6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
49 |
|
|
50 |
|
#include <algorithm> |
51 |
|
#include <set> |
52 |
+ |
#include <map> |
53 |
|
|
54 |
|
#include "brains/SimInfo.hpp" |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
< |
#include "UseTheForce/fCutoffPolicy.h" |
56 |
< |
#include "UseTheForce/fCoulombicCorrection.h" |
57 |
< |
#include "UseTheForce/doForces_interface.h" |
58 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
57 |
> |
#include "primitives/StuntDouble.hpp" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
< |
|
61 |
> |
#include "io/ForceFieldOptions.hpp" |
62 |
> |
#include "UseTheForce/ForceField.hpp" |
63 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
66 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
< |
namespace oopse { |
69 |
< |
|
70 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
71 |
< |
ForceField* ff, Globals* simParams) : |
72 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
73 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
> |
|
71 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
> |
forceField_(ff), simParams_(simParams), |
73 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
77 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
78 |
< |
sman_(NULL), fortranInitialized_(false) { |
79 |
< |
|
80 |
< |
|
81 |
< |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
82 |
< |
MoleculeStamp* molStamp; |
83 |
< |
int nMolWithSameStamp; |
84 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
85 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
86 |
< |
CutoffGroupStamp* cgStamp; |
87 |
< |
RigidBodyStamp* rbStamp; |
88 |
< |
int nRigidAtoms = 0; |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
82 |
< |
molStamp = i->first; |
83 |
< |
nMolWithSameStamp = i->second; |
84 |
< |
|
85 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
86 |
< |
|
87 |
< |
//calculate atoms in molecules |
88 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
89 |
< |
|
90 |
< |
|
91 |
< |
//calculate atoms in cutoff groups |
92 |
< |
int nAtomsInGroups = 0; |
93 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
94 |
< |
|
95 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
96 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
97 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
98 |
< |
} |
99 |
< |
|
100 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
101 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
102 |
< |
|
103 |
< |
//calculate atoms in rigid bodies |
104 |
< |
int nAtomsInRigidBodies = 0; |
105 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
106 |
< |
|
116 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
117 |
< |
rbStamp = molStamp->getRigidBody(j); |
118 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
119 |
< |
} |
120 |
< |
|
121 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
122 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
123 |
< |
|
81 |
> |
MoleculeStamp* molStamp; |
82 |
> |
int nMolWithSameStamp; |
83 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
> |
CutoffGroupStamp* cgStamp; |
86 |
> |
RigidBodyStamp* rbStamp; |
87 |
> |
int nRigidAtoms = 0; |
88 |
> |
|
89 |
> |
vector<Component*> components = simParams->getComponents(); |
90 |
> |
|
91 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 |
> |
molStamp = (*i)->getMoleculeStamp(); |
93 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
94 |
> |
|
95 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 |
> |
|
97 |
> |
//calculate atoms in molecules |
98 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 |
> |
|
100 |
> |
//calculate atoms in cutoff groups |
101 |
> |
int nAtomsInGroups = 0; |
102 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
103 |
> |
|
104 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
105 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
106 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
107 |
|
} |
108 |
< |
|
109 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
110 |
< |
//therefore the total number of cutoff groups in the system is equal to |
111 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
112 |
< |
//file plus the number of cutoff groups defined in meta-data file |
113 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
114 |
< |
|
115 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
116 |
< |
//therefore the total number of integrable objects in the system is equal to |
117 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
118 |
< |
//file plus the number of rigid bodies defined in meta-data file |
119 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
120 |
< |
|
121 |
< |
nGlobalMols_ = molStampIds_.size(); |
122 |
< |
|
123 |
< |
#ifdef IS_MPI |
124 |
< |
molToProcMap_.resize(nGlobalMols_); |
142 |
< |
#endif |
143 |
< |
|
108 |
> |
|
109 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
110 |
> |
|
111 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
112 |
> |
|
113 |
> |
//calculate atoms in rigid bodies |
114 |
> |
int nAtomsInRigidBodies = 0; |
115 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
116 |
> |
|
117 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
119 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 |
> |
} |
121 |
> |
|
122 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 |
> |
|
125 |
|
} |
126 |
+ |
|
127 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
128 |
+ |
//group therefore the total number of cutoff groups in the system is |
129 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
130 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
+ |
//groups defined in meta-data file |
132 |
|
|
133 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 |
+ |
|
135 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
136 |
+ |
//integrable object therefore the total number of integrable objects |
137 |
+ |
//in the system is equal to the total number of atoms minus number of |
138 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
139 |
+ |
//of rigid bodies defined in meta-data file |
140 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 |
+ |
+ nGlobalRigidBodies_; |
142 |
+ |
|
143 |
+ |
nGlobalMols_ = molStampIds_.size(); |
144 |
+ |
molToProcMap_.resize(nGlobalMols_); |
145 |
+ |
} |
146 |
+ |
|
147 |
|
SimInfo::~SimInfo() { |
148 |
< |
std::map<int, Molecule*>::iterator i; |
148 |
> |
map<int, Molecule*>::iterator i; |
149 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
150 |
|
delete i->second; |
151 |
|
} |
152 |
|
molecules_.clear(); |
153 |
|
|
153 |
– |
delete stamps_; |
154 |
|
delete sman_; |
155 |
|
delete simParams_; |
156 |
|
delete forceField_; |
157 |
|
} |
158 |
|
|
159 |
– |
int SimInfo::getNGlobalConstraints() { |
160 |
– |
int nGlobalConstraints; |
161 |
– |
#ifdef IS_MPI |
162 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
163 |
– |
MPI_COMM_WORLD); |
164 |
– |
#else |
165 |
– |
nGlobalConstraints = nConstraints_; |
166 |
– |
#endif |
167 |
– |
return nGlobalConstraints; |
168 |
– |
} |
159 |
|
|
160 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
161 |
|
MoleculeIterator i; |
162 |
< |
|
162 |
> |
|
163 |
|
i = molecules_.find(mol->getGlobalIndex()); |
164 |
|
if (i == molecules_.end() ) { |
165 |
< |
|
166 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
167 |
< |
|
165 |
> |
|
166 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
167 |
> |
|
168 |
|
nAtoms_ += mol->getNAtoms(); |
169 |
|
nBonds_ += mol->getNBonds(); |
170 |
|
nBends_ += mol->getNBends(); |
171 |
|
nTorsions_ += mol->getNTorsions(); |
172 |
+ |
nInversions_ += mol->getNInversions(); |
173 |
|
nRigidBodies_ += mol->getNRigidBodies(); |
174 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
175 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
176 |
|
nConstraints_ += mol->getNConstraintPairs(); |
177 |
< |
|
178 |
< |
addExcludePairs(mol); |
179 |
< |
|
177 |
> |
|
178 |
> |
addInteractionPairs(mol); |
179 |
> |
|
180 |
|
return true; |
181 |
|
} else { |
182 |
|
return false; |
183 |
|
} |
184 |
|
} |
185 |
< |
|
185 |
> |
|
186 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
187 |
|
MoleculeIterator i; |
188 |
|
i = molecules_.find(mol->getGlobalIndex()); |
195 |
|
nBonds_ -= mol->getNBonds(); |
196 |
|
nBends_ -= mol->getNBends(); |
197 |
|
nTorsions_ -= mol->getNTorsions(); |
198 |
+ |
nInversions_ -= mol->getNInversions(); |
199 |
|
nRigidBodies_ -= mol->getNRigidBodies(); |
200 |
|
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
201 |
|
nCutoffGroups_ -= mol->getNCutoffGroups(); |
202 |
|
nConstraints_ -= mol->getNConstraintPairs(); |
203 |
|
|
204 |
< |
removeExcludePairs(mol); |
204 |
> |
removeInteractionPairs(mol); |
205 |
|
molecules_.erase(mol->getGlobalIndex()); |
206 |
|
|
207 |
|
delete mol; |
210 |
|
} else { |
211 |
|
return false; |
212 |
|
} |
221 |
– |
|
222 |
– |
|
213 |
|
} |
214 |
|
|
215 |
|
|
225 |
|
|
226 |
|
|
227 |
|
void SimInfo::calcNdf() { |
228 |
< |
int ndf_local; |
228 |
> |
int ndf_local, nfq_local; |
229 |
|
MoleculeIterator i; |
230 |
< |
std::vector<StuntDouble*>::iterator j; |
230 |
> |
vector<StuntDouble*>::iterator j; |
231 |
> |
vector<Atom*>::iterator k; |
232 |
> |
|
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
+ |
Atom* atom; |
236 |
|
|
237 |
|
ndf_local = 0; |
238 |
+ |
nfq_local = 0; |
239 |
|
|
240 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
250 |
|
ndf_local += 3; |
251 |
|
} |
252 |
|
} |
253 |
< |
|
254 |
< |
}//end for (integrableObject) |
255 |
< |
}// end for (mol) |
253 |
> |
} |
254 |
> |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 |
> |
atom = mol->nextFluctuatingCharge(k)) { |
256 |
> |
if (atom->isFluctuatingCharge()) { |
257 |
> |
nfq_local++; |
258 |
> |
} |
259 |
> |
} |
260 |
> |
} |
261 |
|
|
262 |
|
// n_constraints is local, so subtract them on each processor |
263 |
|
ndf_local -= nConstraints_; |
264 |
|
|
265 |
|
#ifdef IS_MPI |
266 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
267 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
268 |
|
#else |
269 |
|
ndf_ = ndf_local; |
270 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
271 |
|
#endif |
272 |
|
|
273 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
276 |
|
|
277 |
|
} |
278 |
|
|
279 |
+ |
int SimInfo::getFdf() { |
280 |
+ |
#ifdef IS_MPI |
281 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
282 |
+ |
#else |
283 |
+ |
fdf_ = fdf_local; |
284 |
+ |
#endif |
285 |
+ |
return fdf_; |
286 |
+ |
} |
287 |
+ |
|
288 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
289 |
+ |
int nLocalCutoffAtoms = 0; |
290 |
+ |
Molecule* mol; |
291 |
+ |
MoleculeIterator mi; |
292 |
+ |
CutoffGroup* cg; |
293 |
+ |
Molecule::CutoffGroupIterator ci; |
294 |
+ |
|
295 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
296 |
+ |
|
297 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
298 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
299 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
300 |
+ |
|
301 |
+ |
} |
302 |
+ |
} |
303 |
+ |
|
304 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
305 |
+ |
} |
306 |
+ |
|
307 |
|
void SimInfo::calcNdfRaw() { |
308 |
|
int ndfRaw_local; |
309 |
|
|
310 |
|
MoleculeIterator i; |
311 |
< |
std::vector<StuntDouble*>::iterator j; |
311 |
> |
vector<StuntDouble*>::iterator j; |
312 |
|
Molecule* mol; |
313 |
|
StuntDouble* integrableObject; |
314 |
|
|
355 |
|
|
356 |
|
} |
357 |
|
|
358 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
359 |
< |
std::vector<Bond*>::iterator bondIter; |
360 |
< |
std::vector<Bend*>::iterator bendIter; |
361 |
< |
std::vector<Torsion*>::iterator torsionIter; |
358 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
359 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
360 |
> |
vector<Bond*>::iterator bondIter; |
361 |
> |
vector<Bend*>::iterator bendIter; |
362 |
> |
vector<Torsion*>::iterator torsionIter; |
363 |
> |
vector<Inversion*>::iterator inversionIter; |
364 |
|
Bond* bond; |
365 |
|
Bend* bend; |
366 |
|
Torsion* torsion; |
367 |
+ |
Inversion* inversion; |
368 |
|
int a; |
369 |
|
int b; |
370 |
|
int c; |
371 |
|
int d; |
372 |
+ |
|
373 |
+ |
// atomGroups can be used to add special interaction maps between |
374 |
+ |
// groups of atoms that are in two separate rigid bodies. |
375 |
+ |
// However, most site-site interactions between two rigid bodies |
376 |
+ |
// are probably not special, just the ones between the physically |
377 |
+ |
// bonded atoms. Interactions *within* a single rigid body should |
378 |
+ |
// always be excluded. These are done at the bottom of this |
379 |
+ |
// function. |
380 |
+ |
|
381 |
+ |
map<int, set<int> > atomGroups; |
382 |
+ |
Molecule::RigidBodyIterator rbIter; |
383 |
+ |
RigidBody* rb; |
384 |
+ |
Molecule::IntegrableObjectIterator ii; |
385 |
+ |
StuntDouble* integrableObject; |
386 |
|
|
387 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
387 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
388 |
> |
integrableObject != NULL; |
389 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
390 |
> |
|
391 |
> |
if (integrableObject->isRigidBody()) { |
392 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
393 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
394 |
> |
set<int> rigidAtoms; |
395 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
396 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
397 |
> |
} |
398 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
399 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
400 |
> |
} |
401 |
> |
} else { |
402 |
> |
set<int> oneAtomSet; |
403 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
404 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
405 |
> |
} |
406 |
> |
} |
407 |
> |
|
408 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
409 |
> |
bond = mol->nextBond(bondIter)) { |
410 |
> |
|
411 |
|
a = bond->getAtomA()->getGlobalIndex(); |
412 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
413 |
< |
exclude_.addPair(a, b); |
412 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
413 |
> |
|
414 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
415 |
> |
oneTwoInteractions_.addPair(a, b); |
416 |
> |
} else { |
417 |
> |
excludedInteractions_.addPair(a, b); |
418 |
> |
} |
419 |
|
} |
420 |
|
|
421 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
421 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
422 |
> |
bend = mol->nextBend(bendIter)) { |
423 |
> |
|
424 |
|
a = bend->getAtomA()->getGlobalIndex(); |
425 |
|
b = bend->getAtomB()->getGlobalIndex(); |
426 |
|
c = bend->getAtomC()->getGlobalIndex(); |
427 |
< |
|
428 |
< |
exclude_.addPair(a, b); |
429 |
< |
exclude_.addPair(a, c); |
430 |
< |
exclude_.addPair(b, c); |
427 |
> |
|
428 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
429 |
> |
oneTwoInteractions_.addPair(a, b); |
430 |
> |
oneTwoInteractions_.addPair(b, c); |
431 |
> |
} else { |
432 |
> |
excludedInteractions_.addPair(a, b); |
433 |
> |
excludedInteractions_.addPair(b, c); |
434 |
> |
} |
435 |
> |
|
436 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
437 |
> |
oneThreeInteractions_.addPair(a, c); |
438 |
> |
} else { |
439 |
> |
excludedInteractions_.addPair(a, c); |
440 |
> |
} |
441 |
|
} |
442 |
|
|
443 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
443 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
444 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
445 |
> |
|
446 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
447 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
448 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
449 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
449 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
450 |
|
|
451 |
< |
exclude_.addPair(a, b); |
452 |
< |
exclude_.addPair(a, c); |
453 |
< |
exclude_.addPair(a, d); |
454 |
< |
exclude_.addPair(b, c); |
455 |
< |
exclude_.addPair(b, d); |
456 |
< |
exclude_.addPair(c, d); |
451 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
452 |
> |
oneTwoInteractions_.addPair(a, b); |
453 |
> |
oneTwoInteractions_.addPair(b, c); |
454 |
> |
oneTwoInteractions_.addPair(c, d); |
455 |
> |
} else { |
456 |
> |
excludedInteractions_.addPair(a, b); |
457 |
> |
excludedInteractions_.addPair(b, c); |
458 |
> |
excludedInteractions_.addPair(c, d); |
459 |
> |
} |
460 |
> |
|
461 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
462 |
> |
oneThreeInteractions_.addPair(a, c); |
463 |
> |
oneThreeInteractions_.addPair(b, d); |
464 |
> |
} else { |
465 |
> |
excludedInteractions_.addPair(a, c); |
466 |
> |
excludedInteractions_.addPair(b, d); |
467 |
> |
} |
468 |
> |
|
469 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
470 |
> |
oneFourInteractions_.addPair(a, d); |
471 |
> |
} else { |
472 |
> |
excludedInteractions_.addPair(a, d); |
473 |
> |
} |
474 |
|
} |
475 |
|
|
476 |
< |
Molecule::RigidBodyIterator rbIter; |
477 |
< |
RigidBody* rb; |
478 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
479 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
480 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
481 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
476 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
477 |
> |
inversion = mol->nextInversion(inversionIter)) { |
478 |
> |
|
479 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
480 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
481 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
482 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
483 |
> |
|
484 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
485 |
> |
oneTwoInteractions_.addPair(a, b); |
486 |
> |
oneTwoInteractions_.addPair(a, c); |
487 |
> |
oneTwoInteractions_.addPair(a, d); |
488 |
> |
} else { |
489 |
> |
excludedInteractions_.addPair(a, b); |
490 |
> |
excludedInteractions_.addPair(a, c); |
491 |
> |
excludedInteractions_.addPair(a, d); |
492 |
> |
} |
493 |
> |
|
494 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
495 |
> |
oneThreeInteractions_.addPair(b, c); |
496 |
> |
oneThreeInteractions_.addPair(b, d); |
497 |
> |
oneThreeInteractions_.addPair(c, d); |
498 |
> |
} else { |
499 |
> |
excludedInteractions_.addPair(b, c); |
500 |
> |
excludedInteractions_.addPair(b, d); |
501 |
> |
excludedInteractions_.addPair(c, d); |
502 |
> |
} |
503 |
> |
} |
504 |
> |
|
505 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
506 |
> |
rb = mol->nextRigidBody(rbIter)) { |
507 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
508 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
509 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
510 |
|
a = atoms[i]->getGlobalIndex(); |
511 |
|
b = atoms[j]->getGlobalIndex(); |
512 |
< |
exclude_.addPair(a, b); |
512 |
> |
excludedInteractions_.addPair(a, b); |
513 |
|
} |
514 |
|
} |
515 |
|
} |
516 |
|
|
517 |
|
} |
518 |
|
|
519 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
520 |
< |
std::vector<Bond*>::iterator bondIter; |
521 |
< |
std::vector<Bend*>::iterator bendIter; |
522 |
< |
std::vector<Torsion*>::iterator torsionIter; |
519 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
520 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
521 |
> |
vector<Bond*>::iterator bondIter; |
522 |
> |
vector<Bend*>::iterator bendIter; |
523 |
> |
vector<Torsion*>::iterator torsionIter; |
524 |
> |
vector<Inversion*>::iterator inversionIter; |
525 |
|
Bond* bond; |
526 |
|
Bend* bend; |
527 |
|
Torsion* torsion; |
528 |
+ |
Inversion* inversion; |
529 |
|
int a; |
530 |
|
int b; |
531 |
|
int c; |
532 |
|
int d; |
533 |
+ |
|
534 |
+ |
map<int, set<int> > atomGroups; |
535 |
+ |
Molecule::RigidBodyIterator rbIter; |
536 |
+ |
RigidBody* rb; |
537 |
+ |
Molecule::IntegrableObjectIterator ii; |
538 |
+ |
StuntDouble* integrableObject; |
539 |
|
|
540 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
540 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
541 |
> |
integrableObject != NULL; |
542 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
543 |
> |
|
544 |
> |
if (integrableObject->isRigidBody()) { |
545 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
546 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
547 |
> |
set<int> rigidAtoms; |
548 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
549 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
550 |
> |
} |
551 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
552 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
553 |
> |
} |
554 |
> |
} else { |
555 |
> |
set<int> oneAtomSet; |
556 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
557 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
558 |
> |
} |
559 |
> |
} |
560 |
> |
|
561 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
562 |
> |
bond = mol->nextBond(bondIter)) { |
563 |
> |
|
564 |
|
a = bond->getAtomA()->getGlobalIndex(); |
565 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
566 |
< |
exclude_.removePair(a, b); |
565 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
566 |
> |
|
567 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
568 |
> |
oneTwoInteractions_.removePair(a, b); |
569 |
> |
} else { |
570 |
> |
excludedInteractions_.removePair(a, b); |
571 |
> |
} |
572 |
|
} |
573 |
|
|
574 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
574 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
575 |
> |
bend = mol->nextBend(bendIter)) { |
576 |
> |
|
577 |
|
a = bend->getAtomA()->getGlobalIndex(); |
578 |
|
b = bend->getAtomB()->getGlobalIndex(); |
579 |
|
c = bend->getAtomC()->getGlobalIndex(); |
580 |
+ |
|
581 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
582 |
+ |
oneTwoInteractions_.removePair(a, b); |
583 |
+ |
oneTwoInteractions_.removePair(b, c); |
584 |
+ |
} else { |
585 |
+ |
excludedInteractions_.removePair(a, b); |
586 |
+ |
excludedInteractions_.removePair(b, c); |
587 |
+ |
} |
588 |
|
|
589 |
< |
exclude_.removePair(a, b); |
590 |
< |
exclude_.removePair(a, c); |
591 |
< |
exclude_.removePair(b, c); |
589 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
590 |
> |
oneThreeInteractions_.removePair(a, c); |
591 |
> |
} else { |
592 |
> |
excludedInteractions_.removePair(a, c); |
593 |
> |
} |
594 |
|
} |
595 |
|
|
596 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
596 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
597 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
598 |
> |
|
599 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
600 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
601 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
602 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
602 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
603 |
> |
|
604 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
605 |
> |
oneTwoInteractions_.removePair(a, b); |
606 |
> |
oneTwoInteractions_.removePair(b, c); |
607 |
> |
oneTwoInteractions_.removePair(c, d); |
608 |
> |
} else { |
609 |
> |
excludedInteractions_.removePair(a, b); |
610 |
> |
excludedInteractions_.removePair(b, c); |
611 |
> |
excludedInteractions_.removePair(c, d); |
612 |
> |
} |
613 |
|
|
614 |
< |
exclude_.removePair(a, b); |
615 |
< |
exclude_.removePair(a, c); |
616 |
< |
exclude_.removePair(a, d); |
617 |
< |
exclude_.removePair(b, c); |
618 |
< |
exclude_.removePair(b, d); |
619 |
< |
exclude_.removePair(c, d); |
614 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
615 |
> |
oneThreeInteractions_.removePair(a, c); |
616 |
> |
oneThreeInteractions_.removePair(b, d); |
617 |
> |
} else { |
618 |
> |
excludedInteractions_.removePair(a, c); |
619 |
> |
excludedInteractions_.removePair(b, d); |
620 |
> |
} |
621 |
> |
|
622 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
623 |
> |
oneFourInteractions_.removePair(a, d); |
624 |
> |
} else { |
625 |
> |
excludedInteractions_.removePair(a, d); |
626 |
> |
} |
627 |
|
} |
628 |
|
|
629 |
< |
Molecule::RigidBodyIterator rbIter; |
630 |
< |
RigidBody* rb; |
631 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
632 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
633 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
634 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
629 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
630 |
> |
inversion = mol->nextInversion(inversionIter)) { |
631 |
> |
|
632 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
633 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
634 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
635 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
636 |
> |
|
637 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
638 |
> |
oneTwoInteractions_.removePair(a, b); |
639 |
> |
oneTwoInteractions_.removePair(a, c); |
640 |
> |
oneTwoInteractions_.removePair(a, d); |
641 |
> |
} else { |
642 |
> |
excludedInteractions_.removePair(a, b); |
643 |
> |
excludedInteractions_.removePair(a, c); |
644 |
> |
excludedInteractions_.removePair(a, d); |
645 |
> |
} |
646 |
> |
|
647 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
648 |
> |
oneThreeInteractions_.removePair(b, c); |
649 |
> |
oneThreeInteractions_.removePair(b, d); |
650 |
> |
oneThreeInteractions_.removePair(c, d); |
651 |
> |
} else { |
652 |
> |
excludedInteractions_.removePair(b, c); |
653 |
> |
excludedInteractions_.removePair(b, d); |
654 |
> |
excludedInteractions_.removePair(c, d); |
655 |
> |
} |
656 |
> |
} |
657 |
> |
|
658 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
659 |
> |
rb = mol->nextRigidBody(rbIter)) { |
660 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
661 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
662 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
663 |
|
a = atoms[i]->getGlobalIndex(); |
664 |
|
b = atoms[j]->getGlobalIndex(); |
665 |
< |
exclude_.removePair(a, b); |
665 |
> |
excludedInteractions_.removePair(a, b); |
666 |
|
} |
667 |
|
} |
668 |
|
} |
669 |
< |
|
669 |
> |
|
670 |
|
} |
671 |
< |
|
672 |
< |
|
671 |
> |
|
672 |
> |
|
673 |
|
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
674 |
|
int curStampId; |
675 |
< |
|
675 |
> |
|
676 |
|
//index from 0 |
677 |
|
curStampId = moleculeStamps_.size(); |
678 |
|
|
680 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
681 |
|
} |
682 |
|
|
454 |
– |
void SimInfo::update() { |
683 |
|
|
684 |
< |
setupSimType(); |
685 |
< |
|
686 |
< |
#ifdef IS_MPI |
687 |
< |
setupFortranParallel(); |
688 |
< |
#endif |
689 |
< |
|
690 |
< |
setupFortranSim(); |
691 |
< |
|
692 |
< |
//setup fortran force field |
465 |
< |
/** @deprecate */ |
466 |
< |
int isError = 0; |
467 |
< |
|
468 |
< |
setupElectrostaticSummationMethod( isError ); |
469 |
< |
|
470 |
< |
if(isError){ |
471 |
< |
sprintf( painCave.errMsg, |
472 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
473 |
< |
painCave.isFatal = 1; |
474 |
< |
simError(); |
475 |
< |
} |
476 |
< |
|
477 |
< |
|
478 |
< |
setupCutoff(); |
479 |
< |
|
684 |
> |
/** |
685 |
> |
* update |
686 |
> |
* |
687 |
> |
* Performs the global checks and variable settings after the |
688 |
> |
* objects have been created. |
689 |
> |
* |
690 |
> |
*/ |
691 |
> |
void SimInfo::update() { |
692 |
> |
setupSimVariables(); |
693 |
|
calcNdf(); |
694 |
|
calcNdfRaw(); |
695 |
|
calcNdfTrans(); |
483 |
– |
|
484 |
– |
fortranInitialized_ = true; |
696 |
|
} |
697 |
< |
|
698 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
697 |
> |
|
698 |
> |
/** |
699 |
> |
* getSimulatedAtomTypes |
700 |
> |
* |
701 |
> |
* Returns an STL set of AtomType* that are actually present in this |
702 |
> |
* simulation. Must query all processors to assemble this information. |
703 |
> |
* |
704 |
> |
*/ |
705 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
706 |
|
SimInfo::MoleculeIterator mi; |
707 |
|
Molecule* mol; |
708 |
|
Molecule::AtomIterator ai; |
709 |
|
Atom* atom; |
710 |
< |
std::set<AtomType*> atomTypes; |
711 |
< |
|
710 |
> |
set<AtomType*> atomTypes; |
711 |
> |
|
712 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
713 |
< |
|
714 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
713 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
714 |
> |
atom = mol->nextAtom(ai)) { |
715 |
|
atomTypes.insert(atom->getAtomType()); |
716 |
< |
} |
717 |
< |
|
716 |
> |
} |
717 |
> |
} |
718 |
> |
|
719 |
> |
#ifdef IS_MPI |
720 |
> |
|
721 |
> |
// loop over the found atom types on this processor, and add their |
722 |
> |
// numerical idents to a vector: |
723 |
> |
|
724 |
> |
vector<int> foundTypes; |
725 |
> |
set<AtomType*>::iterator i; |
726 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
727 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
728 |
> |
|
729 |
> |
// count_local holds the number of found types on this processor |
730 |
> |
int count_local = foundTypes.size(); |
731 |
> |
|
732 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
733 |
> |
|
734 |
> |
// we need arrays to hold the counts and displacement vectors for |
735 |
> |
// all processors |
736 |
> |
vector<int> counts(nproc, 0); |
737 |
> |
vector<int> disps(nproc, 0); |
738 |
> |
|
739 |
> |
// fill the counts array |
740 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
741 |
> |
1, MPI::INT); |
742 |
> |
|
743 |
> |
// use the processor counts to compute the displacement array |
744 |
> |
disps[0] = 0; |
745 |
> |
int totalCount = counts[0]; |
746 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
747 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
748 |
> |
totalCount += counts[iproc]; |
749 |
|
} |
750 |
|
|
751 |
+ |
// we need a (possibly redundant) set of all found types: |
752 |
+ |
vector<int> ftGlobal(totalCount); |
753 |
+ |
|
754 |
+ |
// now spray out the foundTypes to all the other processors: |
755 |
+ |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
756 |
+ |
&ftGlobal[0], &counts[0], &disps[0], |
757 |
+ |
MPI::INT); |
758 |
+ |
|
759 |
+ |
vector<int>::iterator j; |
760 |
+ |
|
761 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
762 |
+ |
// will have no effect. |
763 |
+ |
set<int> foundIdents; |
764 |
+ |
|
765 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
766 |
+ |
foundIdents.insert((*j)); |
767 |
+ |
|
768 |
+ |
// now iterate over the foundIdents and get the actual atom types |
769 |
+ |
// that correspond to these: |
770 |
+ |
set<int>::iterator it; |
771 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
772 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
773 |
+ |
|
774 |
+ |
#endif |
775 |
+ |
|
776 |
|
return atomTypes; |
777 |
|
} |
778 |
|
|
779 |
< |
void SimInfo::setupSimType() { |
780 |
< |
std::set<AtomType*>::iterator i; |
781 |
< |
std::set<AtomType*> atomTypes; |
782 |
< |
atomTypes = getUniqueAtomTypes(); |
779 |
> |
void SimInfo::setupSimVariables() { |
780 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
781 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
782 |
> |
calcBoxDipole_ = false; |
783 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
784 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
785 |
> |
calcBoxDipole_ = true; |
786 |
> |
} |
787 |
|
|
788 |
< |
int useLennardJones = 0; |
789 |
< |
int useElectrostatic = 0; |
790 |
< |
int useEAM = 0; |
791 |
< |
int useCharge = 0; |
792 |
< |
int useDirectional = 0; |
793 |
< |
int useDipole = 0; |
794 |
< |
int useGayBerne = 0; |
517 |
< |
int useSticky = 0; |
518 |
< |
int useStickyPower = 0; |
519 |
< |
int useShape = 0; |
520 |
< |
int useFLARB = 0; //it is not in AtomType yet |
521 |
< |
int useDirectionalAtom = 0; |
522 |
< |
int useElectrostatics = 0; |
523 |
< |
//usePBC and useRF are from simParams |
524 |
< |
int usePBC = simParams_->getPBC(); |
525 |
< |
|
788 |
> |
set<AtomType*>::iterator i; |
789 |
> |
set<AtomType*> atomTypes; |
790 |
> |
atomTypes = getSimulatedAtomTypes(); |
791 |
> |
int usesElectrostatic = 0; |
792 |
> |
int usesMetallic = 0; |
793 |
> |
int usesDirectional = 0; |
794 |
> |
int usesFluctuatingCharges = 0; |
795 |
|
//loop over all of the atom types |
796 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
797 |
< |
useLennardJones |= (*i)->isLennardJones(); |
798 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
799 |
< |
useEAM |= (*i)->isEAM(); |
800 |
< |
useCharge |= (*i)->isCharge(); |
532 |
< |
useDirectional |= (*i)->isDirectional(); |
533 |
< |
useDipole |= (*i)->isDipole(); |
534 |
< |
useGayBerne |= (*i)->isGayBerne(); |
535 |
< |
useSticky |= (*i)->isSticky(); |
536 |
< |
useStickyPower |= (*i)->isStickyPower(); |
537 |
< |
useShape |= (*i)->isShape(); |
797 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
798 |
> |
usesMetallic |= (*i)->isMetal(); |
799 |
> |
usesDirectional |= (*i)->isDirectional(); |
800 |
> |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
801 |
|
} |
802 |
< |
|
540 |
< |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
541 |
< |
useDirectionalAtom = 1; |
542 |
< |
} |
543 |
< |
|
544 |
< |
if (useCharge || useDipole) { |
545 |
< |
useElectrostatics = 1; |
546 |
< |
} |
547 |
< |
|
802 |
> |
|
803 |
|
#ifdef IS_MPI |
804 |
|
int temp; |
805 |
< |
|
806 |
< |
temp = usePBC; |
552 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
553 |
< |
|
554 |
< |
temp = useDirectionalAtom; |
555 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
556 |
< |
|
557 |
< |
temp = useLennardJones; |
558 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
559 |
< |
|
560 |
< |
temp = useElectrostatics; |
561 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
562 |
< |
|
563 |
< |
temp = useCharge; |
564 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
565 |
< |
|
566 |
< |
temp = useDipole; |
567 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
568 |
< |
|
569 |
< |
temp = useSticky; |
570 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
571 |
< |
|
572 |
< |
temp = useStickyPower; |
573 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
805 |
> |
temp = usesDirectional; |
806 |
> |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
807 |
|
|
808 |
< |
temp = useGayBerne; |
809 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
808 |
> |
temp = usesMetallic; |
809 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 |
> |
|
811 |
> |
temp = usesElectrostatic; |
812 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
|
|
814 |
< |
temp = useEAM; |
815 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
814 |
> |
temp = usesFluctuatingCharges; |
815 |
> |
MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
> |
#else |
817 |
|
|
818 |
< |
temp = useShape; |
819 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 |
> |
usesDirectionalAtoms_ = usesDirectional; |
819 |
> |
usesMetallicAtoms_ = usesMetallic; |
820 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
821 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
822 |
|
|
584 |
– |
temp = useFLARB; |
585 |
– |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
586 |
– |
|
823 |
|
#endif |
824 |
+ |
|
825 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
826 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
827 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
828 |
+ |
} |
829 |
|
|
589 |
– |
fInfo_.SIM_uses_PBC = usePBC; |
590 |
– |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
591 |
– |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
592 |
– |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
593 |
– |
fInfo_.SIM_uses_Charges = useCharge; |
594 |
– |
fInfo_.SIM_uses_Dipoles = useDipole; |
595 |
– |
fInfo_.SIM_uses_Sticky = useSticky; |
596 |
– |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
597 |
– |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
598 |
– |
fInfo_.SIM_uses_EAM = useEAM; |
599 |
– |
fInfo_.SIM_uses_Shapes = useShape; |
600 |
– |
fInfo_.SIM_uses_FLARB = useFLARB; |
830 |
|
|
831 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
831 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
832 |
> |
SimInfo::MoleculeIterator mi; |
833 |
> |
Molecule* mol; |
834 |
> |
Molecule::AtomIterator ai; |
835 |
> |
Atom* atom; |
836 |
|
|
837 |
< |
if (simParams_->haveDielectric()) { |
838 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
839 |
< |
} else { |
840 |
< |
sprintf(painCave.errMsg, |
841 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
842 |
< |
"\tYou are trying to use Reaction Field without" |
610 |
< |
"\tsetting a dielectric constant!\n"); |
611 |
< |
painCave.isFatal = 1; |
612 |
< |
simError(); |
837 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
838 |
> |
|
839 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 |
> |
|
841 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
842 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
843 |
|
} |
614 |
– |
|
615 |
– |
} else { |
616 |
– |
fInfo_.dielect = 0.0; |
844 |
|
} |
845 |
< |
|
845 |
> |
return GlobalAtomIndices; |
846 |
|
} |
847 |
|
|
621 |
– |
void SimInfo::setupFortranSim() { |
622 |
– |
int isError; |
623 |
– |
int nExclude; |
624 |
– |
std::vector<int> fortranGlobalGroupMembership; |
625 |
– |
|
626 |
– |
nExclude = exclude_.getSize(); |
627 |
– |
isError = 0; |
848 |
|
|
849 |
< |
//globalGroupMembership_ is filled by SimCreator |
850 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
851 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
849 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
850 |
> |
SimInfo::MoleculeIterator mi; |
851 |
> |
Molecule* mol; |
852 |
> |
Molecule::CutoffGroupIterator ci; |
853 |
> |
CutoffGroup* cg; |
854 |
> |
|
855 |
> |
vector<int> GlobalGroupIndices; |
856 |
> |
|
857 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
858 |
> |
|
859 |
> |
//local index of cutoff group is trivial, it only depends on the |
860 |
> |
//order of travesing |
861 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
862 |
> |
cg = mol->nextCutoffGroup(ci)) { |
863 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
864 |
> |
} |
865 |
|
} |
866 |
+ |
return GlobalGroupIndices; |
867 |
+ |
} |
868 |
|
|
869 |
+ |
|
870 |
+ |
void SimInfo::prepareTopology() { |
871 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
872 |
+ |
|
873 |
|
//calculate mass ratio of cutoff group |
635 |
– |
std::vector<double> mfact; |
874 |
|
SimInfo::MoleculeIterator mi; |
875 |
|
Molecule* mol; |
876 |
|
Molecule::CutoffGroupIterator ci; |
877 |
|
CutoffGroup* cg; |
878 |
|
Molecule::AtomIterator ai; |
879 |
|
Atom* atom; |
880 |
< |
double totalMass; |
880 |
> |
RealType totalMass; |
881 |
|
|
882 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
883 |
< |
mfact.reserve(getNCutoffGroups()); |
882 |
> |
/** |
883 |
> |
* The mass factor is the relative mass of an atom to the total |
884 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
885 |
> |
* are their own cutoff groups, and therefore have mass factors of |
886 |
> |
* 1. We need some special handling for massless atoms, which |
887 |
> |
* will be treated as carrying the entire mass of the cutoff |
888 |
> |
* group. |
889 |
> |
*/ |
890 |
> |
massFactors_.clear(); |
891 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
892 |
|
|
893 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
894 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
894 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
895 |
> |
cg = mol->nextCutoffGroup(ci)) { |
896 |
|
|
897 |
|
totalMass = cg->getMass(); |
898 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
899 |
< |
mfact.push_back(atom->getMass()/totalMass); |
899 |
> |
// Check for massless groups - set mfact to 1 if true |
900 |
> |
if (totalMass != 0) |
901 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
902 |
> |
else |
903 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
904 |
|
} |
654 |
– |
|
905 |
|
} |
906 |
|
} |
907 |
|
|
908 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
659 |
< |
std::vector<int> identArray; |
908 |
> |
// Build the identArray_ |
909 |
|
|
910 |
< |
//to avoid memory reallocation, reserve enough space identArray |
911 |
< |
identArray.reserve(getNAtoms()); |
663 |
< |
|
910 |
> |
identArray_.clear(); |
911 |
> |
identArray_.reserve(getNAtoms()); |
912 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
913 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
914 |
< |
identArray.push_back(atom->getIdent()); |
914 |
> |
identArray_.push_back(atom->getIdent()); |
915 |
|
} |
916 |
|
} |
669 |
– |
|
670 |
– |
//fill molMembershipArray |
671 |
– |
//molMembershipArray is filled by SimCreator |
672 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
673 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
674 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
675 |
– |
} |
917 |
|
|
918 |
< |
//setup fortran simulation |
678 |
< |
int nGlobalExcludes = 0; |
679 |
< |
int* globalExcludes = NULL; |
680 |
< |
int* excludeList = exclude_.getExcludeList(); |
681 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
682 |
< |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
683 |
< |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
918 |
> |
//scan topology |
919 |
|
|
920 |
< |
if( isError ){ |
920 |
> |
nExclude = excludedInteractions_.getSize(); |
921 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
922 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
923 |
> |
nOneFour = oneFourInteractions_.getSize(); |
924 |
|
|
925 |
< |
sprintf( painCave.errMsg, |
926 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
927 |
< |
painCave.isFatal = 1; |
928 |
< |
painCave.severity = OOPSE_ERROR; |
691 |
< |
simError(); |
692 |
< |
} |
925 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
926 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
927 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
928 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
929 |
|
|
930 |
< |
#ifdef IS_MPI |
695 |
< |
sprintf( checkPointMsg, |
696 |
< |
"succesfully sent the simulation information to fortran.\n"); |
697 |
< |
MPIcheckPoint(); |
698 |
< |
#endif // is_mpi |
699 |
< |
} |
700 |
< |
|
701 |
< |
|
702 |
< |
#ifdef IS_MPI |
703 |
< |
void SimInfo::setupFortranParallel() { |
704 |
< |
|
705 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
706 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
707 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
708 |
< |
SimInfo::MoleculeIterator mi; |
709 |
< |
Molecule::AtomIterator ai; |
710 |
< |
Molecule::CutoffGroupIterator ci; |
711 |
< |
Molecule* mol; |
712 |
< |
Atom* atom; |
713 |
< |
CutoffGroup* cg; |
714 |
< |
mpiSimData parallelData; |
715 |
< |
int isError; |
716 |
< |
|
717 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
718 |
< |
|
719 |
< |
//local index(index in DataStorge) of atom is important |
720 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
721 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
722 |
< |
} |
723 |
< |
|
724 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
725 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
726 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
727 |
< |
} |
728 |
< |
|
729 |
< |
} |
730 |
< |
|
731 |
< |
//fill up mpiSimData struct |
732 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
733 |
< |
parallelData.nMolLocal = getNMolecules(); |
734 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
735 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
736 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
737 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
738 |
< |
parallelData.myNode = worldRank; |
739 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
740 |
< |
|
741 |
< |
//pass mpiSimData struct and index arrays to fortran |
742 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
743 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
744 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
745 |
< |
|
746 |
< |
if (isError) { |
747 |
< |
sprintf(painCave.errMsg, |
748 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
749 |
< |
painCave.isFatal = 1; |
750 |
< |
simError(); |
751 |
< |
} |
752 |
< |
|
753 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
754 |
< |
MPIcheckPoint(); |
755 |
< |
|
756 |
< |
|
757 |
< |
} |
758 |
< |
|
759 |
< |
#endif |
760 |
< |
|
761 |
< |
double SimInfo::calcMaxCutoffRadius() { |
762 |
< |
|
763 |
< |
|
764 |
< |
std::set<AtomType*> atomTypes; |
765 |
< |
std::set<AtomType*>::iterator i; |
766 |
< |
std::vector<double> cutoffRadius; |
767 |
< |
|
768 |
< |
//get the unique atom types |
769 |
< |
atomTypes = getUniqueAtomTypes(); |
770 |
< |
|
771 |
< |
//query the max cutoff radius among these atom types |
772 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
773 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
774 |
< |
} |
775 |
< |
|
776 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
777 |
< |
#ifdef IS_MPI |
778 |
< |
//pick the max cutoff radius among the processors |
779 |
< |
#endif |
780 |
< |
|
781 |
< |
return maxCutoffRadius; |
782 |
< |
} |
783 |
< |
|
784 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
785 |
< |
|
786 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
787 |
< |
|
788 |
< |
if (!simParams_->haveRcut()){ |
789 |
< |
sprintf(painCave.errMsg, |
790 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
791 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
792 |
< |
"\tfor the cutoffRadius.\n"); |
793 |
< |
painCave.isFatal = 0; |
794 |
< |
simError(); |
795 |
< |
rcut = 15.0; |
796 |
< |
} else{ |
797 |
< |
rcut = simParams_->getRcut(); |
798 |
< |
} |
799 |
< |
|
800 |
< |
if (!simParams_->haveRsw()){ |
801 |
< |
sprintf(painCave.errMsg, |
802 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
803 |
< |
"\tOOPSE will use a default value of\n" |
804 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
805 |
< |
painCave.isFatal = 0; |
806 |
< |
simError(); |
807 |
< |
rsw = 0.95 * rcut; |
808 |
< |
} else{ |
809 |
< |
rsw = simParams_->getRsw(); |
810 |
< |
} |
811 |
< |
|
812 |
< |
} else { |
813 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
814 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
815 |
< |
|
816 |
< |
if (simParams_->haveRcut()) { |
817 |
< |
rcut = simParams_->getRcut(); |
818 |
< |
} else { |
819 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
820 |
< |
rcut = calcMaxCutoffRadius(); |
821 |
< |
} |
822 |
< |
|
823 |
< |
if (simParams_->haveRsw()) { |
824 |
< |
rsw = simParams_->getRsw(); |
825 |
< |
} else { |
826 |
< |
rsw = rcut; |
827 |
< |
} |
828 |
< |
|
829 |
< |
} |
830 |
< |
} |
831 |
< |
|
832 |
< |
void SimInfo::setupCutoff() { |
833 |
< |
getCutoff(rcut_, rsw_); |
834 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
835 |
< |
|
836 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
837 |
< |
|
838 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; |
839 |
< |
if (simParams_->haveCutoffPolicy()) { |
840 |
< |
std::string myPolicy = simParams_->getCutoffPolicy(); |
841 |
< |
if (myPolicy == "MIX") { |
842 |
< |
cp = MIX_CUTOFF_POLICY; |
843 |
< |
} else { |
844 |
< |
if (myPolicy == "MAX") { |
845 |
< |
cp = MAX_CUTOFF_POLICY; |
846 |
< |
} else { |
847 |
< |
if (myPolicy == "TRADITIONAL") { |
848 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
849 |
< |
} else { |
850 |
< |
// throw error |
851 |
< |
sprintf( painCave.errMsg, |
852 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
853 |
< |
painCave.isFatal = 1; |
854 |
< |
simError(); |
855 |
< |
} |
856 |
< |
} |
857 |
< |
} |
858 |
< |
} |
859 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); |
860 |
< |
} |
861 |
< |
|
862 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
863 |
< |
|
864 |
< |
int errorOut; |
865 |
< |
int esm = NONE; |
866 |
< |
double alphaVal; |
867 |
< |
|
868 |
< |
errorOut = isError; |
869 |
< |
|
870 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
871 |
< |
std::string myCorrection = simParams_->getElectrostaticSummationMethod(); |
872 |
< |
if (myMethod == "NONE") { |
873 |
< |
esm = NONE; |
874 |
< |
} else { |
875 |
< |
if (myMethod == "UNDAMPED_WOLF") { |
876 |
< |
esm = UNDAMPED_WOLF; |
877 |
< |
} else { |
878 |
< |
if (myMethod == "DAMPED_WOLF") { |
879 |
< |
esm = WOLF; |
880 |
< |
if (!simParams_->haveDampingAlpha()) { |
881 |
< |
//throw error |
882 |
< |
sprintf( painCave.errMsg, |
883 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", simParams_->getDampingAlpha()); |
884 |
< |
painCave.isFatal = 0; |
885 |
< |
simError(); |
886 |
< |
} |
887 |
< |
alphaVal = simParams_->getDampingAlpha(); |
888 |
< |
} else { |
889 |
< |
if (myMethod == "REACTION_FIELD") { |
890 |
< |
esm = REACTION_FIELD; |
891 |
< |
} else { |
892 |
< |
// throw error |
893 |
< |
sprintf( painCave.errMsg, |
894 |
< |
"SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() ); |
895 |
< |
painCave.isFatal = 1; |
896 |
< |
simError(); |
897 |
< |
} |
898 |
< |
} |
899 |
< |
} |
900 |
< |
} |
901 |
< |
} |
902 |
< |
initFortranFF( &fInfo_.SIM_uses_RF, &esm, &alphaVal, &errorOut ); |
930 |
> |
topologyDone_ = true; |
931 |
|
} |
932 |
|
|
933 |
|
void SimInfo::addProperty(GenericData* genData) { |
934 |
|
properties_.addProperty(genData); |
935 |
|
} |
936 |
|
|
937 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
937 |
> |
void SimInfo::removeProperty(const string& propName) { |
938 |
|
properties_.removeProperty(propName); |
939 |
|
} |
940 |
|
|
942 |
|
properties_.clearProperties(); |
943 |
|
} |
944 |
|
|
945 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
945 |
> |
vector<string> SimInfo::getPropertyNames() { |
946 |
|
return properties_.getPropertyNames(); |
947 |
|
} |
948 |
|
|
949 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
949 |
> |
vector<GenericData*> SimInfo::getProperties() { |
950 |
|
return properties_.getProperties(); |
951 |
|
} |
952 |
|
|
953 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
953 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
954 |
|
return properties_.getPropertyByName(propName); |
955 |
|
} |
956 |
|
|
964 |
|
Molecule* mol; |
965 |
|
RigidBody* rb; |
966 |
|
Atom* atom; |
967 |
+ |
CutoffGroup* cg; |
968 |
|
SimInfo::MoleculeIterator mi; |
969 |
|
Molecule::RigidBodyIterator rbIter; |
970 |
< |
Molecule::AtomIterator atomIter;; |
970 |
> |
Molecule::AtomIterator atomIter; |
971 |
> |
Molecule::CutoffGroupIterator cgIter; |
972 |
|
|
973 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
974 |
|
|
979 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
980 |
|
rb->setSnapshotManager(sman_); |
981 |
|
} |
982 |
+ |
|
983 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
984 |
+ |
cg->setSnapshotManager(sman_); |
985 |
+ |
} |
986 |
|
} |
987 |
|
|
988 |
|
} |
992 |
|
Molecule* mol; |
993 |
|
|
994 |
|
Vector3d comVel(0.0); |
995 |
< |
double totalMass = 0.0; |
995 |
> |
RealType totalMass = 0.0; |
996 |
|
|
997 |
|
|
998 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
999 |
< |
double mass = mol->getMass(); |
999 |
> |
RealType mass = mol->getMass(); |
1000 |
|
totalMass += mass; |
1001 |
|
comVel += mass * mol->getComVel(); |
1002 |
|
} |
1003 |
|
|
1004 |
|
#ifdef IS_MPI |
1005 |
< |
double tmpMass = totalMass; |
1005 |
> |
RealType tmpMass = totalMass; |
1006 |
|
Vector3d tmpComVel(comVel); |
1007 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1008 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1007 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1008 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1009 |
|
#endif |
1010 |
|
|
1011 |
|
comVel /= totalMass; |
1018 |
|
Molecule* mol; |
1019 |
|
|
1020 |
|
Vector3d com(0.0); |
1021 |
< |
double totalMass = 0.0; |
1021 |
> |
RealType totalMass = 0.0; |
1022 |
|
|
1023 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1024 |
< |
double mass = mol->getMass(); |
1024 |
> |
RealType mass = mol->getMass(); |
1025 |
|
totalMass += mass; |
1026 |
|
com += mass * mol->getCom(); |
1027 |
|
} |
1028 |
|
|
1029 |
|
#ifdef IS_MPI |
1030 |
< |
double tmpMass = totalMass; |
1030 |
> |
RealType tmpMass = totalMass; |
1031 |
|
Vector3d tmpCom(com); |
1032 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1033 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1032 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1033 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1034 |
|
#endif |
1035 |
|
|
1036 |
|
com /= totalMass; |
1039 |
|
|
1040 |
|
} |
1041 |
|
|
1042 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1042 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1043 |
|
|
1044 |
|
return o; |
1045 |
|
} |
1054 |
|
Molecule* mol; |
1055 |
|
|
1056 |
|
|
1057 |
< |
double totalMass = 0.0; |
1057 |
> |
RealType totalMass = 0.0; |
1058 |
|
|
1059 |
|
|
1060 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1061 |
< |
double mass = mol->getMass(); |
1061 |
> |
RealType mass = mol->getMass(); |
1062 |
|
totalMass += mass; |
1063 |
|
com += mass * mol->getCom(); |
1064 |
|
comVel += mass * mol->getComVel(); |
1065 |
|
} |
1066 |
|
|
1067 |
|
#ifdef IS_MPI |
1068 |
< |
double tmpMass = totalMass; |
1068 |
> |
RealType tmpMass = totalMass; |
1069 |
|
Vector3d tmpCom(com); |
1070 |
|
Vector3d tmpComVel(comVel); |
1071 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1072 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1073 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1071 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1072 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1073 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1074 |
|
#endif |
1075 |
|
|
1076 |
|
com /= totalMass; |
1082 |
|
|
1083 |
|
|
1084 |
|
[ Ixx -Ixy -Ixz ] |
1085 |
< |
J =| -Iyx Iyy -Iyz | |
1085 |
> |
J =| -Iyx Iyy -Iyz | |
1086 |
|
[ -Izx -Iyz Izz ] |
1087 |
|
*/ |
1088 |
|
|
1089 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1090 |
|
|
1091 |
|
|
1092 |
< |
double xx = 0.0; |
1093 |
< |
double yy = 0.0; |
1094 |
< |
double zz = 0.0; |
1095 |
< |
double xy = 0.0; |
1096 |
< |
double xz = 0.0; |
1097 |
< |
double yz = 0.0; |
1092 |
> |
RealType xx = 0.0; |
1093 |
> |
RealType yy = 0.0; |
1094 |
> |
RealType zz = 0.0; |
1095 |
> |
RealType xy = 0.0; |
1096 |
> |
RealType xz = 0.0; |
1097 |
> |
RealType yz = 0.0; |
1098 |
|
Vector3d com(0.0); |
1099 |
|
Vector3d comVel(0.0); |
1100 |
|
|
1106 |
|
Vector3d thisq(0.0); |
1107 |
|
Vector3d thisv(0.0); |
1108 |
|
|
1109 |
< |
double thisMass = 0.0; |
1109 |
> |
RealType thisMass = 0.0; |
1110 |
|
|
1111 |
|
|
1112 |
|
|
1144 |
|
#ifdef IS_MPI |
1145 |
|
Mat3x3d tmpI(inertiaTensor); |
1146 |
|
Vector3d tmpAngMom; |
1147 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1148 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1147 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1148 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1149 |
|
#endif |
1150 |
|
|
1151 |
|
return; |
1166 |
|
Vector3d thisr(0.0); |
1167 |
|
Vector3d thisp(0.0); |
1168 |
|
|
1169 |
< |
double thisMass; |
1169 |
> |
RealType thisMass; |
1170 |
|
|
1171 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1172 |
|
thisMass = mol->getMass(); |
1179 |
|
|
1180 |
|
#ifdef IS_MPI |
1181 |
|
Vector3d tmpAngMom; |
1182 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1182 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1183 |
|
#endif |
1184 |
|
|
1185 |
|
return angularMomentum; |
1186 |
|
} |
1187 |
|
|
1188 |
< |
|
1189 |
< |
}//end namespace oopse |
1188 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1189 |
> |
return IOIndexToIntegrableObject.at(index); |
1190 |
> |
} |
1191 |
> |
|
1192 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1193 |
> |
IOIndexToIntegrableObject= v; |
1194 |
> |
} |
1195 |
|
|
1196 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1197 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1198 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1199 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1200 |
+ |
*/ |
1201 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1202 |
+ |
Mat3x3d intTensor; |
1203 |
+ |
RealType det; |
1204 |
+ |
Vector3d dummyAngMom; |
1205 |
+ |
RealType sysconstants; |
1206 |
+ |
RealType geomCnst; |
1207 |
+ |
|
1208 |
+ |
geomCnst = 3.0/2.0; |
1209 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1210 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1211 |
+ |
|
1212 |
+ |
det = intTensor.determinant(); |
1213 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1214 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1215 |
+ |
return; |
1216 |
+ |
} |
1217 |
+ |
|
1218 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1219 |
+ |
Mat3x3d intTensor; |
1220 |
+ |
Vector3d dummyAngMom; |
1221 |
+ |
RealType sysconstants; |
1222 |
+ |
RealType geomCnst; |
1223 |
+ |
|
1224 |
+ |
geomCnst = 3.0/2.0; |
1225 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1226 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1227 |
+ |
|
1228 |
+ |
detI = intTensor.determinant(); |
1229 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1230 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1231 |
+ |
return; |
1232 |
+ |
} |
1233 |
+ |
/* |
1234 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1235 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1236 |
+ |
sdByGlobalIndex_ = v; |
1237 |
+ |
} |
1238 |
+ |
|
1239 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1240 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1241 |
+ |
return sdByGlobalIndex_.at(index); |
1242 |
+ |
} |
1243 |
+ |
*/ |
1244 |
+ |
int SimInfo::getNGlobalConstraints() { |
1245 |
+ |
int nGlobalConstraints; |
1246 |
+ |
#ifdef IS_MPI |
1247 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1248 |
+ |
MPI_COMM_WORLD); |
1249 |
+ |
#else |
1250 |
+ |
nGlobalConstraints = nConstraints_; |
1251 |
+ |
#endif |
1252 |
+ |
return nGlobalConstraints; |
1253 |
+ |
} |
1254 |
+ |
|
1255 |
+ |
}//end namespace OpenMD |
1256 |
+ |
|