ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1779
Committed: Mon Aug 20 17:51:39 2012 UTC (12 years, 8 months ago) by gezelter
File size: 32768 byte(s)
Log Message:
Prevent a memory access bug when dump files aren't configured correctly.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.cpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #include <algorithm>
51 #include <set>
52 #include <map>
53
54 #include "brains/SimInfo.hpp"
55 #include "math/Vector3.hpp"
56 #include "primitives/Molecule.hpp"
57 #include "primitives/StuntDouble.hpp"
58 #include "utils/MemoryUtils.hpp"
59 #include "utils/simError.h"
60 #include "selection/SelectionManager.hpp"
61 #include "io/ForceFieldOptions.hpp"
62 #include "brains/ForceField.hpp"
63 #include "nonbonded/SwitchingFunction.hpp"
64 #ifdef IS_MPI
65 #include <mpi.h>
66 #endif
67
68 using namespace std;
69 namespace OpenMD {
70
71 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 forceField_(ff), simParams_(simParams),
73 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
77 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 calcBoxDipole_(false), useAtomicVirial_(true) {
80
81 MoleculeStamp* molStamp;
82 int nMolWithSameStamp;
83 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 int nGroups = 0; //total cutoff groups defined in meta-data file
85 CutoffGroupStamp* cgStamp;
86 RigidBodyStamp* rbStamp;
87 int nRigidAtoms = 0;
88
89 vector<Component*> components = simParams->getComponents();
90
91 for (vector<Component*>::iterator i = components.begin();
92 i !=components.end(); ++i) {
93 molStamp = (*i)->getMoleculeStamp();
94 nMolWithSameStamp = (*i)->getNMol();
95
96 addMoleculeStamp(molStamp, nMolWithSameStamp);
97
98 //calculate atoms in molecules
99 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
100
101 //calculate atoms in cutoff groups
102 int nAtomsInGroups = 0;
103 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
104
105 for (int j=0; j < nCutoffGroupsInStamp; j++) {
106 cgStamp = molStamp->getCutoffGroupStamp(j);
107 nAtomsInGroups += cgStamp->getNMembers();
108 }
109
110 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
111
112 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
113
114 //calculate atoms in rigid bodies
115 int nAtomsInRigidBodies = 0;
116 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117
118 for (int j=0; j < nRigidBodiesInStamp; j++) {
119 rbStamp = molStamp->getRigidBodyStamp(j);
120 nAtomsInRigidBodies += rbStamp->getNMembers();
121 }
122
123 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
125
126 }
127
128 //every free atom (atom does not belong to cutoff groups) is a cutoff
129 //group therefore the total number of cutoff groups in the system is
130 //equal to the total number of atoms minus number of atoms belong to
131 //cutoff group defined in meta-data file plus the number of cutoff
132 //groups defined in meta-data file
133
134 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135
136 //every free atom (atom does not belong to rigid bodies) is an
137 //integrable object therefore the total number of integrable objects
138 //in the system is equal to the total number of atoms minus number of
139 //atoms belong to rigid body defined in meta-data file plus the number
140 //of rigid bodies defined in meta-data file
141 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 + nGlobalRigidBodies_;
143
144 nGlobalMols_ = molStampIds_.size();
145 molToProcMap_.resize(nGlobalMols_);
146 }
147
148 SimInfo::~SimInfo() {
149 map<int, Molecule*>::iterator i;
150 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 delete i->second;
152 }
153 molecules_.clear();
154
155 delete sman_;
156 delete simParams_;
157 delete forceField_;
158 }
159
160
161 bool SimInfo::addMolecule(Molecule* mol) {
162 MoleculeIterator i;
163
164 i = molecules_.find(mol->getGlobalIndex());
165 if (i == molecules_.end() ) {
166
167 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168
169 nAtoms_ += mol->getNAtoms();
170 nBonds_ += mol->getNBonds();
171 nBends_ += mol->getNBends();
172 nTorsions_ += mol->getNTorsions();
173 nInversions_ += mol->getNInversions();
174 nRigidBodies_ += mol->getNRigidBodies();
175 nIntegrableObjects_ += mol->getNIntegrableObjects();
176 nCutoffGroups_ += mol->getNCutoffGroups();
177 nConstraints_ += mol->getNConstraintPairs();
178
179 addInteractionPairs(mol);
180
181 return true;
182 } else {
183 return false;
184 }
185 }
186
187 bool SimInfo::removeMolecule(Molecule* mol) {
188 MoleculeIterator i;
189 i = molecules_.find(mol->getGlobalIndex());
190
191 if (i != molecules_.end() ) {
192
193 assert(mol == i->second);
194
195 nAtoms_ -= mol->getNAtoms();
196 nBonds_ -= mol->getNBonds();
197 nBends_ -= mol->getNBends();
198 nTorsions_ -= mol->getNTorsions();
199 nInversions_ -= mol->getNInversions();
200 nRigidBodies_ -= mol->getNRigidBodies();
201 nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 nCutoffGroups_ -= mol->getNCutoffGroups();
203 nConstraints_ -= mol->getNConstraintPairs();
204
205 removeInteractionPairs(mol);
206 molecules_.erase(mol->getGlobalIndex());
207
208 delete mol;
209
210 return true;
211 } else {
212 return false;
213 }
214 }
215
216
217 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 i = molecules_.begin();
219 return i == molecules_.end() ? NULL : i->second;
220 }
221
222 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 ++i;
224 return i == molecules_.end() ? NULL : i->second;
225 }
226
227
228 void SimInfo::calcNdf() {
229 int ndf_local, nfq_local;
230 MoleculeIterator i;
231 vector<StuntDouble*>::iterator j;
232 vector<Atom*>::iterator k;
233
234 Molecule* mol;
235 StuntDouble* sd;
236 Atom* atom;
237
238 ndf_local = 0;
239 nfq_local = 0;
240
241 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
242
243 for (sd = mol->beginIntegrableObject(j); sd != NULL;
244 sd = mol->nextIntegrableObject(j)) {
245
246 ndf_local += 3;
247
248 if (sd->isDirectional()) {
249 if (sd->isLinear()) {
250 ndf_local += 2;
251 } else {
252 ndf_local += 3;
253 }
254 }
255 }
256
257 for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
258 atom = mol->nextFluctuatingCharge(k)) {
259 if (atom->isFluctuatingCharge()) {
260 nfq_local++;
261 }
262 }
263 }
264
265 ndfLocal_ = ndf_local;
266
267 // n_constraints is local, so subtract them on each processor
268 ndf_local -= nConstraints_;
269
270 #ifdef IS_MPI
271 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
273 #else
274 ndf_ = ndf_local;
275 nGlobalFluctuatingCharges_ = nfq_local;
276 #endif
277
278 // nZconstraints_ is global, as are the 3 COM translations for the
279 // entire system:
280 ndf_ = ndf_ - 3 - nZconstraint_;
281
282 }
283
284 int SimInfo::getFdf() {
285 #ifdef IS_MPI
286 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 #else
288 fdf_ = fdf_local;
289 #endif
290 return fdf_;
291 }
292
293 unsigned int SimInfo::getNLocalCutoffGroups(){
294 int nLocalCutoffAtoms = 0;
295 Molecule* mol;
296 MoleculeIterator mi;
297 CutoffGroup* cg;
298 Molecule::CutoffGroupIterator ci;
299
300 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
301
302 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
303 cg = mol->nextCutoffGroup(ci)) {
304 nLocalCutoffAtoms += cg->getNumAtom();
305
306 }
307 }
308
309 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
310 }
311
312 void SimInfo::calcNdfRaw() {
313 int ndfRaw_local;
314
315 MoleculeIterator i;
316 vector<StuntDouble*>::iterator j;
317 Molecule* mol;
318 StuntDouble* sd;
319
320 // Raw degrees of freedom that we have to set
321 ndfRaw_local = 0;
322
323 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
324
325 for (sd = mol->beginIntegrableObject(j); sd != NULL;
326 sd = mol->nextIntegrableObject(j)) {
327
328 ndfRaw_local += 3;
329
330 if (sd->isDirectional()) {
331 if (sd->isLinear()) {
332 ndfRaw_local += 2;
333 } else {
334 ndfRaw_local += 3;
335 }
336 }
337
338 }
339 }
340
341 #ifdef IS_MPI
342 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343 #else
344 ndfRaw_ = ndfRaw_local;
345 #endif
346 }
347
348 void SimInfo::calcNdfTrans() {
349 int ndfTrans_local;
350
351 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
352
353
354 #ifdef IS_MPI
355 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
356 #else
357 ndfTrans_ = ndfTrans_local;
358 #endif
359
360 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
361
362 }
363
364 void SimInfo::addInteractionPairs(Molecule* mol) {
365 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
366 vector<Bond*>::iterator bondIter;
367 vector<Bend*>::iterator bendIter;
368 vector<Torsion*>::iterator torsionIter;
369 vector<Inversion*>::iterator inversionIter;
370 Bond* bond;
371 Bend* bend;
372 Torsion* torsion;
373 Inversion* inversion;
374 int a;
375 int b;
376 int c;
377 int d;
378
379 // atomGroups can be used to add special interaction maps between
380 // groups of atoms that are in two separate rigid bodies.
381 // However, most site-site interactions between two rigid bodies
382 // are probably not special, just the ones between the physically
383 // bonded atoms. Interactions *within* a single rigid body should
384 // always be excluded. These are done at the bottom of this
385 // function.
386
387 map<int, set<int> > atomGroups;
388 Molecule::RigidBodyIterator rbIter;
389 RigidBody* rb;
390 Molecule::IntegrableObjectIterator ii;
391 StuntDouble* sd;
392
393 for (sd = mol->beginIntegrableObject(ii); sd != NULL;
394 sd = mol->nextIntegrableObject(ii)) {
395
396 if (sd->isRigidBody()) {
397 rb = static_cast<RigidBody*>(sd);
398 vector<Atom*> atoms = rb->getAtoms();
399 set<int> rigidAtoms;
400 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 rigidAtoms.insert(atoms[i]->getGlobalIndex());
402 }
403 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
404 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
405 }
406 } else {
407 set<int> oneAtomSet;
408 oneAtomSet.insert(sd->getGlobalIndex());
409 atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));
410 }
411 }
412
413 for (bond= mol->beginBond(bondIter); bond != NULL;
414 bond = mol->nextBond(bondIter)) {
415
416 a = bond->getAtomA()->getGlobalIndex();
417 b = bond->getAtomB()->getGlobalIndex();
418
419 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
420 oneTwoInteractions_.addPair(a, b);
421 } else {
422 excludedInteractions_.addPair(a, b);
423 }
424 }
425
426 for (bend= mol->beginBend(bendIter); bend != NULL;
427 bend = mol->nextBend(bendIter)) {
428
429 a = bend->getAtomA()->getGlobalIndex();
430 b = bend->getAtomB()->getGlobalIndex();
431 c = bend->getAtomC()->getGlobalIndex();
432
433 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
434 oneTwoInteractions_.addPair(a, b);
435 oneTwoInteractions_.addPair(b, c);
436 } else {
437 excludedInteractions_.addPair(a, b);
438 excludedInteractions_.addPair(b, c);
439 }
440
441 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
442 oneThreeInteractions_.addPair(a, c);
443 } else {
444 excludedInteractions_.addPair(a, c);
445 }
446 }
447
448 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
449 torsion = mol->nextTorsion(torsionIter)) {
450
451 a = torsion->getAtomA()->getGlobalIndex();
452 b = torsion->getAtomB()->getGlobalIndex();
453 c = torsion->getAtomC()->getGlobalIndex();
454 d = torsion->getAtomD()->getGlobalIndex();
455
456 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 oneTwoInteractions_.addPair(a, b);
458 oneTwoInteractions_.addPair(b, c);
459 oneTwoInteractions_.addPair(c, d);
460 } else {
461 excludedInteractions_.addPair(a, b);
462 excludedInteractions_.addPair(b, c);
463 excludedInteractions_.addPair(c, d);
464 }
465
466 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 oneThreeInteractions_.addPair(a, c);
468 oneThreeInteractions_.addPair(b, d);
469 } else {
470 excludedInteractions_.addPair(a, c);
471 excludedInteractions_.addPair(b, d);
472 }
473
474 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
475 oneFourInteractions_.addPair(a, d);
476 } else {
477 excludedInteractions_.addPair(a, d);
478 }
479 }
480
481 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
482 inversion = mol->nextInversion(inversionIter)) {
483
484 a = inversion->getAtomA()->getGlobalIndex();
485 b = inversion->getAtomB()->getGlobalIndex();
486 c = inversion->getAtomC()->getGlobalIndex();
487 d = inversion->getAtomD()->getGlobalIndex();
488
489 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
490 oneTwoInteractions_.addPair(a, b);
491 oneTwoInteractions_.addPair(a, c);
492 oneTwoInteractions_.addPair(a, d);
493 } else {
494 excludedInteractions_.addPair(a, b);
495 excludedInteractions_.addPair(a, c);
496 excludedInteractions_.addPair(a, d);
497 }
498
499 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
500 oneThreeInteractions_.addPair(b, c);
501 oneThreeInteractions_.addPair(b, d);
502 oneThreeInteractions_.addPair(c, d);
503 } else {
504 excludedInteractions_.addPair(b, c);
505 excludedInteractions_.addPair(b, d);
506 excludedInteractions_.addPair(c, d);
507 }
508 }
509
510 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
511 rb = mol->nextRigidBody(rbIter)) {
512 vector<Atom*> atoms = rb->getAtoms();
513 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
514 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
515 a = atoms[i]->getGlobalIndex();
516 b = atoms[j]->getGlobalIndex();
517 excludedInteractions_.addPair(a, b);
518 }
519 }
520 }
521
522 }
523
524 void SimInfo::removeInteractionPairs(Molecule* mol) {
525 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
526 vector<Bond*>::iterator bondIter;
527 vector<Bend*>::iterator bendIter;
528 vector<Torsion*>::iterator torsionIter;
529 vector<Inversion*>::iterator inversionIter;
530 Bond* bond;
531 Bend* bend;
532 Torsion* torsion;
533 Inversion* inversion;
534 int a;
535 int b;
536 int c;
537 int d;
538
539 map<int, set<int> > atomGroups;
540 Molecule::RigidBodyIterator rbIter;
541 RigidBody* rb;
542 Molecule::IntegrableObjectIterator ii;
543 StuntDouble* sd;
544
545 for (sd = mol->beginIntegrableObject(ii); sd != NULL;
546 sd = mol->nextIntegrableObject(ii)) {
547
548 if (sd->isRigidBody()) {
549 rb = static_cast<RigidBody*>(sd);
550 vector<Atom*> atoms = rb->getAtoms();
551 set<int> rigidAtoms;
552 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
553 rigidAtoms.insert(atoms[i]->getGlobalIndex());
554 }
555 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
556 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
557 }
558 } else {
559 set<int> oneAtomSet;
560 oneAtomSet.insert(sd->getGlobalIndex());
561 atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));
562 }
563 }
564
565 for (bond= mol->beginBond(bondIter); bond != NULL;
566 bond = mol->nextBond(bondIter)) {
567
568 a = bond->getAtomA()->getGlobalIndex();
569 b = bond->getAtomB()->getGlobalIndex();
570
571 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
572 oneTwoInteractions_.removePair(a, b);
573 } else {
574 excludedInteractions_.removePair(a, b);
575 }
576 }
577
578 for (bend= mol->beginBend(bendIter); bend != NULL;
579 bend = mol->nextBend(bendIter)) {
580
581 a = bend->getAtomA()->getGlobalIndex();
582 b = bend->getAtomB()->getGlobalIndex();
583 c = bend->getAtomC()->getGlobalIndex();
584
585 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
586 oneTwoInteractions_.removePair(a, b);
587 oneTwoInteractions_.removePair(b, c);
588 } else {
589 excludedInteractions_.removePair(a, b);
590 excludedInteractions_.removePair(b, c);
591 }
592
593 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
594 oneThreeInteractions_.removePair(a, c);
595 } else {
596 excludedInteractions_.removePair(a, c);
597 }
598 }
599
600 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
601 torsion = mol->nextTorsion(torsionIter)) {
602
603 a = torsion->getAtomA()->getGlobalIndex();
604 b = torsion->getAtomB()->getGlobalIndex();
605 c = torsion->getAtomC()->getGlobalIndex();
606 d = torsion->getAtomD()->getGlobalIndex();
607
608 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 oneTwoInteractions_.removePair(a, b);
610 oneTwoInteractions_.removePair(b, c);
611 oneTwoInteractions_.removePair(c, d);
612 } else {
613 excludedInteractions_.removePair(a, b);
614 excludedInteractions_.removePair(b, c);
615 excludedInteractions_.removePair(c, d);
616 }
617
618 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 oneThreeInteractions_.removePair(a, c);
620 oneThreeInteractions_.removePair(b, d);
621 } else {
622 excludedInteractions_.removePair(a, c);
623 excludedInteractions_.removePair(b, d);
624 }
625
626 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
627 oneFourInteractions_.removePair(a, d);
628 } else {
629 excludedInteractions_.removePair(a, d);
630 }
631 }
632
633 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
634 inversion = mol->nextInversion(inversionIter)) {
635
636 a = inversion->getAtomA()->getGlobalIndex();
637 b = inversion->getAtomB()->getGlobalIndex();
638 c = inversion->getAtomC()->getGlobalIndex();
639 d = inversion->getAtomD()->getGlobalIndex();
640
641 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
642 oneTwoInteractions_.removePair(a, b);
643 oneTwoInteractions_.removePair(a, c);
644 oneTwoInteractions_.removePair(a, d);
645 } else {
646 excludedInteractions_.removePair(a, b);
647 excludedInteractions_.removePair(a, c);
648 excludedInteractions_.removePair(a, d);
649 }
650
651 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
652 oneThreeInteractions_.removePair(b, c);
653 oneThreeInteractions_.removePair(b, d);
654 oneThreeInteractions_.removePair(c, d);
655 } else {
656 excludedInteractions_.removePair(b, c);
657 excludedInteractions_.removePair(b, d);
658 excludedInteractions_.removePair(c, d);
659 }
660 }
661
662 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
663 rb = mol->nextRigidBody(rbIter)) {
664 vector<Atom*> atoms = rb->getAtoms();
665 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
666 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
667 a = atoms[i]->getGlobalIndex();
668 b = atoms[j]->getGlobalIndex();
669 excludedInteractions_.removePair(a, b);
670 }
671 }
672 }
673
674 }
675
676
677 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
678 int curStampId;
679
680 //index from 0
681 curStampId = moleculeStamps_.size();
682
683 moleculeStamps_.push_back(molStamp);
684 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
685 }
686
687
688 /**
689 * update
690 *
691 * Performs the global checks and variable settings after the
692 * objects have been created.
693 *
694 */
695 void SimInfo::update() {
696 setupSimVariables();
697 calcNdf();
698 calcNdfRaw();
699 calcNdfTrans();
700 }
701
702 /**
703 * getSimulatedAtomTypes
704 *
705 * Returns an STL set of AtomType* that are actually present in this
706 * simulation. Must query all processors to assemble this information.
707 *
708 */
709 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
710 SimInfo::MoleculeIterator mi;
711 Molecule* mol;
712 Molecule::AtomIterator ai;
713 Atom* atom;
714 set<AtomType*> atomTypes;
715
716 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
717 for(atom = mol->beginAtom(ai); atom != NULL;
718 atom = mol->nextAtom(ai)) {
719 atomTypes.insert(atom->getAtomType());
720 }
721 }
722
723 #ifdef IS_MPI
724
725 // loop over the found atom types on this processor, and add their
726 // numerical idents to a vector:
727
728 vector<int> foundTypes;
729 set<AtomType*>::iterator i;
730 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
731 foundTypes.push_back( (*i)->getIdent() );
732
733 // count_local holds the number of found types on this processor
734 int count_local = foundTypes.size();
735
736 int nproc = MPI::COMM_WORLD.Get_size();
737
738 // we need arrays to hold the counts and displacement vectors for
739 // all processors
740 vector<int> counts(nproc, 0);
741 vector<int> disps(nproc, 0);
742
743 // fill the counts array
744 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
745 1, MPI::INT);
746
747 // use the processor counts to compute the displacement array
748 disps[0] = 0;
749 int totalCount = counts[0];
750 for (int iproc = 1; iproc < nproc; iproc++) {
751 disps[iproc] = disps[iproc-1] + counts[iproc-1];
752 totalCount += counts[iproc];
753 }
754
755 // we need a (possibly redundant) set of all found types:
756 vector<int> ftGlobal(totalCount);
757
758 // now spray out the foundTypes to all the other processors:
759 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
760 &ftGlobal[0], &counts[0], &disps[0],
761 MPI::INT);
762
763 vector<int>::iterator j;
764
765 // foundIdents is a stl set, so inserting an already found ident
766 // will have no effect.
767 set<int> foundIdents;
768
769 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
770 foundIdents.insert((*j));
771
772 // now iterate over the foundIdents and get the actual atom types
773 // that correspond to these:
774 set<int>::iterator it;
775 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
776 atomTypes.insert( forceField_->getAtomType((*it)) );
777
778 #endif
779
780 return atomTypes;
781 }
782
783 void SimInfo::setupSimVariables() {
784 useAtomicVirial_ = simParams_->getUseAtomicVirial();
785 // we only call setAccumulateBoxDipole if the accumulateBoxDipole
786 // parameter is true
787 calcBoxDipole_ = false;
788 if ( simParams_->haveAccumulateBoxDipole() )
789 if ( simParams_->getAccumulateBoxDipole() ) {
790 calcBoxDipole_ = true;
791 }
792
793 set<AtomType*>::iterator i;
794 set<AtomType*> atomTypes;
795 atomTypes = getSimulatedAtomTypes();
796 bool usesElectrostatic = false;
797 bool usesMetallic = false;
798 bool usesDirectional = false;
799 bool usesFluctuatingCharges = false;
800 //loop over all of the atom types
801 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
802 usesElectrostatic |= (*i)->isElectrostatic();
803 usesMetallic |= (*i)->isMetal();
804 usesDirectional |= (*i)->isDirectional();
805 usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
806 }
807
808 #ifdef IS_MPI
809 bool temp;
810 temp = usesDirectional;
811 MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
812 MPI::LOR);
813
814 temp = usesMetallic;
815 MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
816 MPI::LOR);
817
818 temp = usesElectrostatic;
819 MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
820 MPI::LOR);
821
822 temp = usesFluctuatingCharges;
823 MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
824 MPI::LOR);
825 #else
826
827 usesDirectionalAtoms_ = usesDirectional;
828 usesMetallicAtoms_ = usesMetallic;
829 usesElectrostaticAtoms_ = usesElectrostatic;
830 usesFluctuatingCharges_ = usesFluctuatingCharges;
831
832 #endif
833
834 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
835 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
836 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
837 }
838
839
840 vector<int> SimInfo::getGlobalAtomIndices() {
841 SimInfo::MoleculeIterator mi;
842 Molecule* mol;
843 Molecule::AtomIterator ai;
844 Atom* atom;
845
846 vector<int> GlobalAtomIndices(getNAtoms(), 0);
847
848 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
849
850 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
851 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
852 }
853 }
854 return GlobalAtomIndices;
855 }
856
857
858 vector<int> SimInfo::getGlobalGroupIndices() {
859 SimInfo::MoleculeIterator mi;
860 Molecule* mol;
861 Molecule::CutoffGroupIterator ci;
862 CutoffGroup* cg;
863
864 vector<int> GlobalGroupIndices;
865
866 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
867
868 //local index of cutoff group is trivial, it only depends on the
869 //order of travesing
870 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
871 cg = mol->nextCutoffGroup(ci)) {
872 GlobalGroupIndices.push_back(cg->getGlobalIndex());
873 }
874 }
875 return GlobalGroupIndices;
876 }
877
878
879 void SimInfo::prepareTopology() {
880 int nExclude, nOneTwo, nOneThree, nOneFour;
881
882 //calculate mass ratio of cutoff group
883 SimInfo::MoleculeIterator mi;
884 Molecule* mol;
885 Molecule::CutoffGroupIterator ci;
886 CutoffGroup* cg;
887 Molecule::AtomIterator ai;
888 Atom* atom;
889 RealType totalMass;
890
891 /**
892 * The mass factor is the relative mass of an atom to the total
893 * mass of the cutoff group it belongs to. By default, all atoms
894 * are their own cutoff groups, and therefore have mass factors of
895 * 1. We need some special handling for massless atoms, which
896 * will be treated as carrying the entire mass of the cutoff
897 * group.
898 */
899 massFactors_.clear();
900 massFactors_.resize(getNAtoms(), 1.0);
901
902 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
903 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
904 cg = mol->nextCutoffGroup(ci)) {
905
906 totalMass = cg->getMass();
907 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
908 // Check for massless groups - set mfact to 1 if true
909 if (totalMass != 0)
910 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
911 else
912 massFactors_[atom->getLocalIndex()] = 1.0;
913 }
914 }
915 }
916
917 // Build the identArray_
918
919 identArray_.clear();
920 identArray_.reserve(getNAtoms());
921 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
922 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
923 identArray_.push_back(atom->getIdent());
924 }
925 }
926
927 //scan topology
928
929 nExclude = excludedInteractions_.getSize();
930 nOneTwo = oneTwoInteractions_.getSize();
931 nOneThree = oneThreeInteractions_.getSize();
932 nOneFour = oneFourInteractions_.getSize();
933
934 int* excludeList = excludedInteractions_.getPairList();
935 int* oneTwoList = oneTwoInteractions_.getPairList();
936 int* oneThreeList = oneThreeInteractions_.getPairList();
937 int* oneFourList = oneFourInteractions_.getPairList();
938
939 topologyDone_ = true;
940 }
941
942 void SimInfo::addProperty(GenericData* genData) {
943 properties_.addProperty(genData);
944 }
945
946 void SimInfo::removeProperty(const string& propName) {
947 properties_.removeProperty(propName);
948 }
949
950 void SimInfo::clearProperties() {
951 properties_.clearProperties();
952 }
953
954 vector<string> SimInfo::getPropertyNames() {
955 return properties_.getPropertyNames();
956 }
957
958 vector<GenericData*> SimInfo::getProperties() {
959 return properties_.getProperties();
960 }
961
962 GenericData* SimInfo::getPropertyByName(const string& propName) {
963 return properties_.getPropertyByName(propName);
964 }
965
966 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
967 if (sman_ == sman) {
968 return;
969 }
970 delete sman_;
971 sman_ = sman;
972
973 Molecule* mol;
974 RigidBody* rb;
975 Atom* atom;
976 CutoffGroup* cg;
977 SimInfo::MoleculeIterator mi;
978 Molecule::RigidBodyIterator rbIter;
979 Molecule::AtomIterator atomIter;
980 Molecule::CutoffGroupIterator cgIter;
981
982 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983
984 for (atom = mol->beginAtom(atomIter); atom != NULL;
985 atom = mol->nextAtom(atomIter)) {
986 atom->setSnapshotManager(sman_);
987 }
988
989 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
990 rb = mol->nextRigidBody(rbIter)) {
991 rb->setSnapshotManager(sman_);
992 }
993
994 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL;
995 cg = mol->nextCutoffGroup(cgIter)) {
996 cg->setSnapshotManager(sman_);
997 }
998 }
999
1000 }
1001
1002
1003 ostream& operator <<(ostream& o, SimInfo& info) {
1004
1005 return o;
1006 }
1007
1008
1009 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1010 if (index >= IOIndexToIntegrableObject.size()) {
1011 sprintf(painCave.errMsg,
1012 "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n"
1013 "\tindex exceeds number of known objects!\n");
1014 painCave.isFatal = 1;
1015 simError();
1016 return NULL;
1017 } else
1018 return IOIndexToIntegrableObject.at(index);
1019 }
1020
1021 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1022 IOIndexToIntegrableObject= v;
1023 }
1024
1025 int SimInfo::getNGlobalConstraints() {
1026 int nGlobalConstraints;
1027 #ifdef IS_MPI
1028 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1029 MPI_COMM_WORLD);
1030 #else
1031 nGlobalConstraints = nConstraints_;
1032 #endif
1033 return nGlobalConstraints;
1034 }
1035
1036 }//end namespace OpenMD
1037

Properties

Name Value
svn:keywords Author Id Revision Date