SimInfo::removeInteractionPairs(Molecule* mol) {
505      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 <    std::vector<Bond*>::iterator bondIter;
507 <    std::vector<Bend*>::iterator bendIter;
508 <    std::vector<Torsion*>::iterator torsionIter;
509 <    std::vector<Inversion*>::iterator inversionIter;
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
# Line 527 | Line 516 | namespace OpenMD {
516      int c;
517      int d;
518  
519 <    std::map<int, std::set<int> > atomGroups;
519 >    map<int, set<int> > atomGroups;
520      Molecule::RigidBodyIterator rbIter;
521      RigidBody* rb;
522      Molecule::IntegrableObjectIterator ii;
# Line 539 | Line 528 | namespace OpenMD {
528        
529        if (integrableObject->isRigidBody()) {
530          rb = static_cast<RigidBody*>(integrableObject);
531 <        std::vector<Atom*> atoms = rb->getAtoms();
532 <        std::set<int> rigidAtoms;
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534            rigidAtoms.insert(atoms[i]->getGlobalIndex());
535          }
536          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538          }      
539        } else {
540 <        std::set<int> oneAtomSet;
540 >        set<int> oneAtomSet;
541          oneAtomSet.insert(integrableObject->getGlobalIndex());
542 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543        }
544      }  
545  
# Line 653 | Line 642 | namespace OpenMD {
642  
643      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644           rb = mol->nextRigidBody(rbIter)) {
645 <      std::vector<Atom*> atoms = rb->getAtoms();
645 >      vector<Atom*> atoms = rb->getAtoms();
646        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648            a = atoms[i]->getGlobalIndex();
# Line 676 | Line 665 | namespace OpenMD {
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666    }
667  
679  void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
690 <    /** @deprecate */    
691 <    int isError = 0;
692 <    
693 <    setupCutoff();
694 <    
695 <    setupElectrostaticSummationMethod( isError );
696 <    setupSwitchingFunction();
697 <    setupAccumulateBoxDipole();
698 <
699 <    if(isError){
700 <      sprintf( painCave.errMsg,
701 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
702 <      painCave.isFatal = 1;
703 <      simError();
704 <    }
705 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
709
710    fortranInitialized_ = true;
681    }
682 <
683 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
697 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
721 <
695 >    set<AtomType*> atomTypes;
696 >    
697 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
698        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
699          atomTypes.insert(atom->getAtomType());
700 <      }
701 <        
726 <    }
700 >      }      
701 >    }    
702  
703 <    return atomTypes;        
729 <  }
703 > #ifdef IS_MPI
704  
705 <  void SimInfo::setupSimType() {
706 <    std::set<AtomType*>::iterator i;
733 <    std::set<AtomType*> atomTypes;
734 <    atomTypes = getUniqueAtomTypes();
735 <    
736 <    int useLennardJones = 0;
737 <    int useElectrostatic = 0;
738 <    int useEAM = 0;
739 <    int useSC = 0;
740 <    int useCharge = 0;
741 <    int useDirectional = 0;
742 <    int useDipole = 0;
743 <    int useGayBerne = 0;
744 <    int useSticky = 0;
745 <    int useStickyPower = 0;
746 <    int useShape = 0;
747 <    int useFLARB = 0; //it is not in AtomType yet
748 <    int useDirectionalAtom = 0;    
749 <    int useElectrostatics = 0;
750 <    //usePBC and useRF are from simParams
751 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 <    int useRF;
753 <    int useSF;
754 <    int useSP;
755 <    int useBoxDipole;
705 >    // loop over the found atom types on this processor, and add their
706 >    // numerical idents to a vector:
707  
708 <    std::string myMethod;
708 >    vector<int> foundTypes;
709 >    set<AtomType*>::iterator i;
710 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
711 >      foundTypes.push_back( (*i)->getIdent() );
712  
713 <    // set the useRF logical
714 <    useRF = 0;
761 <    useSF = 0;
762 <    useSP = 0;
763 <    useBoxDipole = 0;
713 >    // count_local holds the number of found types on this processor
714 >    int count_local = foundTypes.size();
715  
716 <    if (simParams_->haveElectrostaticSummationMethod()) {
717 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
718 <      toUpper(myMethod);
719 <      if (myMethod == "REACTION_FIELD"){
720 <        useRF = 1;
721 <      } else if (myMethod == "SHIFTED_FORCE"){
722 <        useSF = 1;
723 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
724 <        useSP = 1;
725 <      }
726 <    }
716 >    // count holds the total number of found types on all processors
717 >    // (some will be redundant with the ones found locally):
718 >    int count;
719 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
720 >
721 >    // create a vector to hold the globally found types, and resize it:
722 >    vector<int> ftGlobal;
723 >    ftGlobal.resize(count);
724 >    vector<int> counts;
725 >
726 >    int nproc = MPI::COMM_WORLD.Get_size();
727 >    counts.resize(nproc);
728 >    vector<int> disps;
729 >    disps.resize(nproc);
730 >
731 >    // now spray out the foundTypes to all the other processors:
732      
733 <    if (simParams_->haveAccumulateBoxDipole())
734 <      if (simParams_->getAccumulateBoxDipole())
779 <        useBoxDipole = 1;
733 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
734 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
735  
736 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
736 >    // foundIdents is a stl set, so inserting an already found ident
737 >    // will have no effect.
738 >    set<int> foundIdents;
739 >    vector<int>::iterator j;
740 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
741 >      foundIdents.insert((*j));
742 >    
743 >    // now iterate over the foundIdents and get the actual atom types
744 >    // that correspond to these:
745 >    set<int>::iterator it;
746 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
747 >      atomTypes.insert( forceField_->getAtomType((*it)) );
748 >
749 > #endif
750 >    
751 >    return atomTypes;        
752 >  }
753  
754 +  void SimInfo::setupSimVariables() {
755 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
756 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
757 +    calcBoxDipole_ = false;
758 +    if ( simParams_->haveAccumulateBoxDipole() )
759 +      if ( simParams_->getAccumulateBoxDipole() ) {
760 +        calcBoxDipole_ = true;      
761 +      }
762 +    
763 +    set<AtomType*>::iterator i;
764 +    set<AtomType*> atomTypes;
765 +    atomTypes = getSimulatedAtomTypes();    
766 +    int usesElectrostatic = 0;
767 +    int usesMetallic = 0;
768 +    int usesDirectional = 0;
769      //loop over all of the atom types
770      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
771 <      useLennardJones |= (*i)->isLennardJones();
772 <      useElectrostatic |= (*i)->isElectrostatic();
773 <      useEAM |= (*i)->isEAM();
788 <      useSC |= (*i)->isSC();
789 <      useCharge |= (*i)->isCharge();
790 <      useDirectional |= (*i)->isDirectional();
791 <      useDipole |= (*i)->isDipole();
792 <      useGayBerne |= (*i)->isGayBerne();
793 <      useSticky |= (*i)->isSticky();
794 <      useStickyPower |= (*i)->isStickyPower();
795 <      useShape |= (*i)->isShape();
771 >      usesElectrostatic |= (*i)->isElectrostatic();
772 >      usesMetallic |= (*i)->isMetal();
773 >      usesDirectional |= (*i)->isDirectional();
774      }
775 <
798 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
799 <      useDirectionalAtom = 1;
800 <    }
801 <
802 <    if (useCharge || useDipole) {
803 <      useElectrostatics = 1;
804 <    }
805 <
775 >    
776   #ifdef IS_MPI    
777      int temp;
778 +    temp = usesDirectional;
779 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
780 +    
781 +    temp = usesMetallic;
782 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783 +    
784 +    temp = usesElectrostatic;
785 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
786 + #else
787  
788 <    temp = usePBC;
789 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
788 >    usesDirectionalAtoms_ = usesDirectional;
789 >    usesMetallicAtoms_ = usesMetallic;
790 >    usesElectrostaticAtoms_ = usesElectrostatic;
791  
792 <    temp = useDirectionalAtom;
793 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792 > #endif
793 >    
794 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
795 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
796 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
797 >  }
798  
815    temp = useLennardJones;
816    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
799  
800 <    temp = useElectrostatics;
801 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
800 >  vector<int> SimInfo::getGlobalAtomIndices() {
801 >    SimInfo::MoleculeIterator mi;
802 >    Molecule* mol;
803 >    Molecule::AtomIterator ai;
804 >    Atom* atom;
805  
806 <    temp = useCharge;
807 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
806 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
807 >    
808 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
809 >      
810 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
811 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
812 >      }
813 >    }
814 >    return GlobalAtomIndices;
815 >  }
816  
824    temp = useDipole;
825    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817  
818 <    temp = useSticky;
819 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >  vector<int> SimInfo::getGlobalGroupIndices() {
819 >    SimInfo::MoleculeIterator mi;
820 >    Molecule* mol;
821 >    Molecule::CutoffGroupIterator ci;
822 >    CutoffGroup* cg;
823  
824 <    temp = useStickyPower;
831 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
824 >    vector<int> GlobalGroupIndices;
825      
826 <    temp = useGayBerne;
827 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
827 >      
828 >      //local index of cutoff group is trivial, it only depends on the
829 >      //order of travesing
830 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
831 >           cg = mol->nextCutoffGroup(ci)) {
832 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
833 >      }        
834 >    }
835 >    return GlobalGroupIndices;
836 >  }
837  
836    temp = useEAM;
837    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838  
839 <    temp = useSC;
840 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841 <    
842 <    temp = useShape;
843 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
844 <
845 <    temp = useFLARB;
846 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 <
848 <    temp = useRF;
849 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 <
851 <    temp = useSF;
852 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
853 <
854 <    temp = useSP;
855 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
856 <
857 <    temp = useBoxDipole;
858 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859 <
860 <    temp = useAtomicVirial_;
861 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862 <
863 < #endif
864 <    fInfo_.SIM_uses_PBC = usePBC;    
865 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
866 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
867 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
868 <    fInfo_.SIM_uses_Charges = useCharge;
869 <    fInfo_.SIM_uses_Dipoles = useDipole;
870 <    fInfo_.SIM_uses_Sticky = useSticky;
871 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
872 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
873 <    fInfo_.SIM_uses_EAM = useEAM;
874 <    fInfo_.SIM_uses_SC = useSC;
875 <    fInfo_.SIM_uses_Shapes = useShape;
876 <    fInfo_.SIM_uses_FLARB = useFLARB;
877 <    fInfo_.SIM_uses_RF = useRF;
878 <    fInfo_.SIM_uses_SF = useSF;
879 <    fInfo_.SIM_uses_SP = useSP;
880 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
881 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
882 <  }
883 <
884 <  void SimInfo::setupFortranSim() {
885 <    int isError;
839 >  void SimInfo::prepareTopology() {
840      int nExclude, nOneTwo, nOneThree, nOneFour;
887    std::vector<int> fortranGlobalGroupMembership;
888    
889    isError = 0;
841  
891    //globalGroupMembership_ is filled by SimCreator    
892    for (int i = 0; i < nGlobalAtoms_; i++) {
893      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
894    }
895
842      //calculate mass ratio of cutoff group
897    std::vector<RealType> mfact;
843      SimInfo::MoleculeIterator mi;
844      Molecule* mol;
845      Molecule::CutoffGroupIterator ci;
# Line 903 | Line 848 | namespace OpenMD {
848      Atom* atom;
849      RealType totalMass;
850  
851 <    //to avoid memory reallocation, reserve enough space for mfact
852 <    mfact.reserve(getNCutoffGroups());
851 >    /**
852 >     * The mass factor is the relative mass of an atom to the total
853 >     * mass of the cutoff group it belongs to.  By default, all atoms
854 >     * are their own cutoff groups, and therefore have mass factors of
855 >     * 1.  We need some special handling for massless atoms, which
856 >     * will be treated as carrying the entire mass of the cutoff
857 >     * group.
858 >     */
859 >    massFactors_.clear();
860 >    massFactors_.resize(getNAtoms(), 1.0);
861      
862 +    cerr << "mfs in si = " << massFactors_.size() << "\n";
863      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
864 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
864 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 >           cg = mol->nextCutoffGroup(ci)) {
866  
867          totalMass = cg->getMass();
868          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
869            // Check for massless groups - set mfact to 1 if true
870 <          if (totalMass != 0)
871 <            mfact.push_back(atom->getMass()/totalMass);
870 >          if (totalMass != 0)
871 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
872            else
873 <            mfact.push_back( 1.0 );
873 >            massFactors_[atom->getLocalIndex()] = 1.0;
874          }
875        }      
876      }
877  
878 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
924 <    std::vector<int> identArray;
878 >    // Build the identArray_
879  
880 <    //to avoid memory reallocation, reserve enough space identArray
881 <    identArray.reserve(getNAtoms());
928 <    
880 >    identArray_.clear();
881 >    identArray_.reserve(getNAtoms());    
882      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
883        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
884 <        identArray.push_back(atom->getIdent());
884 >        identArray_.push_back(atom->getIdent());
885        }
886      }    
934
935    //fill molMembershipArray
936    //molMembershipArray is filled by SimCreator    
937    std::vector<int> molMembershipArray(nGlobalAtoms_);
938    for (int i = 0; i < nGlobalAtoms_; i++) {
939      molMembershipArray[i] = globalMolMembership_[i] + 1;
940    }
887      
888 <    //setup fortran simulation
888 >    //scan topology
889  
890      nExclude = excludedInteractions_.getSize();
891      nOneTwo = oneTwoInteractions_.getSize();
# Line 951 | Line 897 | namespace OpenMD {
897      int* oneThreeList = oneThreeInteractions_.getPairList();
898      int* oneFourList = oneFourInteractions_.getPairList();
899  
900 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
955 <                   &nExclude, excludeList,
956 <                   &nOneTwo, oneTwoList,
957 <                   &nOneThree, oneThreeList,
958 <                   &nOneFour, oneFourList,
959 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
960 <                   &fortranGlobalGroupMembership[0], &isError);
961 <    
962 <    if( isError ){
963 <      
964 <      sprintf( painCave.errMsg,
965 <               "There was an error setting the simulation information in fortran.\n" );
966 <      painCave.isFatal = 1;
967 <      painCave.severity = OPENMD_ERROR;
968 <      simError();
969 <    }
970 <    
971 <    
972 <    sprintf( checkPointMsg,
973 <             "succesfully sent the simulation information to fortran.\n");
974 <    
975 <    errorCheckPoint();
976 <    
977 <    // Setup number of neighbors in neighbor list if present
978 <    if (simParams_->haveNeighborListNeighbors()) {
979 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
980 <      setNeighbors(&nlistNeighbors);
981 <    }
982 <  
983 <
984 <  }
985 <
986 <
987 <  void SimInfo::setupFortranParallel() {
988 < #ifdef IS_MPI    
989 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
990 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
991 <    std::vector<int> localToGlobalCutoffGroupIndex;
992 <    SimInfo::MoleculeIterator mi;
993 <    Molecule::AtomIterator ai;
994 <    Molecule::CutoffGroupIterator ci;
995 <    Molecule* mol;
996 <    Atom* atom;
997 <    CutoffGroup* cg;
998 <    mpiSimData parallelData;
999 <    int isError;
1000 <
1001 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1002 <
1003 <      //local index(index in DataStorge) of atom is important
1004 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1005 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1006 <      }
1007 <
1008 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1009 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1010 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1011 <      }        
1012 <        
1013 <    }
1014 <
1015 <    //fill up mpiSimData struct
1016 <    parallelData.nMolGlobal = getNGlobalMolecules();
1017 <    parallelData.nMolLocal = getNMolecules();
1018 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1019 <    parallelData.nAtomsLocal = getNAtoms();
1020 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1021 <    parallelData.nGroupsLocal = getNCutoffGroups();
1022 <    parallelData.myNode = worldRank;
1023 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1024 <
1025 <    //pass mpiSimData struct and index arrays to fortran
1026 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1027 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1028 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1029 <
1030 <    if (isError) {
1031 <      sprintf(painCave.errMsg,
1032 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1033 <      painCave.isFatal = 1;
1034 <      simError();
1035 <    }
1036 <
1037 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1038 <    errorCheckPoint();
1039 <
1040 < #endif
1041 <  }
1042 <
1043 <  void SimInfo::setupCutoff() {          
1044 <    
1045 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1046 <
1047 <    // Check the cutoff policy
1048 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1049 <
1050 <    // Set LJ shifting bools to false
1051 <    ljsp_ = 0;
1052 <    ljsf_ = 0;
1053 <
1054 <    std::string myPolicy;
1055 <    if (forceFieldOptions_.haveCutoffPolicy()){
1056 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1057 <    }else if (simParams_->haveCutoffPolicy()) {
1058 <      myPolicy = simParams_->getCutoffPolicy();
1059 <    }
1060 <
1061 <    if (!myPolicy.empty()){
1062 <      toUpper(myPolicy);
1063 <      if (myPolicy == "MIX") {
1064 <        cp = MIX_CUTOFF_POLICY;
1065 <      } else {
1066 <        if (myPolicy == "MAX") {
1067 <          cp = MAX_CUTOFF_POLICY;
1068 <        } else {
1069 <          if (myPolicy == "TRADITIONAL") {            
1070 <            cp = TRADITIONAL_CUTOFF_POLICY;
1071 <          } else {
1072 <            // throw error        
1073 <            sprintf( painCave.errMsg,
1074 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1075 <            painCave.isFatal = 1;
1076 <            simError();
1077 <          }    
1078 <        }          
1079 <      }
1080 <    }          
1081 <    notifyFortranCutoffPolicy(&cp);
1082 <
1083 <    // Check the Skin Thickness for neighborlists
1084 <    RealType skin;
1085 <    if (simParams_->haveSkinThickness()) {
1086 <      skin = simParams_->getSkinThickness();
1087 <      notifyFortranSkinThickness(&skin);
1088 <    }            
1089 <        
1090 <    // Check if the cutoff was set explicitly:
1091 <    if (simParams_->haveCutoffRadius()) {
1092 <      rcut_ = simParams_->getCutoffRadius();
1093 <      if (simParams_->haveSwitchingRadius()) {
1094 <        rsw_  = simParams_->getSwitchingRadius();
1095 <      } else {
1096 <        if (fInfo_.SIM_uses_Charges |
1097 <            fInfo_.SIM_uses_Dipoles |
1098 <            fInfo_.SIM_uses_RF) {
1099 <          
1100 <          rsw_ = 0.85 * rcut_;
1101 <          sprintf(painCave.errMsg,
1102 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1103 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1104 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1105 <        painCave.isFatal = 0;
1106 <        simError();
1107 <        } else {
1108 <          rsw_ = rcut_;
1109 <          sprintf(painCave.errMsg,
1110 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1111 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1112 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1113 <          painCave.isFatal = 0;
1114 <          simError();
1115 <        }
1116 <      }
1117 <
1118 <      if (simParams_->haveElectrostaticSummationMethod()) {
1119 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1120 <        toUpper(myMethod);
1121 <        
1122 <        if (myMethod == "SHIFTED_POTENTIAL") {
1123 <          ljsp_ = 1;
1124 <        } else if (myMethod == "SHIFTED_FORCE") {
1125 <          ljsf_ = 1;
1126 <        }
1127 <      }
1128 <
1129 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1130 <      
1131 <    } else {
1132 <      
1133 <      // For electrostatic atoms, we'll assume a large safe value:
1134 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1135 <        sprintf(painCave.errMsg,
1136 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1137 <                "\tOpenMD will use a default value of 15.0 angstroms"
1138 <                "\tfor the cutoffRadius.\n");
1139 <        painCave.isFatal = 0;
1140 <        simError();
1141 <        rcut_ = 15.0;
1142 <      
1143 <        if (simParams_->haveElectrostaticSummationMethod()) {
1144 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1145 <          toUpper(myMethod);
1146 <          
1147 <          // For the time being, we're tethering the LJ shifted behavior to the
1148 <          // electrostaticSummationMethod keyword options
1149 <          if (myMethod == "SHIFTED_POTENTIAL") {
1150 <            ljsp_ = 1;
1151 <          } else if (myMethod == "SHIFTED_FORCE") {
1152 <            ljsf_ = 1;
1153 <          }
1154 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1155 <            if (simParams_->haveSwitchingRadius()){
1156 <              sprintf(painCave.errMsg,
1157 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1158 <                      "\teven though the electrostaticSummationMethod was\n"
1159 <                      "\tset to %s\n", myMethod.c_str());
1160 <              painCave.isFatal = 1;
1161 <              simError();            
1162 <            }
1163 <          }
1164 <        }
1165 <      
1166 <        if (simParams_->haveSwitchingRadius()){
1167 <          rsw_ = simParams_->getSwitchingRadius();
1168 <        } else {        
1169 <          sprintf(painCave.errMsg,
1170 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1171 <                  "\tOpenMD will use a default value of\n"
1172 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1173 <          painCave.isFatal = 0;
1174 <          simError();
1175 <          rsw_ = 0.85 * rcut_;
1176 <        }
1177 <
1178 <        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1179 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1180 <
1181 <      } else {
1182 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1183 <        // We'll punt and let fortran figure out the cutoffs later.
1184 <        
1185 <        notifyFortranYouAreOnYourOwn();
1186 <
1187 <      }
1188 <    }
1189 <  }
1190 <
1191 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1192 <    
1193 <    int errorOut;
1194 <    ElectrostaticSummationMethod esm = NONE;
1195 <    ElectrostaticScreeningMethod sm = UNDAMPED;
1196 <    RealType alphaVal;
1197 <    RealType dielectric;
1198 <    
1199 <    errorOut = isError;
1200 <
1201 <    if (simParams_->haveElectrostaticSummationMethod()) {
1202 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1203 <      toUpper(myMethod);
1204 <      if (myMethod == "NONE") {
1205 <        esm = NONE;
1206 <      } else {
1207 <        if (myMethod == "SWITCHING_FUNCTION") {
1208 <          esm = SWITCHING_FUNCTION;
1209 <        } else {
1210 <          if (myMethod == "SHIFTED_POTENTIAL") {
1211 <            esm = SHIFTED_POTENTIAL;
1212 <          } else {
1213 <            if (myMethod == "SHIFTED_FORCE") {            
1214 <              esm = SHIFTED_FORCE;
1215 <            } else {
1216 <              if (myMethod == "REACTION_FIELD") {
1217 <                esm = REACTION_FIELD;
1218 <                dielectric = simParams_->getDielectric();
1219 <                if (!simParams_->haveDielectric()) {
1220 <                  // throw warning
1221 <                  sprintf( painCave.errMsg,
1222 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1223 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1224 <                  painCave.isFatal = 0;
1225 <                  simError();
1226 <                }
1227 <              } else {
1228 <                // throw error        
1229 <                sprintf( painCave.errMsg,
1230 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1231 <                         "\t(Input file specified %s .)\n"
1232 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1233 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1234 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1235 <                painCave.isFatal = 1;
1236 <                simError();
1237 <              }    
1238 <            }          
1239 <          }
1240 <        }
1241 <      }
1242 <    }
1243 <    
1244 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1245 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1246 <      toUpper(myScreen);
1247 <      if (myScreen == "UNDAMPED") {
1248 <        sm = UNDAMPED;
1249 <      } else {
1250 <        if (myScreen == "DAMPED") {
1251 <          sm = DAMPED;
1252 <          if (!simParams_->haveDampingAlpha()) {
1253 <            // first set a cutoff dependent alpha value
1254 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1255 <            alphaVal = 0.5125 - rcut_* 0.025;
1256 <            // for values rcut > 20.5, alpha is zero
1257 <            if (alphaVal < 0) alphaVal = 0;
1258 <
1259 <            // throw warning
1260 <            sprintf( painCave.errMsg,
1261 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1262 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1263 <            painCave.isFatal = 0;
1264 <            simError();
1265 <          } else {
1266 <            alphaVal = simParams_->getDampingAlpha();
1267 <          }
1268 <          
1269 <        } else {
1270 <          // throw error        
1271 <          sprintf( painCave.errMsg,
1272 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1273 <                   "\t(Input file specified %s .)\n"
1274 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1275 <                   "or \"damped\".\n", myScreen.c_str() );
1276 <          painCave.isFatal = 1;
1277 <          simError();
1278 <        }
1279 <      }
1280 <    }
1281 <    
1282 <
1283 <    Electrostatic::setElectrostaticSummationMethod( esm );
1284 <    Electrostatic::setElectrostaticScreeningMethod( sm );
1285 <    Electrostatic::setDampingAlpha( alphaVal );
1286 <    Electrostatic::setReactionFieldDielectric( dielectric );
1287 <    initFortranFF( &errorOut );
1288 <  }
1289 <
1290 <  void SimInfo::setupSwitchingFunction() {    
1291 <    int ft = CUBIC;
1292 <
1293 <    if (simParams_->haveSwitchingFunctionType()) {
1294 <      std::string funcType = simParams_->getSwitchingFunctionType();
1295 <      toUpper(funcType);
1296 <      if (funcType == "CUBIC") {
1297 <        ft = CUBIC;
1298 <      } else {
1299 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1300 <          ft = FIFTH_ORDER_POLY;
1301 <        } else {
1302 <          // throw error        
1303 <          sprintf( painCave.errMsg,
1304 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1305 <          painCave.isFatal = 1;
1306 <          simError();
1307 <        }          
1308 <      }
1309 <    }
1310 <
1311 <    // send switching function notification to switcheroo
1312 <    setFunctionType(&ft);
1313 <
900 >    topologyDone_ = true;
901    }
902  
1316  void SimInfo::setupAccumulateBoxDipole() {    
1317
1318    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1319    if ( simParams_->haveAccumulateBoxDipole() )
1320      if ( simParams_->getAccumulateBoxDipole() ) {
1321        setAccumulateBoxDipole();
1322        calcBoxDipole_ = true;
1323      }
1324
1325  }
1326
903    void SimInfo::addProperty(GenericData* genData) {
904      properties_.addProperty(genData);  
905    }
906  
907 <  void SimInfo::removeProperty(const std::string& propName) {
907 >  void SimInfo::removeProperty(const string& propName) {
908      properties_.removeProperty(propName);  
909    }
910  
# Line 1336 | Line 912 | namespace OpenMD {
912      properties_.clearProperties();
913    }
914  
915 <  std::vector<std::string> SimInfo::getPropertyNames() {
915 >  vector<string> SimInfo::getPropertyNames() {
916      return properties_.getPropertyNames();  
917    }
918        
919 <  std::vector<GenericData*> SimInfo::getProperties() {
919 >  vector<GenericData*> SimInfo::getProperties() {
920      return properties_.getProperties();
921    }
922  
923 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
923 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
924      return properties_.getPropertyByName(propName);
925    }
926  
# Line 1358 | Line 934 | namespace OpenMD {
934      Molecule* mol;
935      RigidBody* rb;
936      Atom* atom;
937 +    CutoffGroup* cg;
938      SimInfo::MoleculeIterator mi;
939      Molecule::RigidBodyIterator rbIter;
940 <    Molecule::AtomIterator atomIter;;
940 >    Molecule::AtomIterator atomIter;
941 >    Molecule::CutoffGroupIterator cgIter;
942  
943      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
944          
# Line 1371 | Line 949 | namespace OpenMD {
949        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
950          rb->setSnapshotManager(sman_);
951        }
952 +
953 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
954 +        cg->setSnapshotManager(sman_);
955 +      }
956      }    
957      
958    }
# Line 1427 | Line 1009 | namespace OpenMD {
1009  
1010    }        
1011  
1012 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1012 >  ostream& operator <<(ostream& o, SimInfo& info) {
1013  
1014      return o;
1015    }
# Line 1577 | Line 1159 | namespace OpenMD {
1159      return IOIndexToIntegrableObject.at(index);
1160    }
1161    
1162 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1162 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1163      IOIndexToIntegrableObject= v;
1164    }
1165  
# Line 1619 | Line 1201 | namespace OpenMD {
1201      return;
1202    }
1203   /*
1204 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1204 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1205        assert( v.size() == nAtoms_ + nRigidBodies_);
1206        sdByGlobalIndex_ = v;
1207      }
# Line 1629 | Line 1211 | namespace OpenMD {
1211        return sdByGlobalIndex_.at(index);
1212      }  
1213   */  
1214 +  int SimInfo::getNGlobalConstraints() {
1215 +    int nGlobalConstraints;
1216 + #ifdef IS_MPI
1217 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1218 +                  MPI_COMM_WORLD);    
1219 + #else
1220 +    nGlobalConstraints =  nConstraints_;
1221 + #endif
1222 +    return nGlobalConstraints;
1223 +  }
1224 +
1225   }//end namespace OpenMD
1226  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines