ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1769
Committed: Mon Jul 9 14:15:52 2012 UTC (12 years, 9 months ago) by gezelter
File size: 32747 byte(s)
Log Message:
Code readability updates.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.cpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #include <algorithm>
51 #include <set>
52 #include <map>
53
54 #include "brains/SimInfo.hpp"
55 #include "math/Vector3.hpp"
56 #include "primitives/Molecule.hpp"
57 #include "primitives/StuntDouble.hpp"
58 #include "utils/MemoryUtils.hpp"
59 #include "utils/simError.h"
60 #include "selection/SelectionManager.hpp"
61 #include "io/ForceFieldOptions.hpp"
62 #include "brains/ForceField.hpp"
63 #include "nonbonded/SwitchingFunction.hpp"
64 #ifdef IS_MPI
65 #include <mpi.h>
66 #endif
67
68 using namespace std;
69 namespace OpenMD {
70
71 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 forceField_(ff), simParams_(simParams),
73 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
77 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 calcBoxDipole_(false), useAtomicVirial_(true) {
80
81 MoleculeStamp* molStamp;
82 int nMolWithSameStamp;
83 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 int nGroups = 0; //total cutoff groups defined in meta-data file
85 CutoffGroupStamp* cgStamp;
86 RigidBodyStamp* rbStamp;
87 int nRigidAtoms = 0;
88
89 vector<Component*> components = simParams->getComponents();
90
91 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 molStamp = (*i)->getMoleculeStamp();
93 nMolWithSameStamp = (*i)->getNMol();
94
95 addMoleculeStamp(molStamp, nMolWithSameStamp);
96
97 //calculate atoms in molecules
98 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99
100 //calculate atoms in cutoff groups
101 int nAtomsInGroups = 0;
102 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103
104 for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 cgStamp = molStamp->getCutoffGroupStamp(j);
106 nAtomsInGroups += cgStamp->getNMembers();
107 }
108
109 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110
111 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
112
113 //calculate atoms in rigid bodies
114 int nAtomsInRigidBodies = 0;
115 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116
117 for (int j=0; j < nRigidBodiesInStamp; j++) {
118 rbStamp = molStamp->getRigidBodyStamp(j);
119 nAtomsInRigidBodies += rbStamp->getNMembers();
120 }
121
122 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
124
125 }
126
127 //every free atom (atom does not belong to cutoff groups) is a cutoff
128 //group therefore the total number of cutoff groups in the system is
129 //equal to the total number of atoms minus number of atoms belong to
130 //cutoff group defined in meta-data file plus the number of cutoff
131 //groups defined in meta-data file
132
133 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134
135 //every free atom (atom does not belong to rigid bodies) is an
136 //integrable object therefore the total number of integrable objects
137 //in the system is equal to the total number of atoms minus number of
138 //atoms belong to rigid body defined in meta-data file plus the number
139 //of rigid bodies defined in meta-data file
140 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 + nGlobalRigidBodies_;
142
143 nGlobalMols_ = molStampIds_.size();
144 molToProcMap_.resize(nGlobalMols_);
145 }
146
147 SimInfo::~SimInfo() {
148 map<int, Molecule*>::iterator i;
149 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 delete i->second;
151 }
152 molecules_.clear();
153
154 delete sman_;
155 delete simParams_;
156 delete forceField_;
157 }
158
159
160 bool SimInfo::addMolecule(Molecule* mol) {
161 MoleculeIterator i;
162
163 i = molecules_.find(mol->getGlobalIndex());
164 if (i == molecules_.end() ) {
165
166 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167
168 nAtoms_ += mol->getNAtoms();
169 nBonds_ += mol->getNBonds();
170 nBends_ += mol->getNBends();
171 nTorsions_ += mol->getNTorsions();
172 nInversions_ += mol->getNInversions();
173 nRigidBodies_ += mol->getNRigidBodies();
174 nIntegrableObjects_ += mol->getNIntegrableObjects();
175 nCutoffGroups_ += mol->getNCutoffGroups();
176 nConstraints_ += mol->getNConstraintPairs();
177
178 addInteractionPairs(mol);
179
180 return true;
181 } else {
182 return false;
183 }
184 }
185
186 bool SimInfo::removeMolecule(Molecule* mol) {
187 MoleculeIterator i;
188 i = molecules_.find(mol->getGlobalIndex());
189
190 if (i != molecules_.end() ) {
191
192 assert(mol == i->second);
193
194 nAtoms_ -= mol->getNAtoms();
195 nBonds_ -= mol->getNBonds();
196 nBends_ -= mol->getNBends();
197 nTorsions_ -= mol->getNTorsions();
198 nInversions_ -= mol->getNInversions();
199 nRigidBodies_ -= mol->getNRigidBodies();
200 nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 nCutoffGroups_ -= mol->getNCutoffGroups();
202 nConstraints_ -= mol->getNConstraintPairs();
203
204 removeInteractionPairs(mol);
205 molecules_.erase(mol->getGlobalIndex());
206
207 delete mol;
208
209 return true;
210 } else {
211 return false;
212 }
213 }
214
215
216 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 i = molecules_.begin();
218 return i == molecules_.end() ? NULL : i->second;
219 }
220
221 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 ++i;
223 return i == molecules_.end() ? NULL : i->second;
224 }
225
226
227 void SimInfo::calcNdf() {
228 int ndf_local, nfq_local;
229 MoleculeIterator i;
230 vector<StuntDouble*>::iterator j;
231 vector<Atom*>::iterator k;
232
233 Molecule* mol;
234 StuntDouble* sd;
235 Atom* atom;
236
237 ndf_local = 0;
238 nfq_local = 0;
239
240 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241
242 for (sd = mol->beginIntegrableObject(j); sd != NULL;
243 sd = mol->nextIntegrableObject(j)) {
244
245 ndf_local += 3;
246
247 if (sd->isDirectional()) {
248 if (sd->isLinear()) {
249 ndf_local += 2;
250 } else {
251 ndf_local += 3;
252 }
253 }
254 }
255
256 for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
257 atom = mol->nextFluctuatingCharge(k)) {
258 if (atom->isFluctuatingCharge()) {
259 nfq_local++;
260 }
261 }
262 }
263
264 ndfLocal_ = ndf_local;
265
266 // n_constraints is local, so subtract them on each processor
267 ndf_local -= nConstraints_;
268
269 #ifdef IS_MPI
270 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
272 #else
273 ndf_ = ndf_local;
274 nGlobalFluctuatingCharges_ = nfq_local;
275 #endif
276
277 // nZconstraints_ is global, as are the 3 COM translations for the
278 // entire system:
279 ndf_ = ndf_ - 3 - nZconstraint_;
280
281 }
282
283 int SimInfo::getFdf() {
284 #ifdef IS_MPI
285 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 #else
287 fdf_ = fdf_local;
288 #endif
289 return fdf_;
290 }
291
292 unsigned int SimInfo::getNLocalCutoffGroups(){
293 int nLocalCutoffAtoms = 0;
294 Molecule* mol;
295 MoleculeIterator mi;
296 CutoffGroup* cg;
297 Molecule::CutoffGroupIterator ci;
298
299 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
300
301 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
302 cg = mol->nextCutoffGroup(ci)) {
303 nLocalCutoffAtoms += cg->getNumAtom();
304
305 }
306 }
307
308 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
309 }
310
311 void SimInfo::calcNdfRaw() {
312 int ndfRaw_local;
313
314 MoleculeIterator i;
315 vector<StuntDouble*>::iterator j;
316 Molecule* mol;
317 StuntDouble* sd;
318
319 // Raw degrees of freedom that we have to set
320 ndfRaw_local = 0;
321
322 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
323
324 for (sd = mol->beginIntegrableObject(j); sd != NULL;
325 sd = mol->nextIntegrableObject(j)) {
326
327 ndfRaw_local += 3;
328
329 if (sd->isDirectional()) {
330 if (sd->isLinear()) {
331 ndfRaw_local += 2;
332 } else {
333 ndfRaw_local += 3;
334 }
335 }
336
337 }
338 }
339
340 #ifdef IS_MPI
341 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
342 #else
343 ndfRaw_ = ndfRaw_local;
344 #endif
345 }
346
347 void SimInfo::calcNdfTrans() {
348 int ndfTrans_local;
349
350 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
351
352
353 #ifdef IS_MPI
354 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 #else
356 ndfTrans_ = ndfTrans_local;
357 #endif
358
359 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
360
361 }
362
363 void SimInfo::addInteractionPairs(Molecule* mol) {
364 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
365 vector<Bond*>::iterator bondIter;
366 vector<Bend*>::iterator bendIter;
367 vector<Torsion*>::iterator torsionIter;
368 vector<Inversion*>::iterator inversionIter;
369 Bond* bond;
370 Bend* bend;
371 Torsion* torsion;
372 Inversion* inversion;
373 int a;
374 int b;
375 int c;
376 int d;
377
378 // atomGroups can be used to add special interaction maps between
379 // groups of atoms that are in two separate rigid bodies.
380 // However, most site-site interactions between two rigid bodies
381 // are probably not special, just the ones between the physically
382 // bonded atoms. Interactions *within* a single rigid body should
383 // always be excluded. These are done at the bottom of this
384 // function.
385
386 map<int, set<int> > atomGroups;
387 Molecule::RigidBodyIterator rbIter;
388 RigidBody* rb;
389 Molecule::IntegrableObjectIterator ii;
390 StuntDouble* sd;
391
392 for (sd = mol->beginIntegrableObject(ii); sd != NULL;
393 sd = mol->nextIntegrableObject(ii)) {
394
395 if (sd->isRigidBody()) {
396 rb = static_cast<RigidBody*>(sd);
397 vector<Atom*> atoms = rb->getAtoms();
398 set<int> rigidAtoms;
399 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
400 rigidAtoms.insert(atoms[i]->getGlobalIndex());
401 }
402 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
403 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
404 }
405 } else {
406 set<int> oneAtomSet;
407 oneAtomSet.insert(sd->getGlobalIndex());
408 atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));
409 }
410 }
411
412 for (bond= mol->beginBond(bondIter); bond != NULL;
413 bond = mol->nextBond(bondIter)) {
414
415 a = bond->getAtomA()->getGlobalIndex();
416 b = bond->getAtomB()->getGlobalIndex();
417
418 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
419 oneTwoInteractions_.addPair(a, b);
420 } else {
421 excludedInteractions_.addPair(a, b);
422 }
423 }
424
425 for (bend= mol->beginBend(bendIter); bend != NULL;
426 bend = mol->nextBend(bendIter)) {
427
428 a = bend->getAtomA()->getGlobalIndex();
429 b = bend->getAtomB()->getGlobalIndex();
430 c = bend->getAtomC()->getGlobalIndex();
431
432 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
433 oneTwoInteractions_.addPair(a, b);
434 oneTwoInteractions_.addPair(b, c);
435 } else {
436 excludedInteractions_.addPair(a, b);
437 excludedInteractions_.addPair(b, c);
438 }
439
440 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
441 oneThreeInteractions_.addPair(a, c);
442 } else {
443 excludedInteractions_.addPair(a, c);
444 }
445 }
446
447 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
448 torsion = mol->nextTorsion(torsionIter)) {
449
450 a = torsion->getAtomA()->getGlobalIndex();
451 b = torsion->getAtomB()->getGlobalIndex();
452 c = torsion->getAtomC()->getGlobalIndex();
453 d = torsion->getAtomD()->getGlobalIndex();
454
455 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 oneTwoInteractions_.addPair(a, b);
457 oneTwoInteractions_.addPair(b, c);
458 oneTwoInteractions_.addPair(c, d);
459 } else {
460 excludedInteractions_.addPair(a, b);
461 excludedInteractions_.addPair(b, c);
462 excludedInteractions_.addPair(c, d);
463 }
464
465 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 oneThreeInteractions_.addPair(a, c);
467 oneThreeInteractions_.addPair(b, d);
468 } else {
469 excludedInteractions_.addPair(a, c);
470 excludedInteractions_.addPair(b, d);
471 }
472
473 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
474 oneFourInteractions_.addPair(a, d);
475 } else {
476 excludedInteractions_.addPair(a, d);
477 }
478 }
479
480 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
481 inversion = mol->nextInversion(inversionIter)) {
482
483 a = inversion->getAtomA()->getGlobalIndex();
484 b = inversion->getAtomB()->getGlobalIndex();
485 c = inversion->getAtomC()->getGlobalIndex();
486 d = inversion->getAtomD()->getGlobalIndex();
487
488 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
489 oneTwoInteractions_.addPair(a, b);
490 oneTwoInteractions_.addPair(a, c);
491 oneTwoInteractions_.addPair(a, d);
492 } else {
493 excludedInteractions_.addPair(a, b);
494 excludedInteractions_.addPair(a, c);
495 excludedInteractions_.addPair(a, d);
496 }
497
498 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
499 oneThreeInteractions_.addPair(b, c);
500 oneThreeInteractions_.addPair(b, d);
501 oneThreeInteractions_.addPair(c, d);
502 } else {
503 excludedInteractions_.addPair(b, c);
504 excludedInteractions_.addPair(b, d);
505 excludedInteractions_.addPair(c, d);
506 }
507 }
508
509 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
510 rb = mol->nextRigidBody(rbIter)) {
511 vector<Atom*> atoms = rb->getAtoms();
512 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
513 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
514 a = atoms[i]->getGlobalIndex();
515 b = atoms[j]->getGlobalIndex();
516 excludedInteractions_.addPair(a, b);
517 }
518 }
519 }
520
521 }
522
523 void SimInfo::removeInteractionPairs(Molecule* mol) {
524 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
525 vector<Bond*>::iterator bondIter;
526 vector<Bend*>::iterator bendIter;
527 vector<Torsion*>::iterator torsionIter;
528 vector<Inversion*>::iterator inversionIter;
529 Bond* bond;
530 Bend* bend;
531 Torsion* torsion;
532 Inversion* inversion;
533 int a;
534 int b;
535 int c;
536 int d;
537
538 map<int, set<int> > atomGroups;
539 Molecule::RigidBodyIterator rbIter;
540 RigidBody* rb;
541 Molecule::IntegrableObjectIterator ii;
542 StuntDouble* sd;
543
544 for (sd = mol->beginIntegrableObject(ii); sd != NULL;
545 sd = mol->nextIntegrableObject(ii)) {
546
547 if (sd->isRigidBody()) {
548 rb = static_cast<RigidBody*>(sd);
549 vector<Atom*> atoms = rb->getAtoms();
550 set<int> rigidAtoms;
551 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 }
554 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 }
557 } else {
558 set<int> oneAtomSet;
559 oneAtomSet.insert(sd->getGlobalIndex());
560 atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet));
561 }
562 }
563
564 for (bond= mol->beginBond(bondIter); bond != NULL;
565 bond = mol->nextBond(bondIter)) {
566
567 a = bond->getAtomA()->getGlobalIndex();
568 b = bond->getAtomB()->getGlobalIndex();
569
570 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 oneTwoInteractions_.removePair(a, b);
572 } else {
573 excludedInteractions_.removePair(a, b);
574 }
575 }
576
577 for (bend= mol->beginBend(bendIter); bend != NULL;
578 bend = mol->nextBend(bendIter)) {
579
580 a = bend->getAtomA()->getGlobalIndex();
581 b = bend->getAtomB()->getGlobalIndex();
582 c = bend->getAtomC()->getGlobalIndex();
583
584 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 oneTwoInteractions_.removePair(a, b);
586 oneTwoInteractions_.removePair(b, c);
587 } else {
588 excludedInteractions_.removePair(a, b);
589 excludedInteractions_.removePair(b, c);
590 }
591
592 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 oneThreeInteractions_.removePair(a, c);
594 } else {
595 excludedInteractions_.removePair(a, c);
596 }
597 }
598
599 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 torsion = mol->nextTorsion(torsionIter)) {
601
602 a = torsion->getAtomA()->getGlobalIndex();
603 b = torsion->getAtomB()->getGlobalIndex();
604 c = torsion->getAtomC()->getGlobalIndex();
605 d = torsion->getAtomD()->getGlobalIndex();
606
607 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 oneTwoInteractions_.removePair(a, b);
609 oneTwoInteractions_.removePair(b, c);
610 oneTwoInteractions_.removePair(c, d);
611 } else {
612 excludedInteractions_.removePair(a, b);
613 excludedInteractions_.removePair(b, c);
614 excludedInteractions_.removePair(c, d);
615 }
616
617 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 oneThreeInteractions_.removePair(a, c);
619 oneThreeInteractions_.removePair(b, d);
620 } else {
621 excludedInteractions_.removePair(a, c);
622 excludedInteractions_.removePair(b, d);
623 }
624
625 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 oneFourInteractions_.removePair(a, d);
627 } else {
628 excludedInteractions_.removePair(a, d);
629 }
630 }
631
632 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 inversion = mol->nextInversion(inversionIter)) {
634
635 a = inversion->getAtomA()->getGlobalIndex();
636 b = inversion->getAtomB()->getGlobalIndex();
637 c = inversion->getAtomC()->getGlobalIndex();
638 d = inversion->getAtomD()->getGlobalIndex();
639
640 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 oneTwoInteractions_.removePair(a, b);
642 oneTwoInteractions_.removePair(a, c);
643 oneTwoInteractions_.removePair(a, d);
644 } else {
645 excludedInteractions_.removePair(a, b);
646 excludedInteractions_.removePair(a, c);
647 excludedInteractions_.removePair(a, d);
648 }
649
650 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 oneThreeInteractions_.removePair(b, c);
652 oneThreeInteractions_.removePair(b, d);
653 oneThreeInteractions_.removePair(c, d);
654 } else {
655 excludedInteractions_.removePair(b, c);
656 excludedInteractions_.removePair(b, d);
657 excludedInteractions_.removePair(c, d);
658 }
659 }
660
661 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 rb = mol->nextRigidBody(rbIter)) {
663 vector<Atom*> atoms = rb->getAtoms();
664 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666 a = atoms[i]->getGlobalIndex();
667 b = atoms[j]->getGlobalIndex();
668 excludedInteractions_.removePair(a, b);
669 }
670 }
671 }
672
673 }
674
675
676 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677 int curStampId;
678
679 //index from 0
680 curStampId = moleculeStamps_.size();
681
682 moleculeStamps_.push_back(molStamp);
683 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684 }
685
686
687 /**
688 * update
689 *
690 * Performs the global checks and variable settings after the
691 * objects have been created.
692 *
693 */
694 void SimInfo::update() {
695 setupSimVariables();
696 calcNdf();
697 calcNdfRaw();
698 calcNdfTrans();
699 }
700
701 /**
702 * getSimulatedAtomTypes
703 *
704 * Returns an STL set of AtomType* that are actually present in this
705 * simulation. Must query all processors to assemble this information.
706 *
707 */
708 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709 SimInfo::MoleculeIterator mi;
710 Molecule* mol;
711 Molecule::AtomIterator ai;
712 Atom* atom;
713 set<AtomType*> atomTypes;
714
715 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 for(atom = mol->beginAtom(ai); atom != NULL;
717 atom = mol->nextAtom(ai)) {
718 atomTypes.insert(atom->getAtomType());
719 }
720 }
721
722 #ifdef IS_MPI
723
724 // loop over the found atom types on this processor, and add their
725 // numerical idents to a vector:
726
727 vector<int> foundTypes;
728 set<AtomType*>::iterator i;
729 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 foundTypes.push_back( (*i)->getIdent() );
731
732 // count_local holds the number of found types on this processor
733 int count_local = foundTypes.size();
734
735 int nproc = MPI::COMM_WORLD.Get_size();
736
737 // we need arrays to hold the counts and displacement vectors for
738 // all processors
739 vector<int> counts(nproc, 0);
740 vector<int> disps(nproc, 0);
741
742 // fill the counts array
743 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 1, MPI::INT);
745
746 // use the processor counts to compute the displacement array
747 disps[0] = 0;
748 int totalCount = counts[0];
749 for (int iproc = 1; iproc < nproc; iproc++) {
750 disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 totalCount += counts[iproc];
752 }
753
754 // we need a (possibly redundant) set of all found types:
755 vector<int> ftGlobal(totalCount);
756
757 // now spray out the foundTypes to all the other processors:
758 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 &ftGlobal[0], &counts[0], &disps[0],
760 MPI::INT);
761
762 vector<int>::iterator j;
763
764 // foundIdents is a stl set, so inserting an already found ident
765 // will have no effect.
766 set<int> foundIdents;
767
768 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 foundIdents.insert((*j));
770
771 // now iterate over the foundIdents and get the actual atom types
772 // that correspond to these:
773 set<int>::iterator it;
774 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 atomTypes.insert( forceField_->getAtomType((*it)) );
776
777 #endif
778
779 return atomTypes;
780 }
781
782 void SimInfo::setupSimVariables() {
783 useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 calcBoxDipole_ = false;
786 if ( simParams_->haveAccumulateBoxDipole() )
787 if ( simParams_->getAccumulateBoxDipole() ) {
788 calcBoxDipole_ = true;
789 }
790
791 set<AtomType*>::iterator i;
792 set<AtomType*> atomTypes;
793 atomTypes = getSimulatedAtomTypes();
794 bool usesElectrostatic = false;
795 bool usesMetallic = false;
796 bool usesDirectional = false;
797 bool usesFluctuatingCharges = false;
798 //loop over all of the atom types
799 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 usesElectrostatic |= (*i)->isElectrostatic();
801 usesMetallic |= (*i)->isMetal();
802 usesDirectional |= (*i)->isDirectional();
803 usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804 }
805
806 #ifdef IS_MPI
807 bool temp;
808 temp = usesDirectional;
809 MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL,
810 MPI::LOR);
811
812 temp = usesMetallic;
813 MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL,
814 MPI::LOR);
815
816 temp = usesElectrostatic;
817 MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL,
818 MPI::LOR);
819
820 temp = usesFluctuatingCharges;
821 MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL,
822 MPI::LOR);
823 #else
824
825 usesDirectionalAtoms_ = usesDirectional;
826 usesMetallicAtoms_ = usesMetallic;
827 usesElectrostaticAtoms_ = usesElectrostatic;
828 usesFluctuatingCharges_ = usesFluctuatingCharges;
829
830 #endif
831
832 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
833 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
834 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
835 }
836
837
838 vector<int> SimInfo::getGlobalAtomIndices() {
839 SimInfo::MoleculeIterator mi;
840 Molecule* mol;
841 Molecule::AtomIterator ai;
842 Atom* atom;
843
844 vector<int> GlobalAtomIndices(getNAtoms(), 0);
845
846 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
847
848 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
849 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
850 }
851 }
852 return GlobalAtomIndices;
853 }
854
855
856 vector<int> SimInfo::getGlobalGroupIndices() {
857 SimInfo::MoleculeIterator mi;
858 Molecule* mol;
859 Molecule::CutoffGroupIterator ci;
860 CutoffGroup* cg;
861
862 vector<int> GlobalGroupIndices;
863
864 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
865
866 //local index of cutoff group is trivial, it only depends on the
867 //order of travesing
868 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
869 cg = mol->nextCutoffGroup(ci)) {
870 GlobalGroupIndices.push_back(cg->getGlobalIndex());
871 }
872 }
873 return GlobalGroupIndices;
874 }
875
876
877 void SimInfo::prepareTopology() {
878 int nExclude, nOneTwo, nOneThree, nOneFour;
879
880 //calculate mass ratio of cutoff group
881 SimInfo::MoleculeIterator mi;
882 Molecule* mol;
883 Molecule::CutoffGroupIterator ci;
884 CutoffGroup* cg;
885 Molecule::AtomIterator ai;
886 Atom* atom;
887 RealType totalMass;
888
889 /**
890 * The mass factor is the relative mass of an atom to the total
891 * mass of the cutoff group it belongs to. By default, all atoms
892 * are their own cutoff groups, and therefore have mass factors of
893 * 1. We need some special handling for massless atoms, which
894 * will be treated as carrying the entire mass of the cutoff
895 * group.
896 */
897 massFactors_.clear();
898 massFactors_.resize(getNAtoms(), 1.0);
899
900 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
901 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
902 cg = mol->nextCutoffGroup(ci)) {
903
904 totalMass = cg->getMass();
905 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
906 // Check for massless groups - set mfact to 1 if true
907 if (totalMass != 0)
908 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
909 else
910 massFactors_[atom->getLocalIndex()] = 1.0;
911 }
912 }
913 }
914
915 // Build the identArray_
916
917 identArray_.clear();
918 identArray_.reserve(getNAtoms());
919 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
920 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
921 identArray_.push_back(atom->getIdent());
922 }
923 }
924
925 //scan topology
926
927 nExclude = excludedInteractions_.getSize();
928 nOneTwo = oneTwoInteractions_.getSize();
929 nOneThree = oneThreeInteractions_.getSize();
930 nOneFour = oneFourInteractions_.getSize();
931
932 int* excludeList = excludedInteractions_.getPairList();
933 int* oneTwoList = oneTwoInteractions_.getPairList();
934 int* oneThreeList = oneThreeInteractions_.getPairList();
935 int* oneFourList = oneFourInteractions_.getPairList();
936
937 topologyDone_ = true;
938 }
939
940 void SimInfo::addProperty(GenericData* genData) {
941 properties_.addProperty(genData);
942 }
943
944 void SimInfo::removeProperty(const string& propName) {
945 properties_.removeProperty(propName);
946 }
947
948 void SimInfo::clearProperties() {
949 properties_.clearProperties();
950 }
951
952 vector<string> SimInfo::getPropertyNames() {
953 return properties_.getPropertyNames();
954 }
955
956 vector<GenericData*> SimInfo::getProperties() {
957 return properties_.getProperties();
958 }
959
960 GenericData* SimInfo::getPropertyByName(const string& propName) {
961 return properties_.getPropertyByName(propName);
962 }
963
964 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
965 if (sman_ == sman) {
966 return;
967 }
968 delete sman_;
969 sman_ = sman;
970
971 Molecule* mol;
972 RigidBody* rb;
973 Atom* atom;
974 CutoffGroup* cg;
975 SimInfo::MoleculeIterator mi;
976 Molecule::RigidBodyIterator rbIter;
977 Molecule::AtomIterator atomIter;
978 Molecule::CutoffGroupIterator cgIter;
979
980 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
981
982 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
983 atom->setSnapshotManager(sman_);
984 }
985
986 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
987 rb->setSnapshotManager(sman_);
988 }
989
990 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
991 cg->setSnapshotManager(sman_);
992 }
993 }
994
995 }
996
997
998 ostream& operator <<(ostream& o, SimInfo& info) {
999
1000 return o;
1001 }
1002
1003
1004 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1005 return IOIndexToIntegrableObject.at(index);
1006 }
1007
1008 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1009 IOIndexToIntegrableObject= v;
1010 }
1011 /*
1012 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1013 assert( v.size() == nAtoms_ + nRigidBodies_);
1014 sdByGlobalIndex_ = v;
1015 }
1016
1017 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1018 //assert(index < nAtoms_ + nRigidBodies_);
1019 return sdByGlobalIndex_.at(index);
1020 }
1021 */
1022 int SimInfo::getNGlobalConstraints() {
1023 int nGlobalConstraints;
1024 #ifdef IS_MPI
1025 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1026 MPI_COMM_WORLD);
1027 #else
1028 nGlobalConstraints = nConstraints_;
1029 #endif
1030 return nGlobalConstraints;
1031 }
1032
1033 }//end namespace OpenMD
1034

Properties

Name Value
svn:keywords Author Id Revision Date