ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 809 by gezelter, Mon Dec 12 19:32:50 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 53 | Line 54
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 <    std::map<int, std::set<int> >::iterator i = container.find(index);
75 <    std::set<int> result;
76 <    if (i != container.end()) {
77 <        result = i->second;
78 <    }
79 <
80 <    return result;
81 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
87 <      std::vector<Component*> components = simParams->getComponents();
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94        
95 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
96 <        molStamp = (*i)->getMoleculeStamp();
97 <        nMolWithSameStamp = (*i)->getNMol();
98 <        
99 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
100 <
101 <        //calculate atoms in molecules
102 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 <
104 <        //calculate atoms in cutoff groups
105 <        int nAtomsInGroups = 0;
106 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
113 <        
114 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
115 <          cgStamp = molStamp->getCutoffGroupStamp(j);
116 <          nAtomsInGroups += cgStamp->getNMembers();
117 <        }
118 <
119 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
120 <
121 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
122 <
123 <        //calculate atoms in rigid bodies
124 <        int nAtomsInRigidBodies = 0;
125 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
126 <        
127 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
128 <          rbStamp = molStamp->getRigidBodyStamp(j);
129 <          nAtomsInRigidBodies += rbStamp->getNMembers();
130 <        }
131 <
132 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
133 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
134 <        
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
110 <      //group therefore the total number of cutoff groups in the system is
111 <      //equal to the total number of atoms minus number of atoms belong to
112 <      //cutoff group defined in meta-data file plus the number of cutoff
113 <      //groups defined in meta-data file
114 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
115 <
116 <      //every free atom (atom does not belong to rigid bodies) is an
117 <      //integrable object therefore the total number of integrable objects
118 <      //in the system is equal to the total number of atoms minus number of
119 <      //atoms belong to rigid body defined in meta-data file plus the number
120 <      //of rigid bodies defined in meta-data file
121 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
122 <                                                + nGlobalRigidBodies_;
123 <  
124 <      nGlobalMols_ = molStampIds_.size();
153 <
154 < #ifdef IS_MPI    
155 <      molToProcMap_.resize(nGlobalMols_);
156 < #endif
157 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
# Line 169 | Line 156 | namespace oopse {
156      delete forceField_;
157    }
158  
172  int SimInfo::getNGlobalConstraints() {
173    int nGlobalConstraints;
174 #ifdef IS_MPI
175    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
176                  MPI_COMM_WORLD);    
177 #else
178    nGlobalConstraints =  nConstraints_;
179 #endif
180    return nGlobalConstraints;
181  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 217 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 231 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
234
235
213    }    
214  
215          
# Line 248 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 269 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
272            
253        }
254 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 +           atom = mol->nextFluctuatingCharge(k)) {
256 +        if (atom->isFluctuatingCharge()) {
257 +          nfq_local++;
258 +        }
259 +      }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 288 | Line 278 | namespace oopse {
278  
279    }
280  
281 +  int SimInfo::getFdf() {
282 + #ifdef IS_MPI
283 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 + #else
285 +    fdf_ = fdf_local;
286 + #endif
287 +    return fdf_;
288 +  }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296 +    
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
312      MoleculeIterator i;
313 <    std::vector<StuntDouble*>::iterator j;
313 >    vector<StuntDouble*>::iterator j;
314      Molecule* mol;
315      StuntDouble* integrableObject;
316  
# Line 339 | Line 357 | namespace oopse {
357  
358    }
359  
360 <  void SimInfo::addExcludePairs(Molecule* mol) {
361 <    std::vector<Bond*>::iterator bondIter;
362 <    std::vector<Bend*>::iterator bendIter;
363 <    std::vector<Torsion*>::iterator torsionIter;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366      Bond* bond;
367      Bend* bend;
368      Torsion* torsion;
369 +    Inversion* inversion;
370      int a;
371      int b;
372      int c;
373      int d;
374  
375 <    std::map<int, std::set<int> > atomGroups;
375 >    // atomGroups can be used to add special interaction maps between
376 >    // groups of atoms that are in two separate rigid bodies.
377 >    // However, most site-site interactions between two rigid bodies
378 >    // are probably not special, just the ones between the physically
379 >    // bonded atoms.  Interactions *within* a single rigid body should
380 >    // always be excluded.  These are done at the bottom of this
381 >    // function.
382  
383 +    map<int, set<int> > atomGroups;
384      Molecule::RigidBodyIterator rbIter;
385      RigidBody* rb;
386      Molecule::IntegrableObjectIterator ii;
387      StuntDouble* integrableObject;
388      
389 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
390 <           integrableObject = mol->nextIntegrableObject(ii)) {
391 <
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393        if (integrableObject->isRigidBody()) {
394 <          rb = static_cast<RigidBody*>(integrableObject);
395 <          std::vector<Atom*> atoms = rb->getAtoms();
396 <          std::set<int> rigidAtoms;
397 <          for (int i = 0; i < atoms.size(); ++i) {
398 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 <          }
400 <          for (int i = 0; i < atoms.size(); ++i) {
401 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 <          }      
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403        } else {
404 <        std::set<int> oneAtomSet;
404 >        set<int> oneAtomSet;
405          oneAtomSet.insert(integrableObject->getGlobalIndex());
406 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407        }
408      }  
409 +          
410 +    for (bond= mol->beginBond(bondIter); bond != NULL;
411 +         bond = mol->nextBond(bondIter)) {
412  
381    
382    
383    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
413        a = bond->getAtomA()->getGlobalIndex();
414 <      b = bond->getAtomB()->getGlobalIndex();        
415 <      exclude_.addPair(a, b);
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
422  
423 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425 >
426        a = bend->getAtomA()->getGlobalIndex();
427        b = bend->getAtomB()->getGlobalIndex();        
428        c = bend->getAtomC()->getGlobalIndex();
393      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
394      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
395      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
396
397      exclude_.addPairs(rigidSetA, rigidSetB);
398      exclude_.addPairs(rigidSetA, rigidSetC);
399      exclude_.addPairs(rigidSetB, rigidSetC);
429        
430 <      //exclude_.addPair(a, b);
431 <      //exclude_.addPair(a, c);
432 <      //exclude_.addPair(b, c);        
430 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 >        oneTwoInteractions_.addPair(a, b);      
432 >        oneTwoInteractions_.addPair(b, c);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >      }
437 >
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443      }
444  
445 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447 >
448        a = torsion->getAtomA()->getGlobalIndex();
449        b = torsion->getAtomB()->getGlobalIndex();        
450        c = torsion->getAtomC()->getGlobalIndex();        
451 <      d = torsion->getAtomD()->getGlobalIndex();        
411 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
412 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
413 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
414 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <      exclude_.addPairs(rigidSetA, rigidSetB);
454 <      exclude_.addPairs(rigidSetA, rigidSetC);
455 <      exclude_.addPairs(rigidSetA, rigidSetD);
456 <      exclude_.addPairs(rigidSetB, rigidSetC);
457 <      exclude_.addPairs(rigidSetB, rigidSetD);
458 <      exclude_.addPairs(rigidSetC, rigidSetD);
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462 >
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470  
471 <      /*
472 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
473 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
474 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
475 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
428 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
429 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
430 <        
431 <      
432 <      exclude_.addPair(a, b);
433 <      exclude_.addPair(a, c);
434 <      exclude_.addPair(a, d);
435 <      exclude_.addPair(b, c);
436 <      exclude_.addPair(b, d);
437 <      exclude_.addPair(c, d);        
438 <      */
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476      }
477  
478 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
479 <      std::vector<Atom*> atoms = rb->getAtoms();
480 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
481 <        for (int j = i + 1; j < atoms.size(); ++j) {
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480 >
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485 >
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495 >
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506 >
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512            a = atoms[i]->getGlobalIndex();
513            b = atoms[j]->getGlobalIndex();
514 <          exclude_.addPair(a, b);
514 >          excludedInteractions_.addPair(a, b);
515          }
516        }
517      }        
518  
519    }
520  
521 <  void SimInfo::removeExcludePairs(Molecule* mol) {
522 <    std::vector<Bond*>::iterator bondIter;
523 <    std::vector<Bend*>::iterator bendIter;
524 <    std::vector<Torsion*>::iterator torsionIter;
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527      Bond* bond;
528      Bend* bend;
529      Torsion* torsion;
530 +    Inversion* inversion;
531      int a;
532      int b;
533      int c;
534      int d;
535  
536 <    std::map<int, std::set<int> > atomGroups;
467 <
536 >    map<int, set<int> > atomGroups;
537      Molecule::RigidBodyIterator rbIter;
538      RigidBody* rb;
539      Molecule::IntegrableObjectIterator ii;
540      StuntDouble* integrableObject;
541      
542 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
543 <           integrableObject = mol->nextIntegrableObject(ii)) {
544 <
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546        if (integrableObject->isRigidBody()) {
547 <          rb = static_cast<RigidBody*>(integrableObject);
548 <          std::vector<Atom*> atoms = rb->getAtoms();
549 <          std::set<int> rigidAtoms;
550 <          for (int i = 0; i < atoms.size(); ++i) {
551 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 <          }
553 <          for (int i = 0; i < atoms.size(); ++i) {
554 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 <          }      
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556        } else {
557 <        std::set<int> oneAtomSet;
557 >        set<int> oneAtomSet;
558          oneAtomSet.insert(integrableObject->getGlobalIndex());
559 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560        }
561      }  
562  
563 <    
564 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566        a = bond->getAtomA()->getGlobalIndex();
567 <      b = bond->getAtomB()->getGlobalIndex();        
568 <      exclude_.removePair(a, b);
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
575  
576 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578 >
579        a = bend->getAtomA()->getGlobalIndex();
580        b = bend->getAtomB()->getGlobalIndex();        
581        c = bend->getAtomC()->getGlobalIndex();
504
505      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
506      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
507      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
508
509      exclude_.removePairs(rigidSetA, rigidSetB);
510      exclude_.removePairs(rigidSetA, rigidSetC);
511      exclude_.removePairs(rigidSetB, rigidSetC);
582        
583 <      //exclude_.removePair(a, b);
584 <      //exclude_.removePair(a, c);
585 <      //exclude_.removePair(b, c);        
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);      
585 >        oneTwoInteractions_.removePair(b, c);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >      }
590 >
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596      }
597  
598 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600 >
601        a = torsion->getAtomA()->getGlobalIndex();
602        b = torsion->getAtomB()->getGlobalIndex();        
603        c = torsion->getAtomC()->getGlobalIndex();        
604 <      d = torsion->getAtomD()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
617 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
618 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
619 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623  
624 <      exclude_.removePairs(rigidSetA, rigidSetB);
625 <      exclude_.removePairs(rigidSetA, rigidSetC);
626 <      exclude_.removePairs(rigidSetA, rigidSetD);
627 <      exclude_.removePairs(rigidSetB, rigidSetC);
628 <      exclude_.removePairs(rigidSetB, rigidSetD);
629 <      exclude_.removePairs(rigidSetC, rigidSetD);
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629 >    }
630  
631 <      /*
632 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
538 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
539 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
540 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
541 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
542 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633  
634 <      
635 <      exclude_.removePair(a, b);
636 <      exclude_.removePair(a, c);
637 <      exclude_.removePair(a, d);
638 <      exclude_.removePair(b, c);
639 <      exclude_.removePair(b, d);
640 <      exclude_.removePair(c, d);        
641 <      */
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658      }
659  
660 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
661 <      std::vector<Atom*> atoms = rb->getAtoms();
662 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
663 <        for (int j = i + 1; j < atoms.size(); ++j) {
660 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 >         rb = mol->nextRigidBody(rbIter)) {
662 >      vector<Atom*> atoms = rb->getAtoms();
663 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665            a = atoms[i]->getGlobalIndex();
666            b = atoms[j]->getGlobalIndex();
667 <          exclude_.removePair(a, b);
667 >          excludedInteractions_.removePair(a, b);
668          }
669        }
670      }        
671 <
671 >    
672    }
673 <
674 <
673 >  
674 >  
675    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676      int curStampId;
677 <
677 >    
678      //index from 0
679      curStampId = moleculeStamps_.size();
680  
# Line 575 | Line 682 | namespace oopse {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
578  void SimInfo::update() {
685  
686 <    setupSimType();
687 <
688 < #ifdef IS_MPI
689 <    setupFortranParallel();
690 < #endif
691 <
692 <    setupFortranSim();
693 <
694 <    //setup fortran force field
589 <    /** @deprecate */    
590 <    int isError = 0;
591 <    
592 <    setupElectrostaticSummationMethod( isError );
593 <    setupSwitchingFunction();
594 <
595 <    if(isError){
596 <      sprintf( painCave.errMsg,
597 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
598 <      painCave.isFatal = 1;
599 <      simError();
600 <    }
601 <  
602 <    
603 <    setupCutoff();
604 <
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
608
609    fortranInitialized_ = true;
698    }
699 <
700 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  
700 >  /**
701 >   * getSimulatedAtomTypes
702 >   *
703 >   * Returns an STL set of AtomType* that are actually present in this
704 >   * simulation.  Must query all processors to assemble this information.
705 >   *
706 >   */
707 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
710      Molecule::AtomIterator ai;
711      Atom* atom;
712 <    std::set<AtomType*> atomTypes;
713 <
712 >    set<AtomType*> atomTypes;
713 >    
714      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 <
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718 <      }
719 <        
720 <    }
718 >      }      
719 >    }    
720 >    
721 > #ifdef IS_MPI
722  
723 <    return atomTypes;        
724 <  }
629 <
630 <  void SimInfo::setupSimType() {
631 <    std::set<AtomType*>::iterator i;
632 <    std::set<AtomType*> atomTypes;
633 <    atomTypes = getUniqueAtomTypes();
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725      
726 <    int useLennardJones = 0;
727 <    int useElectrostatic = 0;
728 <    int useEAM = 0;
729 <    int useSC = 0;
639 <    int useCharge = 0;
640 <    int useDirectional = 0;
641 <    int useDipole = 0;
642 <    int useGayBerne = 0;
643 <    int useSticky = 0;
644 <    int useStickyPower = 0;
645 <    int useShape = 0;
646 <    int useFLARB = 0; //it is not in AtomType yet
647 <    int useDirectionalAtom = 0;    
648 <    int useElectrostatics = 0;
649 <    //usePBC and useRF are from simParams
650 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
651 <    int useRF;
652 <    int useSF;
653 <    std::string myMethod;
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730  
731 <    // set the useRF logical
732 <    useRF = 0;
657 <    useSF = 0;
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733  
734 +    int nproc = MPI::COMM_WORLD.Get_size();
735  
736 <    if (simParams_->haveElectrostaticSummationMethod()) {
737 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
738 <      toUpper(myMethod);
739 <      if (myMethod == "REACTION_FIELD") {
664 <        useRF=1;
665 <      } else {
666 <        if (myMethod == "SHIFTED_FORCE") {
667 <          useSF = 1;
668 <        }
669 <      }
670 <    }
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740  
741 <    //loop over all of the atom types
742 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
743 <      useLennardJones |= (*i)->isLennardJones();
744 <      useElectrostatic |= (*i)->isElectrostatic();
745 <      useEAM |= (*i)->isEAM();
746 <      useSC |= (*i)->isSC();
747 <      useCharge |= (*i)->isCharge();
748 <      useDirectional |= (*i)->isDirectional();
749 <      useDipole |= (*i)->isDipole();
750 <      useGayBerne |= (*i)->isGayBerne();
682 <      useSticky |= (*i)->isSticky();
683 <      useStickyPower |= (*i)->isStickyPower();
684 <      useShape |= (*i)->isShape();
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751      }
752  
753 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
754 <      useDirectionalAtom = 1;
755 <    }
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755 >    
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <    if (useCharge || useDipole) {
692 <      useElectrostatics = 1;
693 <    }
761 >    vector<int>::iterator j;
762  
763 < #ifdef IS_MPI    
764 <    int temp;
763 >    // foundIdents is a stl set, so inserting an already found ident
764 >    // will have no effect.
765 >    set<int> foundIdents;
766  
767 <    temp = usePBC;
768 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769 >    
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776 > #endif
777  
778 <    temp = useDirectionalAtom;
779 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
778 >    return atomTypes;        
779 >  }
780  
781 <    temp = useLennardJones;
782 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
781 >  void SimInfo::setupSimVariables() {
782 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 >    calcBoxDipole_ = false;
785 >    if ( simParams_->haveAccumulateBoxDipole() )
786 >      if ( simParams_->getAccumulateBoxDipole() ) {
787 >        calcBoxDipole_ = true;      
788 >      }
789 >    
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();    
793 >    int usesElectrostatic = 0;
794 >    int usesMetallic = 0;
795 >    int usesDirectional = 0;
796 >    int usesFluctuatingCharges =  0;
797 >    //loop over all of the atom types
798 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803 >    }
804 >    
805 > #ifdef IS_MPI    
806 >    int temp;
807 >    temp = usesDirectional;
808 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 >    
810 >    temp = usesMetallic;
811 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 >    
813 >    temp = usesElectrostatic;
814 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815  
816 <    temp = useElectrostatics;
817 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >    temp = usesFluctuatingCharges;
817 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818 > #else
819  
820 <    temp = useCharge;
821 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820 >    usesDirectionalAtoms_ = usesDirectional;
821 >    usesMetallicAtoms_ = usesMetallic;
822 >    usesElectrostaticAtoms_ = usesElectrostatic;
823 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
824  
825 <    temp = useDipole;
714 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
715 <
716 <    temp = useSticky;
717 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 <
719 <    temp = useStickyPower;
720 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825 > #endif
826      
827 <    temp = useGayBerne;
828 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
828 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
829 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
830 >  }
831  
725    temp = useEAM;
726    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832  
833 <    temp = useSC;
834 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
833 >  vector<int> SimInfo::getGlobalAtomIndices() {
834 >    SimInfo::MoleculeIterator mi;
835 >    Molecule* mol;
836 >    Molecule::AtomIterator ai;
837 >    Atom* atom;
838 >
839 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
840      
841 <    temp = useShape;
842 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
841 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
842 >      
843 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
845 >      }
846 >    }
847 >    return GlobalAtomIndices;
848 >  }
849  
734    temp = useFLARB;
735    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850  
851 <    temp = useRF;
852 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851 >  vector<int> SimInfo::getGlobalGroupIndices() {
852 >    SimInfo::MoleculeIterator mi;
853 >    Molecule* mol;
854 >    Molecule::CutoffGroupIterator ci;
855 >    CutoffGroup* cg;
856  
857 <    temp = useSF;
858 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
859 <
743 < #endif
744 <
745 <    fInfo_.SIM_uses_PBC = usePBC;    
746 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
747 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
748 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
749 <    fInfo_.SIM_uses_Charges = useCharge;
750 <    fInfo_.SIM_uses_Dipoles = useDipole;
751 <    fInfo_.SIM_uses_Sticky = useSticky;
752 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
753 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
754 <    fInfo_.SIM_uses_EAM = useEAM;
755 <    fInfo_.SIM_uses_SC = useSC;
756 <    fInfo_.SIM_uses_Shapes = useShape;
757 <    fInfo_.SIM_uses_FLARB = useFLARB;
758 <    fInfo_.SIM_uses_RF = useRF;
759 <    fInfo_.SIM_uses_SF = useSF;
760 <
761 <    if( myMethod == "REACTION_FIELD") {
857 >    vector<int> GlobalGroupIndices;
858 >    
859 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
860        
861 <      if (simParams_->haveDielectric()) {
862 <        fInfo_.dielect = simParams_->getDielectric();
863 <      } else {
864 <        sprintf(painCave.errMsg,
865 <                "SimSetup Error: No Dielectric constant was set.\n"
866 <                "\tYou are trying to use Reaction Field without"
769 <                "\tsetting a dielectric constant!\n");
770 <        painCave.isFatal = 1;
771 <        simError();
772 <      }      
861 >      //local index of cutoff group is trivial, it only depends on the
862 >      //order of travesing
863 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
864 >           cg = mol->nextCutoffGroup(ci)) {
865 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
866 >      }        
867      }
868 <
868 >    return GlobalGroupIndices;
869    }
870  
777  void SimInfo::setupFortranSim() {
778    int isError;
779    int nExclude;
780    std::vector<int> fortranGlobalGroupMembership;
781    
782    nExclude = exclude_.getSize();
783    isError = 0;
871  
872 <    //globalGroupMembership_ is filled by SimCreator    
873 <    for (int i = 0; i < nGlobalAtoms_; i++) {
787 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
788 <    }
872 >  void SimInfo::prepareTopology() {
873 >    int nExclude, nOneTwo, nOneThree, nOneFour;
874  
875      //calculate mass ratio of cutoff group
791    std::vector<double> mfact;
876      SimInfo::MoleculeIterator mi;
877      Molecule* mol;
878      Molecule::CutoffGroupIterator ci;
879      CutoffGroup* cg;
880      Molecule::AtomIterator ai;
881      Atom* atom;
882 <    double totalMass;
882 >    RealType totalMass;
883  
884 <    //to avoid memory reallocation, reserve enough space for mfact
885 <    mfact.reserve(getNCutoffGroups());
884 >    /**
885 >     * The mass factor is the relative mass of an atom to the total
886 >     * mass of the cutoff group it belongs to.  By default, all atoms
887 >     * are their own cutoff groups, and therefore have mass factors of
888 >     * 1.  We need some special handling for massless atoms, which
889 >     * will be treated as carrying the entire mass of the cutoff
890 >     * group.
891 >     */
892 >    massFactors_.clear();
893 >    massFactors_.resize(getNAtoms(), 1.0);
894      
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898  
899          totalMass = cg->getMass();
900          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901            // Check for massless groups - set mfact to 1 if true
902 <          if (totalMass != 0)
903 <            mfact.push_back(atom->getMass()/totalMass);
902 >          if (totalMass != 0)
903 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
904            else
905 <            mfact.push_back( 1.0 );
905 >            massFactors_[atom->getLocalIndex()] = 1.0;
906          }
814
907        }      
908      }
909  
910 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
819 <    std::vector<int> identArray;
910 >    // Build the identArray_
911  
912 <    //to avoid memory reallocation, reserve enough space identArray
913 <    identArray.reserve(getNAtoms());
823 <    
912 >    identArray_.clear();
913 >    identArray_.reserve(getNAtoms());    
914      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
915        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
916 <        identArray.push_back(atom->getIdent());
916 >        identArray_.push_back(atom->getIdent());
917        }
918      }    
829
830    //fill molMembershipArray
831    //molMembershipArray is filled by SimCreator    
832    std::vector<int> molMembershipArray(nGlobalAtoms_);
833    for (int i = 0; i < nGlobalAtoms_; i++) {
834      molMembershipArray[i] = globalMolMembership_[i] + 1;
835    }
919      
920 <    //setup fortran simulation
838 <    int nGlobalExcludes = 0;
839 <    int* globalExcludes = NULL;
840 <    int* excludeList = exclude_.getExcludeList();
841 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
842 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
843 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
920 >    //scan topology
921  
922 <    if( isError ){
922 >    nExclude = excludedInteractions_.getSize();
923 >    nOneTwo = oneTwoInteractions_.getSize();
924 >    nOneThree = oneThreeInteractions_.getSize();
925 >    nOneFour = oneFourInteractions_.getSize();
926  
927 <      sprintf( painCave.errMsg,
928 <               "There was an error setting the simulation information in fortran.\n" );
929 <      painCave.isFatal = 1;
930 <      painCave.severity = OOPSE_ERROR;
851 <      simError();
852 <    }
853 <
854 < #ifdef IS_MPI
855 <    sprintf( checkPointMsg,
856 <             "succesfully sent the simulation information to fortran.\n");
857 <    MPIcheckPoint();
858 < #endif // is_mpi
859 <  }
860 <
861 <
862 < #ifdef IS_MPI
863 <  void SimInfo::setupFortranParallel() {
864 <    
865 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
866 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
867 <    std::vector<int> localToGlobalCutoffGroupIndex;
868 <    SimInfo::MoleculeIterator mi;
869 <    Molecule::AtomIterator ai;
870 <    Molecule::CutoffGroupIterator ci;
871 <    Molecule* mol;
872 <    Atom* atom;
873 <    CutoffGroup* cg;
874 <    mpiSimData parallelData;
875 <    int isError;
876 <
877 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
878 <
879 <      //local index(index in DataStorge) of atom is important
880 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
881 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
882 <      }
883 <
884 <      //local index of cutoff group is trivial, it only depends on the order of travesing
885 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
886 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
887 <      }        
888 <        
889 <    }
890 <
891 <    //fill up mpiSimData struct
892 <    parallelData.nMolGlobal = getNGlobalMolecules();
893 <    parallelData.nMolLocal = getNMolecules();
894 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
895 <    parallelData.nAtomsLocal = getNAtoms();
896 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
897 <    parallelData.nGroupsLocal = getNCutoffGroups();
898 <    parallelData.myNode = worldRank;
899 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
900 <
901 <    //pass mpiSimData struct and index arrays to fortran
902 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
903 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
904 <                    &localToGlobalCutoffGroupIndex[0], &isError);
905 <
906 <    if (isError) {
907 <      sprintf(painCave.errMsg,
908 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
909 <      painCave.isFatal = 1;
910 <      simError();
911 <    }
912 <
913 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
914 <    MPIcheckPoint();
915 <
916 <
917 <  }
918 <
919 < #endif
927 >    int* excludeList = excludedInteractions_.getPairList();
928 >    int* oneTwoList = oneTwoInteractions_.getPairList();
929 >    int* oneThreeList = oneThreeInteractions_.getPairList();
930 >    int* oneFourList = oneFourInteractions_.getPairList();
931  
932 <  void SimInfo::setupCutoff() {          
922 <    
923 <    // Check the cutoff policy
924 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
925 <    if (simParams_->haveCutoffPolicy()) {
926 <      std::string myPolicy = simParams_->getCutoffPolicy();
927 <      toUpper(myPolicy);
928 <      if (myPolicy == "MIX") {
929 <        cp = MIX_CUTOFF_POLICY;
930 <      } else {
931 <        if (myPolicy == "MAX") {
932 <          cp = MAX_CUTOFF_POLICY;
933 <        } else {
934 <          if (myPolicy == "TRADITIONAL") {            
935 <            cp = TRADITIONAL_CUTOFF_POLICY;
936 <          } else {
937 <            // throw error        
938 <            sprintf( painCave.errMsg,
939 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
940 <            painCave.isFatal = 1;
941 <            simError();
942 <          }    
943 <        }          
944 <      }
945 <    }          
946 <    notifyFortranCutoffPolicy(&cp);
947 <
948 <    // Check the Skin Thickness for neighborlists
949 <    double skin;
950 <    if (simParams_->haveSkinThickness()) {
951 <      skin = simParams_->getSkinThickness();
952 <      notifyFortranSkinThickness(&skin);
953 <    }            
954 <        
955 <    // Check if the cutoff was set explicitly:
956 <    if (simParams_->haveCutoffRadius()) {
957 <      rcut_ = simParams_->getCutoffRadius();
958 <      if (simParams_->haveSwitchingRadius()) {
959 <        rsw_  = simParams_->getSwitchingRadius();
960 <      } else {
961 <        rsw_ = rcut_;
962 <      }
963 <      notifyFortranCutoffs(&rcut_, &rsw_);
964 <      
965 <    } else {
966 <      
967 <      // For electrostatic atoms, we'll assume a large safe value:
968 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
969 <        sprintf(painCave.errMsg,
970 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
971 <                "\tOOPSE will use a default value of 15.0 angstroms"
972 <                "\tfor the cutoffRadius.\n");
973 <        painCave.isFatal = 0;
974 <        simError();
975 <        rcut_ = 15.0;
976 <      
977 <        if (simParams_->haveElectrostaticSummationMethod()) {
978 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
979 <          toUpper(myMethod);
980 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
981 <            if (simParams_->haveSwitchingRadius()){
982 <              sprintf(painCave.errMsg,
983 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
984 <                      "\teven though the electrostaticSummationMethod was\n"
985 <                      "\tset to %s\n", myMethod.c_str());
986 <              painCave.isFatal = 1;
987 <              simError();            
988 <            }
989 <          }
990 <        }
991 <      
992 <        if (simParams_->haveSwitchingRadius()){
993 <          rsw_ = simParams_->getSwitchingRadius();
994 <        } else {        
995 <          sprintf(painCave.errMsg,
996 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
997 <                  "\tOOPSE will use a default value of\n"
998 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
999 <          painCave.isFatal = 0;
1000 <          simError();
1001 <          rsw_ = 0.85 * rcut_;
1002 <        }
1003 <        notifyFortranCutoffs(&rcut_, &rsw_);
1004 <      } else {
1005 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1006 <        // We'll punt and let fortran figure out the cutoffs later.
1007 <        
1008 <        notifyFortranYouAreOnYourOwn();
1009 <
1010 <      }
1011 <    }
1012 <  }
1013 <
1014 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1015 <    
1016 <    int errorOut;
1017 <    int esm =  NONE;
1018 <    int sm = UNDAMPED;
1019 <    double alphaVal;
1020 <    double dielectric;
1021 <
1022 <    errorOut = isError;
1023 <    alphaVal = simParams_->getDampingAlpha();
1024 <    dielectric = simParams_->getDielectric();
1025 <
1026 <    if (simParams_->haveElectrostaticSummationMethod()) {
1027 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028 <      toUpper(myMethod);
1029 <      if (myMethod == "NONE") {
1030 <        esm = NONE;
1031 <      } else {
1032 <        if (myMethod == "SWITCHING_FUNCTION") {
1033 <          esm = SWITCHING_FUNCTION;
1034 <        } else {
1035 <          if (myMethod == "SHIFTED_POTENTIAL") {
1036 <            esm = SHIFTED_POTENTIAL;
1037 <          } else {
1038 <            if (myMethod == "SHIFTED_FORCE") {            
1039 <              esm = SHIFTED_FORCE;
1040 <            } else {
1041 <              if (myMethod == "REACTION_FIELD") {            
1042 <                esm = REACTION_FIELD;
1043 <              } else {
1044 <                // throw error        
1045 <                sprintf( painCave.errMsg,
1046 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1047 <                         "\t(Input file specified %s .)\n"
1048 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1049 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1050 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1051 <                painCave.isFatal = 1;
1052 <                simError();
1053 <              }    
1054 <            }          
1055 <          }
1056 <        }
1057 <      }
1058 <    }
1059 <    
1060 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1061 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1062 <      toUpper(myScreen);
1063 <      if (myScreen == "UNDAMPED") {
1064 <        sm = UNDAMPED;
1065 <      } else {
1066 <        if (myScreen == "DAMPED") {
1067 <          sm = DAMPED;
1068 <          if (!simParams_->haveDampingAlpha()) {
1069 <            //throw error
1070 <            sprintf( painCave.errMsg,
1071 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1072 <                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1073 <            painCave.isFatal = 0;
1074 <            simError();
1075 <          }
1076 <        } else {
1077 <          // throw error        
1078 <          sprintf( painCave.errMsg,
1079 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1080 <                   "\t(Input file specified %s .)\n"
1081 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1082 <                   "or \"damped\".\n", myScreen.c_str() );
1083 <          painCave.isFatal = 1;
1084 <          simError();
1085 <        }
1086 <      }
1087 <    }
1088 <    
1089 <    // let's pass some summation method variables to fortran
1090 <    setElectrostaticSumMethod( &esm );
1091 <    setFortranElectrostaticMethod( &esm );
1092 <    setScreeningMethod( &sm );
1093 <    setDampingAlpha( &alphaVal );
1094 <    setReactionFieldDielectric( &dielectric );
1095 <    initFortranFF( &errorOut );
932 >    topologyDone_ = true;
933    }
934  
1098  void SimInfo::setupSwitchingFunction() {    
1099    int ft = CUBIC;
1100
1101    if (simParams_->haveSwitchingFunctionType()) {
1102      std::string funcType = simParams_->getSwitchingFunctionType();
1103      toUpper(funcType);
1104      if (funcType == "CUBIC") {
1105        ft = CUBIC;
1106      } else {
1107        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1108          ft = FIFTH_ORDER_POLY;
1109        } else {
1110          // throw error        
1111          sprintf( painCave.errMsg,
1112                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1113          painCave.isFatal = 1;
1114          simError();
1115        }          
1116      }
1117    }
1118
1119    // send switching function notification to switcheroo
1120    setFunctionType(&ft);
1121
1122  }
1123
935    void SimInfo::addProperty(GenericData* genData) {
936      properties_.addProperty(genData);  
937    }
938  
939 <  void SimInfo::removeProperty(const std::string& propName) {
939 >  void SimInfo::removeProperty(const string& propName) {
940      properties_.removeProperty(propName);  
941    }
942  
# Line 1133 | Line 944 | namespace oopse {
944      properties_.clearProperties();
945    }
946  
947 <  std::vector<std::string> SimInfo::getPropertyNames() {
947 >  vector<string> SimInfo::getPropertyNames() {
948      return properties_.getPropertyNames();  
949    }
950        
951 <  std::vector<GenericData*> SimInfo::getProperties() {
951 >  vector<GenericData*> SimInfo::getProperties() {
952      return properties_.getProperties();
953    }
954  
955 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
955 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
956      return properties_.getPropertyByName(propName);
957    }
958  
# Line 1155 | Line 966 | namespace oopse {
966      Molecule* mol;
967      RigidBody* rb;
968      Atom* atom;
969 +    CutoffGroup* cg;
970      SimInfo::MoleculeIterator mi;
971      Molecule::RigidBodyIterator rbIter;
972 <    Molecule::AtomIterator atomIter;;
972 >    Molecule::AtomIterator atomIter;
973 >    Molecule::CutoffGroupIterator cgIter;
974  
975      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
976          
# Line 1168 | Line 981 | namespace oopse {
981        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
982          rb->setSnapshotManager(sman_);
983        }
984 +
985 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
986 +        cg->setSnapshotManager(sman_);
987 +      }
988      }    
989      
990    }
# Line 1177 | Line 994 | namespace oopse {
994      Molecule* mol;
995  
996      Vector3d comVel(0.0);
997 <    double totalMass = 0.0;
997 >    RealType totalMass = 0.0;
998      
999  
1000      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1001 <      double mass = mol->getMass();
1001 >      RealType mass = mol->getMass();
1002        totalMass += mass;
1003        comVel += mass * mol->getComVel();
1004      }  
1005  
1006   #ifdef IS_MPI
1007 <    double tmpMass = totalMass;
1007 >    RealType tmpMass = totalMass;
1008      Vector3d tmpComVel(comVel);    
1009 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1009 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1010 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011   #endif
1012  
1013      comVel /= totalMass;
# Line 1203 | Line 1020 | namespace oopse {
1020      Molecule* mol;
1021  
1022      Vector3d com(0.0);
1023 <    double totalMass = 0.0;
1023 >    RealType totalMass = 0.0;
1024      
1025      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1026 <      double mass = mol->getMass();
1026 >      RealType mass = mol->getMass();
1027        totalMass += mass;
1028        com += mass * mol->getCom();
1029      }  
1030  
1031   #ifdef IS_MPI
1032 <    double tmpMass = totalMass;
1032 >    RealType tmpMass = totalMass;
1033      Vector3d tmpCom(com);    
1034 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1035 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1034 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1035 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036   #endif
1037  
1038      com /= totalMass;
# Line 1224 | Line 1041 | namespace oopse {
1041  
1042    }        
1043  
1044 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1044 >  ostream& operator <<(ostream& o, SimInfo& info) {
1045  
1046      return o;
1047    }
# Line 1239 | Line 1056 | namespace oopse {
1056        Molecule* mol;
1057        
1058      
1059 <      double totalMass = 0.0;
1059 >      RealType totalMass = 0.0;
1060      
1061  
1062        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1063 <         double mass = mol->getMass();
1063 >         RealType mass = mol->getMass();
1064           totalMass += mass;
1065           com += mass * mol->getCom();
1066           comVel += mass * mol->getComVel();          
1067        }  
1068        
1069   #ifdef IS_MPI
1070 <      double tmpMass = totalMass;
1070 >      RealType tmpMass = totalMass;
1071        Vector3d tmpCom(com);  
1072        Vector3d tmpComVel(comVel);
1073 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076   #endif
1077        
1078        com /= totalMass;
# Line 1267 | Line 1084 | namespace oopse {
1084  
1085  
1086         [  Ixx -Ixy  -Ixz ]
1087 <  J =| -Iyx  Iyy  -Iyz |
1087 >    J =| -Iyx  Iyy  -Iyz |
1088         [ -Izx -Iyz   Izz ]
1089      */
1090  
1091     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1092        
1093  
1094 <      double xx = 0.0;
1095 <      double yy = 0.0;
1096 <      double zz = 0.0;
1097 <      double xy = 0.0;
1098 <      double xz = 0.0;
1099 <      double yz = 0.0;
1094 >      RealType xx = 0.0;
1095 >      RealType yy = 0.0;
1096 >      RealType zz = 0.0;
1097 >      RealType xy = 0.0;
1098 >      RealType xz = 0.0;
1099 >      RealType yz = 0.0;
1100        Vector3d com(0.0);
1101        Vector3d comVel(0.0);
1102        
# Line 1291 | Line 1108 | namespace oopse {
1108        Vector3d thisq(0.0);
1109        Vector3d thisv(0.0);
1110  
1111 <      double thisMass = 0.0;
1111 >      RealType thisMass = 0.0;
1112      
1113        
1114        
# Line 1329 | Line 1146 | namespace oopse {
1146   #ifdef IS_MPI
1147        Mat3x3d tmpI(inertiaTensor);
1148        Vector3d tmpAngMom;
1149 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151   #endif
1152                
1153        return;
# Line 1351 | Line 1168 | namespace oopse {
1168        Vector3d thisr(0.0);
1169        Vector3d thisp(0.0);
1170        
1171 <      double thisMass;
1171 >      RealType thisMass;
1172        
1173        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1174          thisMass = mol->getMass();
# Line 1364 | Line 1181 | namespace oopse {
1181        
1182   #ifdef IS_MPI
1183        Vector3d tmpAngMom;
1184 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1184 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1185   #endif
1186        
1187        return angularMomentum;
1188     }
1189    
1190 <  
1191 < }//end namespace oopse
1190 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1191 >    return IOIndexToIntegrableObject.at(index);
1192 >  }
1193 >  
1194 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1195 >    IOIndexToIntegrableObject= v;
1196 >  }
1197  
1198 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1199 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1200 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1201 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1202 +  */
1203 +  void SimInfo::getGyrationalVolume(RealType &volume){
1204 +    Mat3x3d intTensor;
1205 +    RealType det;
1206 +    Vector3d dummyAngMom;
1207 +    RealType sysconstants;
1208 +    RealType geomCnst;
1209 +
1210 +    geomCnst = 3.0/2.0;
1211 +    /* Get the inertial tensor and angular momentum for free*/
1212 +    getInertiaTensor(intTensor,dummyAngMom);
1213 +    
1214 +    det = intTensor.determinant();
1215 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1216 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1217 +    return;
1218 +  }
1219 +
1220 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1221 +    Mat3x3d intTensor;
1222 +    Vector3d dummyAngMom;
1223 +    RealType sysconstants;
1224 +    RealType geomCnst;
1225 +
1226 +    geomCnst = 3.0/2.0;
1227 +    /* Get the inertial tensor and angular momentum for free*/
1228 +    getInertiaTensor(intTensor,dummyAngMom);
1229 +    
1230 +    detI = intTensor.determinant();
1231 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1233 +    return;
1234 +  }
1235 + /*
1236 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1237 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1238 +      sdByGlobalIndex_ = v;
1239 +    }
1240 +
1241 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1242 +      //assert(index < nAtoms_ + nRigidBodies_);
1243 +      return sdByGlobalIndex_.at(index);
1244 +    }  
1245 + */  
1246 +  int SimInfo::getNGlobalConstraints() {
1247 +    int nGlobalConstraints;
1248 + #ifdef IS_MPI
1249 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1250 +                  MPI_COMM_WORLD);    
1251 + #else
1252 +    nGlobalConstraints =  nConstraints_;
1253 + #endif
1254 +    return nGlobalConstraints;
1255 +  }
1256 +
1257 + }//end namespace OpenMD
1258 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 809 by gezelter, Mon Dec 12 19:32:50 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines