1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "UseTheForce/doForces_interface.h" |
58 |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
59 |
#include "utils/MemoryUtils.hpp" |
60 |
#include "utils/simError.h" |
61 |
#include "selection/SelectionManager.hpp" |
62 |
#include "io/ForceFieldOptions.hpp" |
63 |
#include "UseTheForce/ForceField.hpp" |
64 |
#include "nonbonded/SwitchingFunction.hpp" |
65 |
|
66 |
|
67 |
#ifdef IS_MPI |
68 |
#include "UseTheForce/mpiComponentPlan.h" |
69 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
70 |
#endif |
71 |
|
72 |
using namespace std; |
73 |
namespace OpenMD { |
74 |
|
75 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
76 |
forceField_(ff), simParams_(simParams), |
77 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
78 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
79 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
80 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
81 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
82 |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
83 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
84 |
|
85 |
MoleculeStamp* molStamp; |
86 |
int nMolWithSameStamp; |
87 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
88 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
89 |
CutoffGroupStamp* cgStamp; |
90 |
RigidBodyStamp* rbStamp; |
91 |
int nRigidAtoms = 0; |
92 |
|
93 |
vector<Component*> components = simParams->getComponents(); |
94 |
|
95 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
96 |
molStamp = (*i)->getMoleculeStamp(); |
97 |
nMolWithSameStamp = (*i)->getNMol(); |
98 |
|
99 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
100 |
|
101 |
//calculate atoms in molecules |
102 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
103 |
|
104 |
//calculate atoms in cutoff groups |
105 |
int nAtomsInGroups = 0; |
106 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
107 |
|
108 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
109 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
110 |
nAtomsInGroups += cgStamp->getNMembers(); |
111 |
} |
112 |
|
113 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
114 |
|
115 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
116 |
|
117 |
//calculate atoms in rigid bodies |
118 |
int nAtomsInRigidBodies = 0; |
119 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
120 |
|
121 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
122 |
rbStamp = molStamp->getRigidBodyStamp(j); |
123 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
124 |
} |
125 |
|
126 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
127 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
128 |
|
129 |
} |
130 |
|
131 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
132 |
//group therefore the total number of cutoff groups in the system is |
133 |
//equal to the total number of atoms minus number of atoms belong to |
134 |
//cutoff group defined in meta-data file plus the number of cutoff |
135 |
//groups defined in meta-data file |
136 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
137 |
|
138 |
//every free atom (atom does not belong to rigid bodies) is an |
139 |
//integrable object therefore the total number of integrable objects |
140 |
//in the system is equal to the total number of atoms minus number of |
141 |
//atoms belong to rigid body defined in meta-data file plus the number |
142 |
//of rigid bodies defined in meta-data file |
143 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
144 |
+ nGlobalRigidBodies_; |
145 |
|
146 |
nGlobalMols_ = molStampIds_.size(); |
147 |
molToProcMap_.resize(nGlobalMols_); |
148 |
} |
149 |
|
150 |
SimInfo::~SimInfo() { |
151 |
map<int, Molecule*>::iterator i; |
152 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
153 |
delete i->second; |
154 |
} |
155 |
molecules_.clear(); |
156 |
|
157 |
delete sman_; |
158 |
delete simParams_; |
159 |
delete forceField_; |
160 |
} |
161 |
|
162 |
|
163 |
bool SimInfo::addMolecule(Molecule* mol) { |
164 |
MoleculeIterator i; |
165 |
|
166 |
i = molecules_.find(mol->getGlobalIndex()); |
167 |
if (i == molecules_.end() ) { |
168 |
|
169 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
170 |
|
171 |
nAtoms_ += mol->getNAtoms(); |
172 |
nBonds_ += mol->getNBonds(); |
173 |
nBends_ += mol->getNBends(); |
174 |
nTorsions_ += mol->getNTorsions(); |
175 |
nInversions_ += mol->getNInversions(); |
176 |
nRigidBodies_ += mol->getNRigidBodies(); |
177 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
178 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
179 |
nConstraints_ += mol->getNConstraintPairs(); |
180 |
|
181 |
addInteractionPairs(mol); |
182 |
|
183 |
return true; |
184 |
} else { |
185 |
return false; |
186 |
} |
187 |
} |
188 |
|
189 |
bool SimInfo::removeMolecule(Molecule* mol) { |
190 |
MoleculeIterator i; |
191 |
i = molecules_.find(mol->getGlobalIndex()); |
192 |
|
193 |
if (i != molecules_.end() ) { |
194 |
|
195 |
assert(mol == i->second); |
196 |
|
197 |
nAtoms_ -= mol->getNAtoms(); |
198 |
nBonds_ -= mol->getNBonds(); |
199 |
nBends_ -= mol->getNBends(); |
200 |
nTorsions_ -= mol->getNTorsions(); |
201 |
nInversions_ -= mol->getNInversions(); |
202 |
nRigidBodies_ -= mol->getNRigidBodies(); |
203 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
204 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
205 |
nConstraints_ -= mol->getNConstraintPairs(); |
206 |
|
207 |
removeInteractionPairs(mol); |
208 |
molecules_.erase(mol->getGlobalIndex()); |
209 |
|
210 |
delete mol; |
211 |
|
212 |
return true; |
213 |
} else { |
214 |
return false; |
215 |
} |
216 |
} |
217 |
|
218 |
|
219 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
220 |
i = molecules_.begin(); |
221 |
return i == molecules_.end() ? NULL : i->second; |
222 |
} |
223 |
|
224 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
225 |
++i; |
226 |
return i == molecules_.end() ? NULL : i->second; |
227 |
} |
228 |
|
229 |
|
230 |
void SimInfo::calcNdf() { |
231 |
int ndf_local; |
232 |
MoleculeIterator i; |
233 |
vector<StuntDouble*>::iterator j; |
234 |
Molecule* mol; |
235 |
StuntDouble* integrableObject; |
236 |
|
237 |
ndf_local = 0; |
238 |
|
239 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
240 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
241 |
integrableObject = mol->nextIntegrableObject(j)) { |
242 |
|
243 |
ndf_local += 3; |
244 |
|
245 |
if (integrableObject->isDirectional()) { |
246 |
if (integrableObject->isLinear()) { |
247 |
ndf_local += 2; |
248 |
} else { |
249 |
ndf_local += 3; |
250 |
} |
251 |
} |
252 |
|
253 |
} |
254 |
} |
255 |
|
256 |
// n_constraints is local, so subtract them on each processor |
257 |
ndf_local -= nConstraints_; |
258 |
|
259 |
#ifdef IS_MPI |
260 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
261 |
#else |
262 |
ndf_ = ndf_local; |
263 |
#endif |
264 |
|
265 |
// nZconstraints_ is global, as are the 3 COM translations for the |
266 |
// entire system: |
267 |
ndf_ = ndf_ - 3 - nZconstraint_; |
268 |
|
269 |
} |
270 |
|
271 |
int SimInfo::getFdf() { |
272 |
#ifdef IS_MPI |
273 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
274 |
#else |
275 |
fdf_ = fdf_local; |
276 |
#endif |
277 |
return fdf_; |
278 |
} |
279 |
|
280 |
void SimInfo::calcNdfRaw() { |
281 |
int ndfRaw_local; |
282 |
|
283 |
MoleculeIterator i; |
284 |
vector<StuntDouble*>::iterator j; |
285 |
Molecule* mol; |
286 |
StuntDouble* integrableObject; |
287 |
|
288 |
// Raw degrees of freedom that we have to set |
289 |
ndfRaw_local = 0; |
290 |
|
291 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
292 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
293 |
integrableObject = mol->nextIntegrableObject(j)) { |
294 |
|
295 |
ndfRaw_local += 3; |
296 |
|
297 |
if (integrableObject->isDirectional()) { |
298 |
if (integrableObject->isLinear()) { |
299 |
ndfRaw_local += 2; |
300 |
} else { |
301 |
ndfRaw_local += 3; |
302 |
} |
303 |
} |
304 |
|
305 |
} |
306 |
} |
307 |
|
308 |
#ifdef IS_MPI |
309 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
310 |
#else |
311 |
ndfRaw_ = ndfRaw_local; |
312 |
#endif |
313 |
} |
314 |
|
315 |
void SimInfo::calcNdfTrans() { |
316 |
int ndfTrans_local; |
317 |
|
318 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
319 |
|
320 |
|
321 |
#ifdef IS_MPI |
322 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
323 |
#else |
324 |
ndfTrans_ = ndfTrans_local; |
325 |
#endif |
326 |
|
327 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
328 |
|
329 |
} |
330 |
|
331 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
332 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
333 |
vector<Bond*>::iterator bondIter; |
334 |
vector<Bend*>::iterator bendIter; |
335 |
vector<Torsion*>::iterator torsionIter; |
336 |
vector<Inversion*>::iterator inversionIter; |
337 |
Bond* bond; |
338 |
Bend* bend; |
339 |
Torsion* torsion; |
340 |
Inversion* inversion; |
341 |
int a; |
342 |
int b; |
343 |
int c; |
344 |
int d; |
345 |
|
346 |
// atomGroups can be used to add special interaction maps between |
347 |
// groups of atoms that are in two separate rigid bodies. |
348 |
// However, most site-site interactions between two rigid bodies |
349 |
// are probably not special, just the ones between the physically |
350 |
// bonded atoms. Interactions *within* a single rigid body should |
351 |
// always be excluded. These are done at the bottom of this |
352 |
// function. |
353 |
|
354 |
map<int, set<int> > atomGroups; |
355 |
Molecule::RigidBodyIterator rbIter; |
356 |
RigidBody* rb; |
357 |
Molecule::IntegrableObjectIterator ii; |
358 |
StuntDouble* integrableObject; |
359 |
|
360 |
for (integrableObject = mol->beginIntegrableObject(ii); |
361 |
integrableObject != NULL; |
362 |
integrableObject = mol->nextIntegrableObject(ii)) { |
363 |
|
364 |
if (integrableObject->isRigidBody()) { |
365 |
rb = static_cast<RigidBody*>(integrableObject); |
366 |
vector<Atom*> atoms = rb->getAtoms(); |
367 |
set<int> rigidAtoms; |
368 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
369 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
370 |
} |
371 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
372 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
373 |
} |
374 |
} else { |
375 |
set<int> oneAtomSet; |
376 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
377 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
378 |
} |
379 |
} |
380 |
|
381 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
382 |
bond = mol->nextBond(bondIter)) { |
383 |
|
384 |
a = bond->getAtomA()->getGlobalIndex(); |
385 |
b = bond->getAtomB()->getGlobalIndex(); |
386 |
|
387 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
388 |
oneTwoInteractions_.addPair(a, b); |
389 |
} else { |
390 |
excludedInteractions_.addPair(a, b); |
391 |
} |
392 |
} |
393 |
|
394 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
395 |
bend = mol->nextBend(bendIter)) { |
396 |
|
397 |
a = bend->getAtomA()->getGlobalIndex(); |
398 |
b = bend->getAtomB()->getGlobalIndex(); |
399 |
c = bend->getAtomC()->getGlobalIndex(); |
400 |
|
401 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
402 |
oneTwoInteractions_.addPair(a, b); |
403 |
oneTwoInteractions_.addPair(b, c); |
404 |
} else { |
405 |
excludedInteractions_.addPair(a, b); |
406 |
excludedInteractions_.addPair(b, c); |
407 |
} |
408 |
|
409 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
410 |
oneThreeInteractions_.addPair(a, c); |
411 |
} else { |
412 |
excludedInteractions_.addPair(a, c); |
413 |
} |
414 |
} |
415 |
|
416 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
417 |
torsion = mol->nextTorsion(torsionIter)) { |
418 |
|
419 |
a = torsion->getAtomA()->getGlobalIndex(); |
420 |
b = torsion->getAtomB()->getGlobalIndex(); |
421 |
c = torsion->getAtomC()->getGlobalIndex(); |
422 |
d = torsion->getAtomD()->getGlobalIndex(); |
423 |
|
424 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
425 |
oneTwoInteractions_.addPair(a, b); |
426 |
oneTwoInteractions_.addPair(b, c); |
427 |
oneTwoInteractions_.addPair(c, d); |
428 |
} else { |
429 |
excludedInteractions_.addPair(a, b); |
430 |
excludedInteractions_.addPair(b, c); |
431 |
excludedInteractions_.addPair(c, d); |
432 |
} |
433 |
|
434 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
435 |
oneThreeInteractions_.addPair(a, c); |
436 |
oneThreeInteractions_.addPair(b, d); |
437 |
} else { |
438 |
excludedInteractions_.addPair(a, c); |
439 |
excludedInteractions_.addPair(b, d); |
440 |
} |
441 |
|
442 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
443 |
oneFourInteractions_.addPair(a, d); |
444 |
} else { |
445 |
excludedInteractions_.addPair(a, d); |
446 |
} |
447 |
} |
448 |
|
449 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
450 |
inversion = mol->nextInversion(inversionIter)) { |
451 |
|
452 |
a = inversion->getAtomA()->getGlobalIndex(); |
453 |
b = inversion->getAtomB()->getGlobalIndex(); |
454 |
c = inversion->getAtomC()->getGlobalIndex(); |
455 |
d = inversion->getAtomD()->getGlobalIndex(); |
456 |
|
457 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
458 |
oneTwoInteractions_.addPair(a, b); |
459 |
oneTwoInteractions_.addPair(a, c); |
460 |
oneTwoInteractions_.addPair(a, d); |
461 |
} else { |
462 |
excludedInteractions_.addPair(a, b); |
463 |
excludedInteractions_.addPair(a, c); |
464 |
excludedInteractions_.addPair(a, d); |
465 |
} |
466 |
|
467 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
468 |
oneThreeInteractions_.addPair(b, c); |
469 |
oneThreeInteractions_.addPair(b, d); |
470 |
oneThreeInteractions_.addPair(c, d); |
471 |
} else { |
472 |
excludedInteractions_.addPair(b, c); |
473 |
excludedInteractions_.addPair(b, d); |
474 |
excludedInteractions_.addPair(c, d); |
475 |
} |
476 |
} |
477 |
|
478 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
479 |
rb = mol->nextRigidBody(rbIter)) { |
480 |
vector<Atom*> atoms = rb->getAtoms(); |
481 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
482 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
483 |
a = atoms[i]->getGlobalIndex(); |
484 |
b = atoms[j]->getGlobalIndex(); |
485 |
excludedInteractions_.addPair(a, b); |
486 |
} |
487 |
} |
488 |
} |
489 |
|
490 |
} |
491 |
|
492 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
493 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
494 |
vector<Bond*>::iterator bondIter; |
495 |
vector<Bend*>::iterator bendIter; |
496 |
vector<Torsion*>::iterator torsionIter; |
497 |
vector<Inversion*>::iterator inversionIter; |
498 |
Bond* bond; |
499 |
Bend* bend; |
500 |
Torsion* torsion; |
501 |
Inversion* inversion; |
502 |
int a; |
503 |
int b; |
504 |
int c; |
505 |
int d; |
506 |
|
507 |
map<int, set<int> > atomGroups; |
508 |
Molecule::RigidBodyIterator rbIter; |
509 |
RigidBody* rb; |
510 |
Molecule::IntegrableObjectIterator ii; |
511 |
StuntDouble* integrableObject; |
512 |
|
513 |
for (integrableObject = mol->beginIntegrableObject(ii); |
514 |
integrableObject != NULL; |
515 |
integrableObject = mol->nextIntegrableObject(ii)) { |
516 |
|
517 |
if (integrableObject->isRigidBody()) { |
518 |
rb = static_cast<RigidBody*>(integrableObject); |
519 |
vector<Atom*> atoms = rb->getAtoms(); |
520 |
set<int> rigidAtoms; |
521 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
522 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
523 |
} |
524 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
525 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
526 |
} |
527 |
} else { |
528 |
set<int> oneAtomSet; |
529 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
530 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
531 |
} |
532 |
} |
533 |
|
534 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
535 |
bond = mol->nextBond(bondIter)) { |
536 |
|
537 |
a = bond->getAtomA()->getGlobalIndex(); |
538 |
b = bond->getAtomB()->getGlobalIndex(); |
539 |
|
540 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
541 |
oneTwoInteractions_.removePair(a, b); |
542 |
} else { |
543 |
excludedInteractions_.removePair(a, b); |
544 |
} |
545 |
} |
546 |
|
547 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
548 |
bend = mol->nextBend(bendIter)) { |
549 |
|
550 |
a = bend->getAtomA()->getGlobalIndex(); |
551 |
b = bend->getAtomB()->getGlobalIndex(); |
552 |
c = bend->getAtomC()->getGlobalIndex(); |
553 |
|
554 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
555 |
oneTwoInteractions_.removePair(a, b); |
556 |
oneTwoInteractions_.removePair(b, c); |
557 |
} else { |
558 |
excludedInteractions_.removePair(a, b); |
559 |
excludedInteractions_.removePair(b, c); |
560 |
} |
561 |
|
562 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
563 |
oneThreeInteractions_.removePair(a, c); |
564 |
} else { |
565 |
excludedInteractions_.removePair(a, c); |
566 |
} |
567 |
} |
568 |
|
569 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
570 |
torsion = mol->nextTorsion(torsionIter)) { |
571 |
|
572 |
a = torsion->getAtomA()->getGlobalIndex(); |
573 |
b = torsion->getAtomB()->getGlobalIndex(); |
574 |
c = torsion->getAtomC()->getGlobalIndex(); |
575 |
d = torsion->getAtomD()->getGlobalIndex(); |
576 |
|
577 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
578 |
oneTwoInteractions_.removePair(a, b); |
579 |
oneTwoInteractions_.removePair(b, c); |
580 |
oneTwoInteractions_.removePair(c, d); |
581 |
} else { |
582 |
excludedInteractions_.removePair(a, b); |
583 |
excludedInteractions_.removePair(b, c); |
584 |
excludedInteractions_.removePair(c, d); |
585 |
} |
586 |
|
587 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
588 |
oneThreeInteractions_.removePair(a, c); |
589 |
oneThreeInteractions_.removePair(b, d); |
590 |
} else { |
591 |
excludedInteractions_.removePair(a, c); |
592 |
excludedInteractions_.removePair(b, d); |
593 |
} |
594 |
|
595 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
596 |
oneFourInteractions_.removePair(a, d); |
597 |
} else { |
598 |
excludedInteractions_.removePair(a, d); |
599 |
} |
600 |
} |
601 |
|
602 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
603 |
inversion = mol->nextInversion(inversionIter)) { |
604 |
|
605 |
a = inversion->getAtomA()->getGlobalIndex(); |
606 |
b = inversion->getAtomB()->getGlobalIndex(); |
607 |
c = inversion->getAtomC()->getGlobalIndex(); |
608 |
d = inversion->getAtomD()->getGlobalIndex(); |
609 |
|
610 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
611 |
oneTwoInteractions_.removePair(a, b); |
612 |
oneTwoInteractions_.removePair(a, c); |
613 |
oneTwoInteractions_.removePair(a, d); |
614 |
} else { |
615 |
excludedInteractions_.removePair(a, b); |
616 |
excludedInteractions_.removePair(a, c); |
617 |
excludedInteractions_.removePair(a, d); |
618 |
} |
619 |
|
620 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
621 |
oneThreeInteractions_.removePair(b, c); |
622 |
oneThreeInteractions_.removePair(b, d); |
623 |
oneThreeInteractions_.removePair(c, d); |
624 |
} else { |
625 |
excludedInteractions_.removePair(b, c); |
626 |
excludedInteractions_.removePair(b, d); |
627 |
excludedInteractions_.removePair(c, d); |
628 |
} |
629 |
} |
630 |
|
631 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
632 |
rb = mol->nextRigidBody(rbIter)) { |
633 |
vector<Atom*> atoms = rb->getAtoms(); |
634 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
635 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
636 |
a = atoms[i]->getGlobalIndex(); |
637 |
b = atoms[j]->getGlobalIndex(); |
638 |
excludedInteractions_.removePair(a, b); |
639 |
} |
640 |
} |
641 |
} |
642 |
|
643 |
} |
644 |
|
645 |
|
646 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
647 |
int curStampId; |
648 |
|
649 |
//index from 0 |
650 |
curStampId = moleculeStamps_.size(); |
651 |
|
652 |
moleculeStamps_.push_back(molStamp); |
653 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
654 |
} |
655 |
|
656 |
|
657 |
/** |
658 |
* update |
659 |
* |
660 |
* Performs the global checks and variable settings after the objects have been |
661 |
* created. |
662 |
* |
663 |
*/ |
664 |
void SimInfo::update() { |
665 |
|
666 |
setupSimVariables(); |
667 |
setupCutoffs(); |
668 |
setupSwitching(); |
669 |
setupElectrostatics(); |
670 |
setupNeighborlists(); |
671 |
|
672 |
#ifdef IS_MPI |
673 |
setupFortranParallel(); |
674 |
#endif |
675 |
setupFortranSim(); |
676 |
fortranInitialized_ = true; |
677 |
|
678 |
calcNdf(); |
679 |
calcNdfRaw(); |
680 |
calcNdfTrans(); |
681 |
} |
682 |
|
683 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
684 |
SimInfo::MoleculeIterator mi; |
685 |
Molecule* mol; |
686 |
Molecule::AtomIterator ai; |
687 |
Atom* atom; |
688 |
set<AtomType*> atomTypes; |
689 |
|
690 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
691 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
692 |
atomTypes.insert(atom->getAtomType()); |
693 |
} |
694 |
} |
695 |
return atomTypes; |
696 |
} |
697 |
|
698 |
/** |
699 |
* setupCutoffs |
700 |
* |
701 |
* Sets the values of cutoffRadius and cutoffMethod |
702 |
* |
703 |
* cutoffRadius : realType |
704 |
* If the cutoffRadius was explicitly set, use that value. |
705 |
* If the cutoffRadius was not explicitly set: |
706 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
707 |
* No electrostatic atoms? Poll the atom types present in the |
708 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
709 |
* Use the maximum suggested value that was found. |
710 |
* |
711 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
712 |
* If cutoffMethod was explicitly set, use that choice. |
713 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
714 |
*/ |
715 |
void SimInfo::setupCutoffs() { |
716 |
|
717 |
if (simParams_->haveCutoffRadius()) { |
718 |
cutoffRadius_ = simParams_->getCutoffRadius(); |
719 |
} else { |
720 |
if (usesElectrostaticAtoms_) { |
721 |
sprintf(painCave.errMsg, |
722 |
"SimInfo: No value was set for the cutoffRadius.\n" |
723 |
"\tOpenMD will use a default value of 12.0 angstroms" |
724 |
"\tfor the cutoffRadius.\n"); |
725 |
painCave.isFatal = 0; |
726 |
painCave.severity = OPENMD_INFO; |
727 |
simError(); |
728 |
cutoffRadius_ = 12.0; |
729 |
} else { |
730 |
RealType thisCut; |
731 |
set<AtomType*>::iterator i; |
732 |
set<AtomType*> atomTypes; |
733 |
atomTypes = getSimulatedAtomTypes(); |
734 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
735 |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
736 |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
737 |
} |
738 |
sprintf(painCave.errMsg, |
739 |
"SimInfo: No value was set for the cutoffRadius.\n" |
740 |
"\tOpenMD will use %lf angstroms.\n", |
741 |
cutoffRadius_); |
742 |
painCave.isFatal = 0; |
743 |
painCave.severity = OPENMD_INFO; |
744 |
simError(); |
745 |
} |
746 |
} |
747 |
|
748 |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
749 |
|
750 |
map<string, CutoffMethod> stringToCutoffMethod; |
751 |
stringToCutoffMethod["HARD"] = HARD; |
752 |
stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; |
753 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
754 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
755 |
|
756 |
if (simParams_->haveCutoffMethod()) { |
757 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
758 |
map<string, CutoffMethod>::iterator i; |
759 |
i = stringToCutoffMethod.find(cutMeth); |
760 |
if (i == stringToCutoffMethod.end()) { |
761 |
sprintf(painCave.errMsg, |
762 |
"SimInfo: Could not find chosen cutoffMethod %s\n" |
763 |
"\tShould be one of: " |
764 |
"HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
765 |
cutMeth.c_str()); |
766 |
painCave.isFatal = 1; |
767 |
painCave.severity = OPENMD_ERROR; |
768 |
simError(); |
769 |
} else { |
770 |
cutoffMethod_ = i->second; |
771 |
} |
772 |
} else { |
773 |
sprintf(painCave.errMsg, |
774 |
"SimInfo: No value was set for the cutoffMethod.\n" |
775 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
776 |
painCave.isFatal = 0; |
777 |
painCave.severity = OPENMD_INFO; |
778 |
simError(); |
779 |
cutoffMethod_ = SHIFTED_FORCE; |
780 |
} |
781 |
|
782 |
InteractionManager::Instance()->setCutoffMethod(cutoffMethod_); |
783 |
} |
784 |
|
785 |
/** |
786 |
* setupSwitching |
787 |
* |
788 |
* Sets the values of switchingRadius and |
789 |
* If the switchingRadius was explicitly set, use that value (but check it) |
790 |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
791 |
*/ |
792 |
void SimInfo::setupSwitching() { |
793 |
|
794 |
if (simParams_->haveSwitchingRadius()) { |
795 |
switchingRadius_ = simParams_->getSwitchingRadius(); |
796 |
if (switchingRadius_ > cutoffRadius_) { |
797 |
sprintf(painCave.errMsg, |
798 |
"SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
799 |
switchingRadius_, cutoffRadius_); |
800 |
painCave.isFatal = 1; |
801 |
painCave.severity = OPENMD_ERROR; |
802 |
simError(); |
803 |
} |
804 |
} else { |
805 |
switchingRadius_ = 0.85 * cutoffRadius_; |
806 |
sprintf(painCave.errMsg, |
807 |
"SimInfo: No value was set for the switchingRadius.\n" |
808 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
809 |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
810 |
painCave.isFatal = 0; |
811 |
painCave.severity = OPENMD_WARNING; |
812 |
simError(); |
813 |
} |
814 |
|
815 |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
816 |
|
817 |
SwitchingFunctionType ft; |
818 |
|
819 |
if (simParams_->haveSwitchingFunctionType()) { |
820 |
string funcType = simParams_->getSwitchingFunctionType(); |
821 |
toUpper(funcType); |
822 |
if (funcType == "CUBIC") { |
823 |
ft = cubic; |
824 |
} else { |
825 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
826 |
ft = fifth_order_poly; |
827 |
} else { |
828 |
// throw error |
829 |
sprintf( painCave.errMsg, |
830 |
"SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" |
831 |
"\tswitchingFunctionType must be one of: " |
832 |
"\"cubic\" or \"fifth_order_polynomial\".", |
833 |
funcType.c_str() ); |
834 |
painCave.isFatal = 1; |
835 |
painCave.severity = OPENMD_ERROR; |
836 |
simError(); |
837 |
} |
838 |
} |
839 |
} |
840 |
|
841 |
InteractionManager::Instance()->setSwitchingFunctionType(ft); |
842 |
} |
843 |
|
844 |
/** |
845 |
* setupSkinThickness |
846 |
* |
847 |
* If the skinThickness was explicitly set, use that value (but check it) |
848 |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
849 |
*/ |
850 |
void SimInfo::setupSkinThickness() { |
851 |
if (simParams_->haveSkinThickness()) { |
852 |
skinThickness_ = simParams_->getSkinThickness(); |
853 |
} else { |
854 |
skinThickness_ = 1.0; |
855 |
sprintf(painCave.errMsg, |
856 |
"SimInfo Warning: No value was set for the skinThickness.\n" |
857 |
"\tOpenMD will use a default value of %f Angstroms\n" |
858 |
"\tfor this simulation\n", skinThickness_); |
859 |
painCave.isFatal = 0; |
860 |
simError(); |
861 |
} |
862 |
} |
863 |
|
864 |
void SimInfo::setupSimType() { |
865 |
set<AtomType*>::iterator i; |
866 |
set<AtomType*> atomTypes; |
867 |
atomTypes = getSimulatedAtomTypes(); |
868 |
|
869 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
870 |
|
871 |
int usesElectrostatic = 0; |
872 |
int usesMetallic = 0; |
873 |
int usesDirectional = 0; |
874 |
//loop over all of the atom types |
875 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
876 |
usesElectrostatic |= (*i)->isElectrostatic(); |
877 |
usesMetallic |= (*i)->isMetal(); |
878 |
usesDirectional |= (*i)->isDirectional(); |
879 |
} |
880 |
|
881 |
#ifdef IS_MPI |
882 |
int temp; |
883 |
temp = usesDirectional; |
884 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
885 |
|
886 |
temp = usesMetallic; |
887 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
888 |
|
889 |
temp = usesElectrostatic; |
890 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
891 |
#endif |
892 |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
893 |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
894 |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
895 |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
896 |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
897 |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
898 |
} |
899 |
|
900 |
void SimInfo::setupFortranSim() { |
901 |
int isError; |
902 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
903 |
vector<int> fortranGlobalGroupMembership; |
904 |
|
905 |
notifyFortranSkinThickness(&skinThickness_); |
906 |
|
907 |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
908 |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
909 |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
910 |
|
911 |
isError = 0; |
912 |
|
913 |
//globalGroupMembership_ is filled by SimCreator |
914 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
915 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
916 |
} |
917 |
|
918 |
//calculate mass ratio of cutoff group |
919 |
vector<RealType> mfact; |
920 |
SimInfo::MoleculeIterator mi; |
921 |
Molecule* mol; |
922 |
Molecule::CutoffGroupIterator ci; |
923 |
CutoffGroup* cg; |
924 |
Molecule::AtomIterator ai; |
925 |
Atom* atom; |
926 |
RealType totalMass; |
927 |
|
928 |
//to avoid memory reallocation, reserve enough space for mfact |
929 |
mfact.reserve(getNCutoffGroups()); |
930 |
|
931 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
932 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
933 |
|
934 |
totalMass = cg->getMass(); |
935 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
936 |
// Check for massless groups - set mfact to 1 if true |
937 |
if (totalMass != 0) |
938 |
mfact.push_back(atom->getMass()/totalMass); |
939 |
else |
940 |
mfact.push_back( 1.0 ); |
941 |
} |
942 |
} |
943 |
} |
944 |
|
945 |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
946 |
vector<int> identArray; |
947 |
|
948 |
//to avoid memory reallocation, reserve enough space identArray |
949 |
identArray.reserve(getNAtoms()); |
950 |
|
951 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
952 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
953 |
identArray.push_back(atom->getIdent()); |
954 |
} |
955 |
} |
956 |
|
957 |
//fill molMembershipArray |
958 |
//molMembershipArray is filled by SimCreator |
959 |
vector<int> molMembershipArray(nGlobalAtoms_); |
960 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
961 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
962 |
} |
963 |
|
964 |
//setup fortran simulation |
965 |
|
966 |
nExclude = excludedInteractions_.getSize(); |
967 |
nOneTwo = oneTwoInteractions_.getSize(); |
968 |
nOneThree = oneThreeInteractions_.getSize(); |
969 |
nOneFour = oneFourInteractions_.getSize(); |
970 |
|
971 |
int* excludeList = excludedInteractions_.getPairList(); |
972 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
973 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
974 |
int* oneFourList = oneFourInteractions_.getPairList(); |
975 |
|
976 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
977 |
&nExclude, excludeList, |
978 |
&nOneTwo, oneTwoList, |
979 |
&nOneThree, oneThreeList, |
980 |
&nOneFour, oneFourList, |
981 |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
982 |
&fortranGlobalGroupMembership[0], &isError); |
983 |
|
984 |
if( isError ){ |
985 |
|
986 |
sprintf( painCave.errMsg, |
987 |
"There was an error setting the simulation information in fortran.\n" ); |
988 |
painCave.isFatal = 1; |
989 |
painCave.severity = OPENMD_ERROR; |
990 |
simError(); |
991 |
} |
992 |
|
993 |
|
994 |
sprintf( checkPointMsg, |
995 |
"succesfully sent the simulation information to fortran.\n"); |
996 |
|
997 |
errorCheckPoint(); |
998 |
|
999 |
// Setup number of neighbors in neighbor list if present |
1000 |
if (simParams_->haveNeighborListNeighbors()) { |
1001 |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
1002 |
setNeighbors(&nlistNeighbors); |
1003 |
} |
1004 |
|
1005 |
|
1006 |
} |
1007 |
|
1008 |
|
1009 |
void SimInfo::setupFortranParallel() { |
1010 |
#ifdef IS_MPI |
1011 |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
1012 |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1013 |
vector<int> localToGlobalCutoffGroupIndex; |
1014 |
SimInfo::MoleculeIterator mi; |
1015 |
Molecule::AtomIterator ai; |
1016 |
Molecule::CutoffGroupIterator ci; |
1017 |
Molecule* mol; |
1018 |
Atom* atom; |
1019 |
CutoffGroup* cg; |
1020 |
mpiSimData parallelData; |
1021 |
int isError; |
1022 |
|
1023 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1024 |
|
1025 |
//local index(index in DataStorge) of atom is important |
1026 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1027 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1028 |
} |
1029 |
|
1030 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1031 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1032 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1033 |
} |
1034 |
|
1035 |
} |
1036 |
|
1037 |
//fill up mpiSimData struct |
1038 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
1039 |
parallelData.nMolLocal = getNMolecules(); |
1040 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1041 |
parallelData.nAtomsLocal = getNAtoms(); |
1042 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1043 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
1044 |
parallelData.myNode = worldRank; |
1045 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1046 |
|
1047 |
//pass mpiSimData struct and index arrays to fortran |
1048 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1049 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1050 |
&localToGlobalCutoffGroupIndex[0], &isError); |
1051 |
|
1052 |
if (isError) { |
1053 |
sprintf(painCave.errMsg, |
1054 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1055 |
painCave.isFatal = 1; |
1056 |
simError(); |
1057 |
} |
1058 |
|
1059 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1060 |
errorCheckPoint(); |
1061 |
|
1062 |
#endif |
1063 |
} |
1064 |
|
1065 |
|
1066 |
void SimInfo::setupSwitchingFunction() { |
1067 |
|
1068 |
} |
1069 |
|
1070 |
void SimInfo::setupAccumulateBoxDipole() { |
1071 |
|
1072 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1073 |
if ( simParams_->haveAccumulateBoxDipole() ) |
1074 |
if ( simParams_->getAccumulateBoxDipole() ) { |
1075 |
calcBoxDipole_ = true; |
1076 |
} |
1077 |
|
1078 |
} |
1079 |
|
1080 |
void SimInfo::addProperty(GenericData* genData) { |
1081 |
properties_.addProperty(genData); |
1082 |
} |
1083 |
|
1084 |
void SimInfo::removeProperty(const string& propName) { |
1085 |
properties_.removeProperty(propName); |
1086 |
} |
1087 |
|
1088 |
void SimInfo::clearProperties() { |
1089 |
properties_.clearProperties(); |
1090 |
} |
1091 |
|
1092 |
vector<string> SimInfo::getPropertyNames() { |
1093 |
return properties_.getPropertyNames(); |
1094 |
} |
1095 |
|
1096 |
vector<GenericData*> SimInfo::getProperties() { |
1097 |
return properties_.getProperties(); |
1098 |
} |
1099 |
|
1100 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1101 |
return properties_.getPropertyByName(propName); |
1102 |
} |
1103 |
|
1104 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1105 |
if (sman_ == sman) { |
1106 |
return; |
1107 |
} |
1108 |
delete sman_; |
1109 |
sman_ = sman; |
1110 |
|
1111 |
Molecule* mol; |
1112 |
RigidBody* rb; |
1113 |
Atom* atom; |
1114 |
SimInfo::MoleculeIterator mi; |
1115 |
Molecule::RigidBodyIterator rbIter; |
1116 |
Molecule::AtomIterator atomIter;; |
1117 |
|
1118 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1119 |
|
1120 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1121 |
atom->setSnapshotManager(sman_); |
1122 |
} |
1123 |
|
1124 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1125 |
rb->setSnapshotManager(sman_); |
1126 |
} |
1127 |
} |
1128 |
|
1129 |
} |
1130 |
|
1131 |
Vector3d SimInfo::getComVel(){ |
1132 |
SimInfo::MoleculeIterator i; |
1133 |
Molecule* mol; |
1134 |
|
1135 |
Vector3d comVel(0.0); |
1136 |
RealType totalMass = 0.0; |
1137 |
|
1138 |
|
1139 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1140 |
RealType mass = mol->getMass(); |
1141 |
totalMass += mass; |
1142 |
comVel += mass * mol->getComVel(); |
1143 |
} |
1144 |
|
1145 |
#ifdef IS_MPI |
1146 |
RealType tmpMass = totalMass; |
1147 |
Vector3d tmpComVel(comVel); |
1148 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1149 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1150 |
#endif |
1151 |
|
1152 |
comVel /= totalMass; |
1153 |
|
1154 |
return comVel; |
1155 |
} |
1156 |
|
1157 |
Vector3d SimInfo::getCom(){ |
1158 |
SimInfo::MoleculeIterator i; |
1159 |
Molecule* mol; |
1160 |
|
1161 |
Vector3d com(0.0); |
1162 |
RealType totalMass = 0.0; |
1163 |
|
1164 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1165 |
RealType mass = mol->getMass(); |
1166 |
totalMass += mass; |
1167 |
com += mass * mol->getCom(); |
1168 |
} |
1169 |
|
1170 |
#ifdef IS_MPI |
1171 |
RealType tmpMass = totalMass; |
1172 |
Vector3d tmpCom(com); |
1173 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1174 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1175 |
#endif |
1176 |
|
1177 |
com /= totalMass; |
1178 |
|
1179 |
return com; |
1180 |
|
1181 |
} |
1182 |
|
1183 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1184 |
|
1185 |
return o; |
1186 |
} |
1187 |
|
1188 |
|
1189 |
/* |
1190 |
Returns center of mass and center of mass velocity in one function call. |
1191 |
*/ |
1192 |
|
1193 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1194 |
SimInfo::MoleculeIterator i; |
1195 |
Molecule* mol; |
1196 |
|
1197 |
|
1198 |
RealType totalMass = 0.0; |
1199 |
|
1200 |
|
1201 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1202 |
RealType mass = mol->getMass(); |
1203 |
totalMass += mass; |
1204 |
com += mass * mol->getCom(); |
1205 |
comVel += mass * mol->getComVel(); |
1206 |
} |
1207 |
|
1208 |
#ifdef IS_MPI |
1209 |
RealType tmpMass = totalMass; |
1210 |
Vector3d tmpCom(com); |
1211 |
Vector3d tmpComVel(comVel); |
1212 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1213 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1214 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1215 |
#endif |
1216 |
|
1217 |
com /= totalMass; |
1218 |
comVel /= totalMass; |
1219 |
} |
1220 |
|
1221 |
/* |
1222 |
Return intertia tensor for entire system and angular momentum Vector. |
1223 |
|
1224 |
|
1225 |
[ Ixx -Ixy -Ixz ] |
1226 |
J =| -Iyx Iyy -Iyz | |
1227 |
[ -Izx -Iyz Izz ] |
1228 |
*/ |
1229 |
|
1230 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1231 |
|
1232 |
|
1233 |
RealType xx = 0.0; |
1234 |
RealType yy = 0.0; |
1235 |
RealType zz = 0.0; |
1236 |
RealType xy = 0.0; |
1237 |
RealType xz = 0.0; |
1238 |
RealType yz = 0.0; |
1239 |
Vector3d com(0.0); |
1240 |
Vector3d comVel(0.0); |
1241 |
|
1242 |
getComAll(com, comVel); |
1243 |
|
1244 |
SimInfo::MoleculeIterator i; |
1245 |
Molecule* mol; |
1246 |
|
1247 |
Vector3d thisq(0.0); |
1248 |
Vector3d thisv(0.0); |
1249 |
|
1250 |
RealType thisMass = 0.0; |
1251 |
|
1252 |
|
1253 |
|
1254 |
|
1255 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1256 |
|
1257 |
thisq = mol->getCom()-com; |
1258 |
thisv = mol->getComVel()-comVel; |
1259 |
thisMass = mol->getMass(); |
1260 |
// Compute moment of intertia coefficients. |
1261 |
xx += thisq[0]*thisq[0]*thisMass; |
1262 |
yy += thisq[1]*thisq[1]*thisMass; |
1263 |
zz += thisq[2]*thisq[2]*thisMass; |
1264 |
|
1265 |
// compute products of intertia |
1266 |
xy += thisq[0]*thisq[1]*thisMass; |
1267 |
xz += thisq[0]*thisq[2]*thisMass; |
1268 |
yz += thisq[1]*thisq[2]*thisMass; |
1269 |
|
1270 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1271 |
|
1272 |
} |
1273 |
|
1274 |
|
1275 |
inertiaTensor(0,0) = yy + zz; |
1276 |
inertiaTensor(0,1) = -xy; |
1277 |
inertiaTensor(0,2) = -xz; |
1278 |
inertiaTensor(1,0) = -xy; |
1279 |
inertiaTensor(1,1) = xx + zz; |
1280 |
inertiaTensor(1,2) = -yz; |
1281 |
inertiaTensor(2,0) = -xz; |
1282 |
inertiaTensor(2,1) = -yz; |
1283 |
inertiaTensor(2,2) = xx + yy; |
1284 |
|
1285 |
#ifdef IS_MPI |
1286 |
Mat3x3d tmpI(inertiaTensor); |
1287 |
Vector3d tmpAngMom; |
1288 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1289 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1290 |
#endif |
1291 |
|
1292 |
return; |
1293 |
} |
1294 |
|
1295 |
//Returns the angular momentum of the system |
1296 |
Vector3d SimInfo::getAngularMomentum(){ |
1297 |
|
1298 |
Vector3d com(0.0); |
1299 |
Vector3d comVel(0.0); |
1300 |
Vector3d angularMomentum(0.0); |
1301 |
|
1302 |
getComAll(com,comVel); |
1303 |
|
1304 |
SimInfo::MoleculeIterator i; |
1305 |
Molecule* mol; |
1306 |
|
1307 |
Vector3d thisr(0.0); |
1308 |
Vector3d thisp(0.0); |
1309 |
|
1310 |
RealType thisMass; |
1311 |
|
1312 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1313 |
thisMass = mol->getMass(); |
1314 |
thisr = mol->getCom()-com; |
1315 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1316 |
|
1317 |
angularMomentum += cross( thisr, thisp ); |
1318 |
|
1319 |
} |
1320 |
|
1321 |
#ifdef IS_MPI |
1322 |
Vector3d tmpAngMom; |
1323 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1324 |
#endif |
1325 |
|
1326 |
return angularMomentum; |
1327 |
} |
1328 |
|
1329 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1330 |
return IOIndexToIntegrableObject.at(index); |
1331 |
} |
1332 |
|
1333 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1334 |
IOIndexToIntegrableObject= v; |
1335 |
} |
1336 |
|
1337 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1338 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1339 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1340 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1341 |
*/ |
1342 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1343 |
Mat3x3d intTensor; |
1344 |
RealType det; |
1345 |
Vector3d dummyAngMom; |
1346 |
RealType sysconstants; |
1347 |
RealType geomCnst; |
1348 |
|
1349 |
geomCnst = 3.0/2.0; |
1350 |
/* Get the inertial tensor and angular momentum for free*/ |
1351 |
getInertiaTensor(intTensor,dummyAngMom); |
1352 |
|
1353 |
det = intTensor.determinant(); |
1354 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1355 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1356 |
return; |
1357 |
} |
1358 |
|
1359 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1360 |
Mat3x3d intTensor; |
1361 |
Vector3d dummyAngMom; |
1362 |
RealType sysconstants; |
1363 |
RealType geomCnst; |
1364 |
|
1365 |
geomCnst = 3.0/2.0; |
1366 |
/* Get the inertial tensor and angular momentum for free*/ |
1367 |
getInertiaTensor(intTensor,dummyAngMom); |
1368 |
|
1369 |
detI = intTensor.determinant(); |
1370 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1371 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1372 |
return; |
1373 |
} |
1374 |
/* |
1375 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1376 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1377 |
sdByGlobalIndex_ = v; |
1378 |
} |
1379 |
|
1380 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1381 |
//assert(index < nAtoms_ + nRigidBodies_); |
1382 |
return sdByGlobalIndex_.at(index); |
1383 |
} |
1384 |
*/ |
1385 |
int SimInfo::getNGlobalConstraints() { |
1386 |
int nGlobalConstraints; |
1387 |
#ifdef IS_MPI |
1388 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1389 |
MPI_COMM_WORLD); |
1390 |
#else |
1391 |
nGlobalConstraints = nConstraints_; |
1392 |
#endif |
1393 |
return nGlobalConstraints; |
1394 |
} |
1395 |
|
1396 |
}//end namespace OpenMD |
1397 |
|