1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
#include "UseTheForce/doForces_interface.h" |
59 |
#include "utils/MemoryUtils.hpp" |
60 |
#include "utils/simError.h" |
61 |
#include "selection/SelectionManager.hpp" |
62 |
#include "io/ForceFieldOptions.hpp" |
63 |
#include "UseTheForce/ForceField.hpp" |
64 |
#include "nonbonded/SwitchingFunction.hpp" |
65 |
|
66 |
#ifdef IS_MPI |
67 |
#include "UseTheForce/mpiComponentPlan.h" |
68 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
69 |
#endif |
70 |
|
71 |
using namespace std; |
72 |
namespace OpenMD { |
73 |
|
74 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
75 |
forceField_(ff), simParams_(simParams), |
76 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
77 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
78 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
79 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
80 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
81 |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
82 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
83 |
|
84 |
MoleculeStamp* molStamp; |
85 |
int nMolWithSameStamp; |
86 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
87 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
88 |
CutoffGroupStamp* cgStamp; |
89 |
RigidBodyStamp* rbStamp; |
90 |
int nRigidAtoms = 0; |
91 |
|
92 |
vector<Component*> components = simParams->getComponents(); |
93 |
|
94 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
95 |
molStamp = (*i)->getMoleculeStamp(); |
96 |
nMolWithSameStamp = (*i)->getNMol(); |
97 |
|
98 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
99 |
|
100 |
//calculate atoms in molecules |
101 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
102 |
|
103 |
//calculate atoms in cutoff groups |
104 |
int nAtomsInGroups = 0; |
105 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
106 |
|
107 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
108 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
109 |
nAtomsInGroups += cgStamp->getNMembers(); |
110 |
} |
111 |
|
112 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
113 |
|
114 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
115 |
|
116 |
//calculate atoms in rigid bodies |
117 |
int nAtomsInRigidBodies = 0; |
118 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
119 |
|
120 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
121 |
rbStamp = molStamp->getRigidBodyStamp(j); |
122 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
123 |
} |
124 |
|
125 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
126 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
127 |
|
128 |
} |
129 |
|
130 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
131 |
//group therefore the total number of cutoff groups in the system is |
132 |
//equal to the total number of atoms minus number of atoms belong to |
133 |
//cutoff group defined in meta-data file plus the number of cutoff |
134 |
//groups defined in meta-data file |
135 |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
136 |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
137 |
std::cerr << "nG = " << nGroups << "\n"; |
138 |
|
139 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
140 |
|
141 |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
142 |
|
143 |
//every free atom (atom does not belong to rigid bodies) is an |
144 |
//integrable object therefore the total number of integrable objects |
145 |
//in the system is equal to the total number of atoms minus number of |
146 |
//atoms belong to rigid body defined in meta-data file plus the number |
147 |
//of rigid bodies defined in meta-data file |
148 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
149 |
+ nGlobalRigidBodies_; |
150 |
|
151 |
nGlobalMols_ = molStampIds_.size(); |
152 |
molToProcMap_.resize(nGlobalMols_); |
153 |
} |
154 |
|
155 |
SimInfo::~SimInfo() { |
156 |
map<int, Molecule*>::iterator i; |
157 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
158 |
delete i->second; |
159 |
} |
160 |
molecules_.clear(); |
161 |
|
162 |
delete sman_; |
163 |
delete simParams_; |
164 |
delete forceField_; |
165 |
} |
166 |
|
167 |
|
168 |
bool SimInfo::addMolecule(Molecule* mol) { |
169 |
MoleculeIterator i; |
170 |
|
171 |
i = molecules_.find(mol->getGlobalIndex()); |
172 |
if (i == molecules_.end() ) { |
173 |
|
174 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
175 |
|
176 |
nAtoms_ += mol->getNAtoms(); |
177 |
nBonds_ += mol->getNBonds(); |
178 |
nBends_ += mol->getNBends(); |
179 |
nTorsions_ += mol->getNTorsions(); |
180 |
nInversions_ += mol->getNInversions(); |
181 |
nRigidBodies_ += mol->getNRigidBodies(); |
182 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
183 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
184 |
nConstraints_ += mol->getNConstraintPairs(); |
185 |
|
186 |
addInteractionPairs(mol); |
187 |
|
188 |
return true; |
189 |
} else { |
190 |
return false; |
191 |
} |
192 |
} |
193 |
|
194 |
bool SimInfo::removeMolecule(Molecule* mol) { |
195 |
MoleculeIterator i; |
196 |
i = molecules_.find(mol->getGlobalIndex()); |
197 |
|
198 |
if (i != molecules_.end() ) { |
199 |
|
200 |
assert(mol == i->second); |
201 |
|
202 |
nAtoms_ -= mol->getNAtoms(); |
203 |
nBonds_ -= mol->getNBonds(); |
204 |
nBends_ -= mol->getNBends(); |
205 |
nTorsions_ -= mol->getNTorsions(); |
206 |
nInversions_ -= mol->getNInversions(); |
207 |
nRigidBodies_ -= mol->getNRigidBodies(); |
208 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
209 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
210 |
nConstraints_ -= mol->getNConstraintPairs(); |
211 |
|
212 |
removeInteractionPairs(mol); |
213 |
molecules_.erase(mol->getGlobalIndex()); |
214 |
|
215 |
delete mol; |
216 |
|
217 |
return true; |
218 |
} else { |
219 |
return false; |
220 |
} |
221 |
} |
222 |
|
223 |
|
224 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
225 |
i = molecules_.begin(); |
226 |
return i == molecules_.end() ? NULL : i->second; |
227 |
} |
228 |
|
229 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
230 |
++i; |
231 |
return i == molecules_.end() ? NULL : i->second; |
232 |
} |
233 |
|
234 |
|
235 |
void SimInfo::calcNdf() { |
236 |
int ndf_local; |
237 |
MoleculeIterator i; |
238 |
vector<StuntDouble*>::iterator j; |
239 |
Molecule* mol; |
240 |
StuntDouble* integrableObject; |
241 |
|
242 |
ndf_local = 0; |
243 |
|
244 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
245 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
246 |
integrableObject = mol->nextIntegrableObject(j)) { |
247 |
|
248 |
ndf_local += 3; |
249 |
|
250 |
if (integrableObject->isDirectional()) { |
251 |
if (integrableObject->isLinear()) { |
252 |
ndf_local += 2; |
253 |
} else { |
254 |
ndf_local += 3; |
255 |
} |
256 |
} |
257 |
|
258 |
} |
259 |
} |
260 |
|
261 |
// n_constraints is local, so subtract them on each processor |
262 |
ndf_local -= nConstraints_; |
263 |
|
264 |
#ifdef IS_MPI |
265 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
266 |
#else |
267 |
ndf_ = ndf_local; |
268 |
#endif |
269 |
|
270 |
// nZconstraints_ is global, as are the 3 COM translations for the |
271 |
// entire system: |
272 |
ndf_ = ndf_ - 3 - nZconstraint_; |
273 |
|
274 |
} |
275 |
|
276 |
int SimInfo::getFdf() { |
277 |
#ifdef IS_MPI |
278 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
279 |
#else |
280 |
fdf_ = fdf_local; |
281 |
#endif |
282 |
return fdf_; |
283 |
} |
284 |
|
285 |
void SimInfo::calcNdfRaw() { |
286 |
int ndfRaw_local; |
287 |
|
288 |
MoleculeIterator i; |
289 |
vector<StuntDouble*>::iterator j; |
290 |
Molecule* mol; |
291 |
StuntDouble* integrableObject; |
292 |
|
293 |
// Raw degrees of freedom that we have to set |
294 |
ndfRaw_local = 0; |
295 |
|
296 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
297 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
298 |
integrableObject = mol->nextIntegrableObject(j)) { |
299 |
|
300 |
ndfRaw_local += 3; |
301 |
|
302 |
if (integrableObject->isDirectional()) { |
303 |
if (integrableObject->isLinear()) { |
304 |
ndfRaw_local += 2; |
305 |
} else { |
306 |
ndfRaw_local += 3; |
307 |
} |
308 |
} |
309 |
|
310 |
} |
311 |
} |
312 |
|
313 |
#ifdef IS_MPI |
314 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
315 |
#else |
316 |
ndfRaw_ = ndfRaw_local; |
317 |
#endif |
318 |
} |
319 |
|
320 |
void SimInfo::calcNdfTrans() { |
321 |
int ndfTrans_local; |
322 |
|
323 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
324 |
|
325 |
|
326 |
#ifdef IS_MPI |
327 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
328 |
#else |
329 |
ndfTrans_ = ndfTrans_local; |
330 |
#endif |
331 |
|
332 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
333 |
|
334 |
} |
335 |
|
336 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
337 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
338 |
vector<Bond*>::iterator bondIter; |
339 |
vector<Bend*>::iterator bendIter; |
340 |
vector<Torsion*>::iterator torsionIter; |
341 |
vector<Inversion*>::iterator inversionIter; |
342 |
Bond* bond; |
343 |
Bend* bend; |
344 |
Torsion* torsion; |
345 |
Inversion* inversion; |
346 |
int a; |
347 |
int b; |
348 |
int c; |
349 |
int d; |
350 |
|
351 |
// atomGroups can be used to add special interaction maps between |
352 |
// groups of atoms that are in two separate rigid bodies. |
353 |
// However, most site-site interactions between two rigid bodies |
354 |
// are probably not special, just the ones between the physically |
355 |
// bonded atoms. Interactions *within* a single rigid body should |
356 |
// always be excluded. These are done at the bottom of this |
357 |
// function. |
358 |
|
359 |
map<int, set<int> > atomGroups; |
360 |
Molecule::RigidBodyIterator rbIter; |
361 |
RigidBody* rb; |
362 |
Molecule::IntegrableObjectIterator ii; |
363 |
StuntDouble* integrableObject; |
364 |
|
365 |
for (integrableObject = mol->beginIntegrableObject(ii); |
366 |
integrableObject != NULL; |
367 |
integrableObject = mol->nextIntegrableObject(ii)) { |
368 |
|
369 |
if (integrableObject->isRigidBody()) { |
370 |
rb = static_cast<RigidBody*>(integrableObject); |
371 |
vector<Atom*> atoms = rb->getAtoms(); |
372 |
set<int> rigidAtoms; |
373 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
374 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
375 |
} |
376 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
377 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
378 |
} |
379 |
} else { |
380 |
set<int> oneAtomSet; |
381 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
382 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
383 |
} |
384 |
} |
385 |
|
386 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
387 |
bond = mol->nextBond(bondIter)) { |
388 |
|
389 |
a = bond->getAtomA()->getGlobalIndex(); |
390 |
b = bond->getAtomB()->getGlobalIndex(); |
391 |
|
392 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
393 |
oneTwoInteractions_.addPair(a, b); |
394 |
} else { |
395 |
excludedInteractions_.addPair(a, b); |
396 |
} |
397 |
} |
398 |
|
399 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
400 |
bend = mol->nextBend(bendIter)) { |
401 |
|
402 |
a = bend->getAtomA()->getGlobalIndex(); |
403 |
b = bend->getAtomB()->getGlobalIndex(); |
404 |
c = bend->getAtomC()->getGlobalIndex(); |
405 |
|
406 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
407 |
oneTwoInteractions_.addPair(a, b); |
408 |
oneTwoInteractions_.addPair(b, c); |
409 |
} else { |
410 |
excludedInteractions_.addPair(a, b); |
411 |
excludedInteractions_.addPair(b, c); |
412 |
} |
413 |
|
414 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
415 |
oneThreeInteractions_.addPair(a, c); |
416 |
} else { |
417 |
excludedInteractions_.addPair(a, c); |
418 |
} |
419 |
} |
420 |
|
421 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
422 |
torsion = mol->nextTorsion(torsionIter)) { |
423 |
|
424 |
a = torsion->getAtomA()->getGlobalIndex(); |
425 |
b = torsion->getAtomB()->getGlobalIndex(); |
426 |
c = torsion->getAtomC()->getGlobalIndex(); |
427 |
d = torsion->getAtomD()->getGlobalIndex(); |
428 |
|
429 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
430 |
oneTwoInteractions_.addPair(a, b); |
431 |
oneTwoInteractions_.addPair(b, c); |
432 |
oneTwoInteractions_.addPair(c, d); |
433 |
} else { |
434 |
excludedInteractions_.addPair(a, b); |
435 |
excludedInteractions_.addPair(b, c); |
436 |
excludedInteractions_.addPair(c, d); |
437 |
} |
438 |
|
439 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
440 |
oneThreeInteractions_.addPair(a, c); |
441 |
oneThreeInteractions_.addPair(b, d); |
442 |
} else { |
443 |
excludedInteractions_.addPair(a, c); |
444 |
excludedInteractions_.addPair(b, d); |
445 |
} |
446 |
|
447 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
448 |
oneFourInteractions_.addPair(a, d); |
449 |
} else { |
450 |
excludedInteractions_.addPair(a, d); |
451 |
} |
452 |
} |
453 |
|
454 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
455 |
inversion = mol->nextInversion(inversionIter)) { |
456 |
|
457 |
a = inversion->getAtomA()->getGlobalIndex(); |
458 |
b = inversion->getAtomB()->getGlobalIndex(); |
459 |
c = inversion->getAtomC()->getGlobalIndex(); |
460 |
d = inversion->getAtomD()->getGlobalIndex(); |
461 |
|
462 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
463 |
oneTwoInteractions_.addPair(a, b); |
464 |
oneTwoInteractions_.addPair(a, c); |
465 |
oneTwoInteractions_.addPair(a, d); |
466 |
} else { |
467 |
excludedInteractions_.addPair(a, b); |
468 |
excludedInteractions_.addPair(a, c); |
469 |
excludedInteractions_.addPair(a, d); |
470 |
} |
471 |
|
472 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
473 |
oneThreeInteractions_.addPair(b, c); |
474 |
oneThreeInteractions_.addPair(b, d); |
475 |
oneThreeInteractions_.addPair(c, d); |
476 |
} else { |
477 |
excludedInteractions_.addPair(b, c); |
478 |
excludedInteractions_.addPair(b, d); |
479 |
excludedInteractions_.addPair(c, d); |
480 |
} |
481 |
} |
482 |
|
483 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
484 |
rb = mol->nextRigidBody(rbIter)) { |
485 |
vector<Atom*> atoms = rb->getAtoms(); |
486 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
487 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
488 |
a = atoms[i]->getGlobalIndex(); |
489 |
b = atoms[j]->getGlobalIndex(); |
490 |
excludedInteractions_.addPair(a, b); |
491 |
} |
492 |
} |
493 |
} |
494 |
|
495 |
} |
496 |
|
497 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
498 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
499 |
vector<Bond*>::iterator bondIter; |
500 |
vector<Bend*>::iterator bendIter; |
501 |
vector<Torsion*>::iterator torsionIter; |
502 |
vector<Inversion*>::iterator inversionIter; |
503 |
Bond* bond; |
504 |
Bend* bend; |
505 |
Torsion* torsion; |
506 |
Inversion* inversion; |
507 |
int a; |
508 |
int b; |
509 |
int c; |
510 |
int d; |
511 |
|
512 |
map<int, set<int> > atomGroups; |
513 |
Molecule::RigidBodyIterator rbIter; |
514 |
RigidBody* rb; |
515 |
Molecule::IntegrableObjectIterator ii; |
516 |
StuntDouble* integrableObject; |
517 |
|
518 |
for (integrableObject = mol->beginIntegrableObject(ii); |
519 |
integrableObject != NULL; |
520 |
integrableObject = mol->nextIntegrableObject(ii)) { |
521 |
|
522 |
if (integrableObject->isRigidBody()) { |
523 |
rb = static_cast<RigidBody*>(integrableObject); |
524 |
vector<Atom*> atoms = rb->getAtoms(); |
525 |
set<int> rigidAtoms; |
526 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
527 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
528 |
} |
529 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
530 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
531 |
} |
532 |
} else { |
533 |
set<int> oneAtomSet; |
534 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
535 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
536 |
} |
537 |
} |
538 |
|
539 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
540 |
bond = mol->nextBond(bondIter)) { |
541 |
|
542 |
a = bond->getAtomA()->getGlobalIndex(); |
543 |
b = bond->getAtomB()->getGlobalIndex(); |
544 |
|
545 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
546 |
oneTwoInteractions_.removePair(a, b); |
547 |
} else { |
548 |
excludedInteractions_.removePair(a, b); |
549 |
} |
550 |
} |
551 |
|
552 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
553 |
bend = mol->nextBend(bendIter)) { |
554 |
|
555 |
a = bend->getAtomA()->getGlobalIndex(); |
556 |
b = bend->getAtomB()->getGlobalIndex(); |
557 |
c = bend->getAtomC()->getGlobalIndex(); |
558 |
|
559 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
560 |
oneTwoInteractions_.removePair(a, b); |
561 |
oneTwoInteractions_.removePair(b, c); |
562 |
} else { |
563 |
excludedInteractions_.removePair(a, b); |
564 |
excludedInteractions_.removePair(b, c); |
565 |
} |
566 |
|
567 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
568 |
oneThreeInteractions_.removePair(a, c); |
569 |
} else { |
570 |
excludedInteractions_.removePair(a, c); |
571 |
} |
572 |
} |
573 |
|
574 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
575 |
torsion = mol->nextTorsion(torsionIter)) { |
576 |
|
577 |
a = torsion->getAtomA()->getGlobalIndex(); |
578 |
b = torsion->getAtomB()->getGlobalIndex(); |
579 |
c = torsion->getAtomC()->getGlobalIndex(); |
580 |
d = torsion->getAtomD()->getGlobalIndex(); |
581 |
|
582 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
583 |
oneTwoInteractions_.removePair(a, b); |
584 |
oneTwoInteractions_.removePair(b, c); |
585 |
oneTwoInteractions_.removePair(c, d); |
586 |
} else { |
587 |
excludedInteractions_.removePair(a, b); |
588 |
excludedInteractions_.removePair(b, c); |
589 |
excludedInteractions_.removePair(c, d); |
590 |
} |
591 |
|
592 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
593 |
oneThreeInteractions_.removePair(a, c); |
594 |
oneThreeInteractions_.removePair(b, d); |
595 |
} else { |
596 |
excludedInteractions_.removePair(a, c); |
597 |
excludedInteractions_.removePair(b, d); |
598 |
} |
599 |
|
600 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
601 |
oneFourInteractions_.removePair(a, d); |
602 |
} else { |
603 |
excludedInteractions_.removePair(a, d); |
604 |
} |
605 |
} |
606 |
|
607 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
608 |
inversion = mol->nextInversion(inversionIter)) { |
609 |
|
610 |
a = inversion->getAtomA()->getGlobalIndex(); |
611 |
b = inversion->getAtomB()->getGlobalIndex(); |
612 |
c = inversion->getAtomC()->getGlobalIndex(); |
613 |
d = inversion->getAtomD()->getGlobalIndex(); |
614 |
|
615 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
616 |
oneTwoInteractions_.removePair(a, b); |
617 |
oneTwoInteractions_.removePair(a, c); |
618 |
oneTwoInteractions_.removePair(a, d); |
619 |
} else { |
620 |
excludedInteractions_.removePair(a, b); |
621 |
excludedInteractions_.removePair(a, c); |
622 |
excludedInteractions_.removePair(a, d); |
623 |
} |
624 |
|
625 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
626 |
oneThreeInteractions_.removePair(b, c); |
627 |
oneThreeInteractions_.removePair(b, d); |
628 |
oneThreeInteractions_.removePair(c, d); |
629 |
} else { |
630 |
excludedInteractions_.removePair(b, c); |
631 |
excludedInteractions_.removePair(b, d); |
632 |
excludedInteractions_.removePair(c, d); |
633 |
} |
634 |
} |
635 |
|
636 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
637 |
rb = mol->nextRigidBody(rbIter)) { |
638 |
vector<Atom*> atoms = rb->getAtoms(); |
639 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
640 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
641 |
a = atoms[i]->getGlobalIndex(); |
642 |
b = atoms[j]->getGlobalIndex(); |
643 |
excludedInteractions_.removePair(a, b); |
644 |
} |
645 |
} |
646 |
} |
647 |
|
648 |
} |
649 |
|
650 |
|
651 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
652 |
int curStampId; |
653 |
|
654 |
//index from 0 |
655 |
curStampId = moleculeStamps_.size(); |
656 |
|
657 |
moleculeStamps_.push_back(molStamp); |
658 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
659 |
} |
660 |
|
661 |
|
662 |
/** |
663 |
* update |
664 |
* |
665 |
* Performs the global checks and variable settings after the |
666 |
* objects have been created. |
667 |
* |
668 |
*/ |
669 |
void SimInfo::update() { |
670 |
setupSimVariables(); |
671 |
calcNdf(); |
672 |
calcNdfRaw(); |
673 |
calcNdfTrans(); |
674 |
} |
675 |
|
676 |
/** |
677 |
* getSimulatedAtomTypes |
678 |
* |
679 |
* Returns an STL set of AtomType* that are actually present in this |
680 |
* simulation. Must query all processors to assemble this information. |
681 |
* |
682 |
*/ |
683 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
684 |
SimInfo::MoleculeIterator mi; |
685 |
Molecule* mol; |
686 |
Molecule::AtomIterator ai; |
687 |
Atom* atom; |
688 |
set<AtomType*> atomTypes; |
689 |
|
690 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
691 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
692 |
atomTypes.insert(atom->getAtomType()); |
693 |
} |
694 |
} |
695 |
|
696 |
#ifdef IS_MPI |
697 |
|
698 |
// loop over the found atom types on this processor, and add their |
699 |
// numerical idents to a vector: |
700 |
|
701 |
vector<int> foundTypes; |
702 |
set<AtomType*>::iterator i; |
703 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
704 |
foundTypes.push_back( (*i)->getIdent() ); |
705 |
|
706 |
// count_local holds the number of found types on this processor |
707 |
int count_local = foundTypes.size(); |
708 |
|
709 |
// count holds the total number of found types on all processors |
710 |
// (some will be redundant with the ones found locally): |
711 |
int count; |
712 |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
713 |
|
714 |
// create a vector to hold the globally found types, and resize it: |
715 |
vector<int> ftGlobal; |
716 |
ftGlobal.resize(count); |
717 |
vector<int> counts; |
718 |
|
719 |
int nproc = MPI::COMM_WORLD.Get_size(); |
720 |
counts.resize(nproc); |
721 |
vector<int> disps; |
722 |
disps.resize(nproc); |
723 |
|
724 |
// now spray out the foundTypes to all the other processors: |
725 |
|
726 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
727 |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
728 |
|
729 |
// foundIdents is a stl set, so inserting an already found ident |
730 |
// will have no effect. |
731 |
set<int> foundIdents; |
732 |
vector<int>::iterator j; |
733 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
734 |
foundIdents.insert((*j)); |
735 |
|
736 |
// now iterate over the foundIdents and get the actual atom types |
737 |
// that correspond to these: |
738 |
set<int>::iterator it; |
739 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
740 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
741 |
|
742 |
#endif |
743 |
|
744 |
return atomTypes; |
745 |
} |
746 |
|
747 |
void SimInfo::setupSimVariables() { |
748 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
749 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
750 |
calcBoxDipole_ = false; |
751 |
if ( simParams_->haveAccumulateBoxDipole() ) |
752 |
if ( simParams_->getAccumulateBoxDipole() ) { |
753 |
calcBoxDipole_ = true; |
754 |
} |
755 |
|
756 |
set<AtomType*>::iterator i; |
757 |
set<AtomType*> atomTypes; |
758 |
atomTypes = getSimulatedAtomTypes(); |
759 |
int usesElectrostatic = 0; |
760 |
int usesMetallic = 0; |
761 |
int usesDirectional = 0; |
762 |
//loop over all of the atom types |
763 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
764 |
usesElectrostatic |= (*i)->isElectrostatic(); |
765 |
usesMetallic |= (*i)->isMetal(); |
766 |
usesDirectional |= (*i)->isDirectional(); |
767 |
} |
768 |
|
769 |
#ifdef IS_MPI |
770 |
int temp; |
771 |
temp = usesDirectional; |
772 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
|
774 |
temp = usesMetallic; |
775 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
776 |
|
777 |
temp = usesElectrostatic; |
778 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
779 |
#endif |
780 |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
781 |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
782 |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
783 |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
784 |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
785 |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
786 |
} |
787 |
|
788 |
void SimInfo::setupFortran() { |
789 |
int isError; |
790 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
791 |
vector<int> fortranGlobalGroupMembership; |
792 |
|
793 |
isError = 0; |
794 |
|
795 |
//globalGroupMembership_ is filled by SimCreator |
796 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
797 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
798 |
} |
799 |
|
800 |
//calculate mass ratio of cutoff group |
801 |
vector<RealType> mfact; |
802 |
SimInfo::MoleculeIterator mi; |
803 |
Molecule* mol; |
804 |
Molecule::CutoffGroupIterator ci; |
805 |
CutoffGroup* cg; |
806 |
Molecule::AtomIterator ai; |
807 |
Atom* atom; |
808 |
RealType totalMass; |
809 |
|
810 |
//to avoid memory reallocation, reserve enough space for mfact |
811 |
mfact.reserve(getNCutoffGroups()); |
812 |
|
813 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
814 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
815 |
|
816 |
totalMass = cg->getMass(); |
817 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
818 |
// Check for massless groups - set mfact to 1 if true |
819 |
if (totalMass != 0) |
820 |
mfact.push_back(atom->getMass()/totalMass); |
821 |
else |
822 |
mfact.push_back( 1.0 ); |
823 |
} |
824 |
} |
825 |
} |
826 |
|
827 |
// Build the identArray_ |
828 |
|
829 |
identArray_.clear(); |
830 |
identArray_.reserve(getNAtoms()); |
831 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
832 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
833 |
identArray_.push_back(atom->getIdent()); |
834 |
} |
835 |
} |
836 |
|
837 |
//fill molMembershipArray |
838 |
//molMembershipArray is filled by SimCreator |
839 |
vector<int> molMembershipArray(nGlobalAtoms_); |
840 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
841 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
842 |
} |
843 |
|
844 |
//setup fortran simulation |
845 |
|
846 |
nExclude = excludedInteractions_.getSize(); |
847 |
nOneTwo = oneTwoInteractions_.getSize(); |
848 |
nOneThree = oneThreeInteractions_.getSize(); |
849 |
nOneFour = oneFourInteractions_.getSize(); |
850 |
|
851 |
int* excludeList = excludedInteractions_.getPairList(); |
852 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
853 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
854 |
int* oneFourList = oneFourInteractions_.getPairList(); |
855 |
|
856 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
857 |
&nExclude, excludeList, |
858 |
&nOneTwo, oneTwoList, |
859 |
&nOneThree, oneThreeList, |
860 |
&nOneFour, oneFourList, |
861 |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
862 |
&fortranGlobalGroupMembership[0], &isError); |
863 |
|
864 |
if( isError ){ |
865 |
|
866 |
sprintf( painCave.errMsg, |
867 |
"There was an error setting the simulation information in fortran.\n" ); |
868 |
painCave.isFatal = 1; |
869 |
painCave.severity = OPENMD_ERROR; |
870 |
simError(); |
871 |
} |
872 |
|
873 |
|
874 |
sprintf( checkPointMsg, |
875 |
"succesfully sent the simulation information to fortran.\n"); |
876 |
|
877 |
errorCheckPoint(); |
878 |
|
879 |
// Setup number of neighbors in neighbor list if present |
880 |
if (simParams_->haveNeighborListNeighbors()) { |
881 |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
882 |
setNeighbors(&nlistNeighbors); |
883 |
} |
884 |
|
885 |
#ifdef IS_MPI |
886 |
//SimInfo is responsible for creating localToGlobalAtomIndex and |
887 |
//localToGlobalGroupIndex |
888 |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
889 |
vector<int> localToGlobalCutoffGroupIndex; |
890 |
mpiSimData parallelData; |
891 |
|
892 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
893 |
|
894 |
//local index(index in DataStorge) of atom is important |
895 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
896 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
897 |
} |
898 |
|
899 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
900 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
901 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
902 |
} |
903 |
|
904 |
} |
905 |
|
906 |
//fill up mpiSimData struct |
907 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
908 |
parallelData.nMolLocal = getNMolecules(); |
909 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
910 |
parallelData.nAtomsLocal = getNAtoms(); |
911 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
912 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
913 |
parallelData.myNode = worldRank; |
914 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
915 |
|
916 |
//pass mpiSimData struct and index arrays to fortran |
917 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
918 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
919 |
&localToGlobalCutoffGroupIndex[0], &isError); |
920 |
|
921 |
if (isError) { |
922 |
sprintf(painCave.errMsg, |
923 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
924 |
painCave.isFatal = 1; |
925 |
simError(); |
926 |
} |
927 |
|
928 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
929 |
errorCheckPoint(); |
930 |
#endif |
931 |
|
932 |
initFortranFF(&isError); |
933 |
if (isError) { |
934 |
sprintf(painCave.errMsg, |
935 |
"initFortranFF errror: fortran didn't like something we gave it.\n"); |
936 |
painCave.isFatal = 1; |
937 |
simError(); |
938 |
} |
939 |
fortranInitialized_ = true; |
940 |
} |
941 |
|
942 |
void SimInfo::addProperty(GenericData* genData) { |
943 |
properties_.addProperty(genData); |
944 |
} |
945 |
|
946 |
void SimInfo::removeProperty(const string& propName) { |
947 |
properties_.removeProperty(propName); |
948 |
} |
949 |
|
950 |
void SimInfo::clearProperties() { |
951 |
properties_.clearProperties(); |
952 |
} |
953 |
|
954 |
vector<string> SimInfo::getPropertyNames() { |
955 |
return properties_.getPropertyNames(); |
956 |
} |
957 |
|
958 |
vector<GenericData*> SimInfo::getProperties() { |
959 |
return properties_.getProperties(); |
960 |
} |
961 |
|
962 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
963 |
return properties_.getPropertyByName(propName); |
964 |
} |
965 |
|
966 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
967 |
if (sman_ == sman) { |
968 |
return; |
969 |
} |
970 |
delete sman_; |
971 |
sman_ = sman; |
972 |
|
973 |
Molecule* mol; |
974 |
RigidBody* rb; |
975 |
Atom* atom; |
976 |
CutoffGroup* cg; |
977 |
SimInfo::MoleculeIterator mi; |
978 |
Molecule::RigidBodyIterator rbIter; |
979 |
Molecule::AtomIterator atomIter; |
980 |
Molecule::CutoffGroupIterator cgIter; |
981 |
|
982 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
983 |
|
984 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
985 |
atom->setSnapshotManager(sman_); |
986 |
} |
987 |
|
988 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
989 |
rb->setSnapshotManager(sman_); |
990 |
} |
991 |
|
992 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
993 |
cg->setSnapshotManager(sman_); |
994 |
} |
995 |
} |
996 |
|
997 |
} |
998 |
|
999 |
Vector3d SimInfo::getComVel(){ |
1000 |
SimInfo::MoleculeIterator i; |
1001 |
Molecule* mol; |
1002 |
|
1003 |
Vector3d comVel(0.0); |
1004 |
RealType totalMass = 0.0; |
1005 |
|
1006 |
|
1007 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1008 |
RealType mass = mol->getMass(); |
1009 |
totalMass += mass; |
1010 |
comVel += mass * mol->getComVel(); |
1011 |
} |
1012 |
|
1013 |
#ifdef IS_MPI |
1014 |
RealType tmpMass = totalMass; |
1015 |
Vector3d tmpComVel(comVel); |
1016 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1017 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1018 |
#endif |
1019 |
|
1020 |
comVel /= totalMass; |
1021 |
|
1022 |
return comVel; |
1023 |
} |
1024 |
|
1025 |
Vector3d SimInfo::getCom(){ |
1026 |
SimInfo::MoleculeIterator i; |
1027 |
Molecule* mol; |
1028 |
|
1029 |
Vector3d com(0.0); |
1030 |
RealType totalMass = 0.0; |
1031 |
|
1032 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1033 |
RealType mass = mol->getMass(); |
1034 |
totalMass += mass; |
1035 |
com += mass * mol->getCom(); |
1036 |
} |
1037 |
|
1038 |
#ifdef IS_MPI |
1039 |
RealType tmpMass = totalMass; |
1040 |
Vector3d tmpCom(com); |
1041 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1042 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1043 |
#endif |
1044 |
|
1045 |
com /= totalMass; |
1046 |
|
1047 |
return com; |
1048 |
|
1049 |
} |
1050 |
|
1051 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1052 |
|
1053 |
return o; |
1054 |
} |
1055 |
|
1056 |
|
1057 |
/* |
1058 |
Returns center of mass and center of mass velocity in one function call. |
1059 |
*/ |
1060 |
|
1061 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1062 |
SimInfo::MoleculeIterator i; |
1063 |
Molecule* mol; |
1064 |
|
1065 |
|
1066 |
RealType totalMass = 0.0; |
1067 |
|
1068 |
|
1069 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1070 |
RealType mass = mol->getMass(); |
1071 |
totalMass += mass; |
1072 |
com += mass * mol->getCom(); |
1073 |
comVel += mass * mol->getComVel(); |
1074 |
} |
1075 |
|
1076 |
#ifdef IS_MPI |
1077 |
RealType tmpMass = totalMass; |
1078 |
Vector3d tmpCom(com); |
1079 |
Vector3d tmpComVel(comVel); |
1080 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1081 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1082 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1083 |
#endif |
1084 |
|
1085 |
com /= totalMass; |
1086 |
comVel /= totalMass; |
1087 |
} |
1088 |
|
1089 |
/* |
1090 |
Return intertia tensor for entire system and angular momentum Vector. |
1091 |
|
1092 |
|
1093 |
[ Ixx -Ixy -Ixz ] |
1094 |
J =| -Iyx Iyy -Iyz | |
1095 |
[ -Izx -Iyz Izz ] |
1096 |
*/ |
1097 |
|
1098 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1099 |
|
1100 |
|
1101 |
RealType xx = 0.0; |
1102 |
RealType yy = 0.0; |
1103 |
RealType zz = 0.0; |
1104 |
RealType xy = 0.0; |
1105 |
RealType xz = 0.0; |
1106 |
RealType yz = 0.0; |
1107 |
Vector3d com(0.0); |
1108 |
Vector3d comVel(0.0); |
1109 |
|
1110 |
getComAll(com, comVel); |
1111 |
|
1112 |
SimInfo::MoleculeIterator i; |
1113 |
Molecule* mol; |
1114 |
|
1115 |
Vector3d thisq(0.0); |
1116 |
Vector3d thisv(0.0); |
1117 |
|
1118 |
RealType thisMass = 0.0; |
1119 |
|
1120 |
|
1121 |
|
1122 |
|
1123 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1124 |
|
1125 |
thisq = mol->getCom()-com; |
1126 |
thisv = mol->getComVel()-comVel; |
1127 |
thisMass = mol->getMass(); |
1128 |
// Compute moment of intertia coefficients. |
1129 |
xx += thisq[0]*thisq[0]*thisMass; |
1130 |
yy += thisq[1]*thisq[1]*thisMass; |
1131 |
zz += thisq[2]*thisq[2]*thisMass; |
1132 |
|
1133 |
// compute products of intertia |
1134 |
xy += thisq[0]*thisq[1]*thisMass; |
1135 |
xz += thisq[0]*thisq[2]*thisMass; |
1136 |
yz += thisq[1]*thisq[2]*thisMass; |
1137 |
|
1138 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1139 |
|
1140 |
} |
1141 |
|
1142 |
|
1143 |
inertiaTensor(0,0) = yy + zz; |
1144 |
inertiaTensor(0,1) = -xy; |
1145 |
inertiaTensor(0,2) = -xz; |
1146 |
inertiaTensor(1,0) = -xy; |
1147 |
inertiaTensor(1,1) = xx + zz; |
1148 |
inertiaTensor(1,2) = -yz; |
1149 |
inertiaTensor(2,0) = -xz; |
1150 |
inertiaTensor(2,1) = -yz; |
1151 |
inertiaTensor(2,2) = xx + yy; |
1152 |
|
1153 |
#ifdef IS_MPI |
1154 |
Mat3x3d tmpI(inertiaTensor); |
1155 |
Vector3d tmpAngMom; |
1156 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1157 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1158 |
#endif |
1159 |
|
1160 |
return; |
1161 |
} |
1162 |
|
1163 |
//Returns the angular momentum of the system |
1164 |
Vector3d SimInfo::getAngularMomentum(){ |
1165 |
|
1166 |
Vector3d com(0.0); |
1167 |
Vector3d comVel(0.0); |
1168 |
Vector3d angularMomentum(0.0); |
1169 |
|
1170 |
getComAll(com,comVel); |
1171 |
|
1172 |
SimInfo::MoleculeIterator i; |
1173 |
Molecule* mol; |
1174 |
|
1175 |
Vector3d thisr(0.0); |
1176 |
Vector3d thisp(0.0); |
1177 |
|
1178 |
RealType thisMass; |
1179 |
|
1180 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1181 |
thisMass = mol->getMass(); |
1182 |
thisr = mol->getCom()-com; |
1183 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1184 |
|
1185 |
angularMomentum += cross( thisr, thisp ); |
1186 |
|
1187 |
} |
1188 |
|
1189 |
#ifdef IS_MPI |
1190 |
Vector3d tmpAngMom; |
1191 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1192 |
#endif |
1193 |
|
1194 |
return angularMomentum; |
1195 |
} |
1196 |
|
1197 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1198 |
return IOIndexToIntegrableObject.at(index); |
1199 |
} |
1200 |
|
1201 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1202 |
IOIndexToIntegrableObject= v; |
1203 |
} |
1204 |
|
1205 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1206 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1207 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1208 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1209 |
*/ |
1210 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1211 |
Mat3x3d intTensor; |
1212 |
RealType det; |
1213 |
Vector3d dummyAngMom; |
1214 |
RealType sysconstants; |
1215 |
RealType geomCnst; |
1216 |
|
1217 |
geomCnst = 3.0/2.0; |
1218 |
/* Get the inertial tensor and angular momentum for free*/ |
1219 |
getInertiaTensor(intTensor,dummyAngMom); |
1220 |
|
1221 |
det = intTensor.determinant(); |
1222 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1223 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1224 |
return; |
1225 |
} |
1226 |
|
1227 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1228 |
Mat3x3d intTensor; |
1229 |
Vector3d dummyAngMom; |
1230 |
RealType sysconstants; |
1231 |
RealType geomCnst; |
1232 |
|
1233 |
geomCnst = 3.0/2.0; |
1234 |
/* Get the inertial tensor and angular momentum for free*/ |
1235 |
getInertiaTensor(intTensor,dummyAngMom); |
1236 |
|
1237 |
detI = intTensor.determinant(); |
1238 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1239 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1240 |
return; |
1241 |
} |
1242 |
/* |
1243 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1244 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1245 |
sdByGlobalIndex_ = v; |
1246 |
} |
1247 |
|
1248 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1249 |
//assert(index < nAtoms_ + nRigidBodies_); |
1250 |
return sdByGlobalIndex_.at(index); |
1251 |
} |
1252 |
*/ |
1253 |
int SimInfo::getNGlobalConstraints() { |
1254 |
int nGlobalConstraints; |
1255 |
#ifdef IS_MPI |
1256 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1257 |
MPI_COMM_WORLD); |
1258 |
#else |
1259 |
nGlobalConstraints = nConstraints_; |
1260 |
#endif |
1261 |
return nGlobalConstraints; |
1262 |
} |
1263 |
|
1264 |
}//end namespace OpenMD |
1265 |
|