ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1121 by chuckv, Mon Feb 26 04:45:42 2007 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
71 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
79 <
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
87 <      std::vector<Component*> components = simParams->getComponents();
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94        
95 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
96 <        molStamp = (*i)->getMoleculeStamp();
97 <        nMolWithSameStamp = (*i)->getNMol();
98 <        
99 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
100 <
101 <        //calculate atoms in molecules
102 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 <
104 <        //calculate atoms in cutoff groups
105 <        int nAtomsInGroups = 0;
106 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
122 <        }
123 <
124 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 <
126 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 <
128 <        //calculate atoms in rigid bodies
129 <        int nAtomsInRigidBodies = 0;
130 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 <        
132 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBodyStamp(j);
134 <          nAtomsInRigidBodies += rbStamp->getNMembers();
135 <        }
136 <
137 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 <        
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
110 <      //group therefore the total number of cutoff groups in the system is
111 <      //equal to the total number of atoms minus number of atoms belong to
112 <      //cutoff group defined in meta-data file plus the number of cutoff
113 <      //groups defined in meta-data file
114 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
115 <
116 <      //every free atom (atom does not belong to rigid bodies) is an
117 <      //integrable object therefore the total number of integrable objects
118 <      //in the system is equal to the total number of atoms minus number of
119 <      //atoms belong to rigid body defined in meta-data file plus the number
120 <      //of rigid bodies defined in meta-data file
121 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
122 <                                                + nGlobalRigidBodies_;
123 <  
124 <      nGlobalMols_ = molStampIds_.size();
158 <
159 < #ifdef IS_MPI    
160 <      molToProcMap_.resize(nGlobalMols_);
161 < #endif
162 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
# Line 174 | Line 156 | namespace oopse {
156      delete forceField_;
157    }
158  
177  int SimInfo::getNGlobalConstraints() {
178    int nGlobalConstraints;
179 #ifdef IS_MPI
180    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181                  MPI_COMM_WORLD);    
182 #else
183    nGlobalConstraints =  nConstraints_;
184 #endif
185    return nGlobalConstraints;
186  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 222 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 236 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
239
240
213    }    
214  
215          
# Line 253 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 274 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
277            
253        }
254 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 +           atom = mol->nextFluctuatingCharge(k)) {
256 +        if (atom->isFluctuatingCharge()) {
257 +          nfq_local++;
258 +        }
259 +      }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +
264      // n_constraints is local, so subtract them on each processor
265      ndf_local -= nConstraints_;
266  
267   #ifdef IS_MPI
268      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270   #else
271      ndf_ = ndf_local;
272 +    nGlobalFluctuatingCharges_ = nfq_local;
273   #endif
274  
275      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 301 | Line 286 | namespace oopse {
286   #endif
287      return fdf_;
288    }
289 +  
290 +  unsigned int SimInfo::getNLocalCutoffGroups(){
291 +    int nLocalCutoffAtoms = 0;
292 +    Molecule* mol;
293 +    MoleculeIterator mi;
294 +    CutoffGroup* cg;
295 +    Molecule::CutoffGroupIterator ci;
296      
297 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
298 +      
299 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 +           cg = mol->nextCutoffGroup(ci)) {
301 +        nLocalCutoffAtoms += cg->getNumAtom();
302 +        
303 +      }        
304 +    }
305 +    
306 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 +  }
308 +    
309    void SimInfo::calcNdfRaw() {
310      int ndfRaw_local;
311  
312      MoleculeIterator i;
313 <    std::vector<StuntDouble*>::iterator j;
313 >    vector<StuntDouble*>::iterator j;
314      Molecule* mol;
315      StuntDouble* integrableObject;
316  
# Line 353 | Line 357 | namespace oopse {
357  
358    }
359  
360 <  void SimInfo::addExcludePairs(Molecule* mol) {
361 <    std::vector<Bond*>::iterator bondIter;
362 <    std::vector<Bend*>::iterator bendIter;
363 <    std::vector<Torsion*>::iterator torsionIter;
360 >  void SimInfo::addInteractionPairs(Molecule* mol) {
361 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 >    vector<Bond*>::iterator bondIter;
363 >    vector<Bend*>::iterator bendIter;
364 >    vector<Torsion*>::iterator torsionIter;
365 >    vector<Inversion*>::iterator inversionIter;
366      Bond* bond;
367      Bend* bend;
368      Torsion* torsion;
369 +    Inversion* inversion;
370      int a;
371      int b;
372      int c;
373      int d;
374  
375 <    std::map<int, std::set<int> > atomGroups;
375 >    // atomGroups can be used to add special interaction maps between
376 >    // groups of atoms that are in two separate rigid bodies.
377 >    // However, most site-site interactions between two rigid bodies
378 >    // are probably not special, just the ones between the physically
379 >    // bonded atoms.  Interactions *within* a single rigid body should
380 >    // always be excluded.  These are done at the bottom of this
381 >    // function.
382  
383 +    map<int, set<int> > atomGroups;
384      Molecule::RigidBodyIterator rbIter;
385      RigidBody* rb;
386      Molecule::IntegrableObjectIterator ii;
387      StuntDouble* integrableObject;
388      
389 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
390 <           integrableObject = mol->nextIntegrableObject(ii)) {
391 <
389 >    for (integrableObject = mol->beginIntegrableObject(ii);
390 >         integrableObject != NULL;
391 >         integrableObject = mol->nextIntegrableObject(ii)) {
392 >      
393        if (integrableObject->isRigidBody()) {
394 <          rb = static_cast<RigidBody*>(integrableObject);
395 <          std::vector<Atom*> atoms = rb->getAtoms();
396 <          std::set<int> rigidAtoms;
397 <          for (int i = 0; i < atoms.size(); ++i) {
398 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 <          }
400 <          for (int i = 0; i < atoms.size(); ++i) {
401 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 <          }      
394 >        rb = static_cast<RigidBody*>(integrableObject);
395 >        vector<Atom*> atoms = rb->getAtoms();
396 >        set<int> rigidAtoms;
397 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 >        }
400 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 >        }      
403        } else {
404 <        std::set<int> oneAtomSet;
404 >        set<int> oneAtomSet;
405          oneAtomSet.insert(integrableObject->getGlobalIndex());
406 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
406 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407        }
408      }  
409 +          
410 +    for (bond= mol->beginBond(bondIter); bond != NULL;
411 +         bond = mol->nextBond(bondIter)) {
412  
395    
396    
397    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
413        a = bond->getAtomA()->getGlobalIndex();
414 <      b = bond->getAtomB()->getGlobalIndex();        
415 <      exclude_.addPair(a, b);
414 >      b = bond->getAtomB()->getGlobalIndex();  
415 >    
416 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 >        oneTwoInteractions_.addPair(a, b);
418 >      } else {
419 >        excludedInteractions_.addPair(a, b);
420 >      }
421      }
422  
423 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
423 >    for (bend= mol->beginBend(bendIter); bend != NULL;
424 >         bend = mol->nextBend(bendIter)) {
425 >
426        a = bend->getAtomA()->getGlobalIndex();
427        b = bend->getAtomB()->getGlobalIndex();        
428        c = bend->getAtomC()->getGlobalIndex();
407      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410
411      exclude_.addPairs(rigidSetA, rigidSetB);
412      exclude_.addPairs(rigidSetA, rigidSetC);
413      exclude_.addPairs(rigidSetB, rigidSetC);
429        
430 <      //exclude_.addPair(a, b);
431 <      //exclude_.addPair(a, c);
432 <      //exclude_.addPair(b, c);        
430 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 >        oneTwoInteractions_.addPair(a, b);      
432 >        oneTwoInteractions_.addPair(b, c);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >      }
437 >
438 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 >        oneThreeInteractions_.addPair(a, c);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >      }
443      }
444  
445 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
445 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 >         torsion = mol->nextTorsion(torsionIter)) {
447 >
448        a = torsion->getAtomA()->getGlobalIndex();
449        b = torsion->getAtomB()->getGlobalIndex();        
450        c = torsion->getAtomC()->getGlobalIndex();        
451 <      d = torsion->getAtomD()->getGlobalIndex();        
425 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
451 >      d = torsion->getAtomD()->getGlobalIndex();      
452  
453 <      exclude_.addPairs(rigidSetA, rigidSetB);
454 <      exclude_.addPairs(rigidSetA, rigidSetC);
455 <      exclude_.addPairs(rigidSetA, rigidSetD);
456 <      exclude_.addPairs(rigidSetB, rigidSetC);
457 <      exclude_.addPairs(rigidSetB, rigidSetD);
458 <      exclude_.addPairs(rigidSetC, rigidSetD);
453 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 >        oneTwoInteractions_.addPair(a, b);      
455 >        oneTwoInteractions_.addPair(b, c);
456 >        oneTwoInteractions_.addPair(c, d);
457 >      } else {
458 >        excludedInteractions_.addPair(a, b);
459 >        excludedInteractions_.addPair(b, c);
460 >        excludedInteractions_.addPair(c, d);
461 >      }
462  
463 <      /*
464 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
465 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
466 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
467 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
468 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
469 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
470 <        
471 <      
472 <      exclude_.addPair(a, b);
473 <      exclude_.addPair(a, c);
474 <      exclude_.addPair(a, d);
475 <      exclude_.addPair(b, c);
450 <      exclude_.addPair(b, d);
451 <      exclude_.addPair(c, d);        
452 <      */
463 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 >        oneThreeInteractions_.addPair(a, c);      
465 >        oneThreeInteractions_.addPair(b, d);      
466 >      } else {
467 >        excludedInteractions_.addPair(a, c);
468 >        excludedInteractions_.addPair(b, d);
469 >      }
470 >
471 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 >        oneFourInteractions_.addPair(a, d);      
473 >      } else {
474 >        excludedInteractions_.addPair(a, d);
475 >      }
476      }
477  
478 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
479 <      std::vector<Atom*> atoms = rb->getAtoms();
480 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
481 <        for (int j = i + 1; j < atoms.size(); ++j) {
478 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 >         inversion = mol->nextInversion(inversionIter)) {
480 >
481 >      a = inversion->getAtomA()->getGlobalIndex();
482 >      b = inversion->getAtomB()->getGlobalIndex();        
483 >      c = inversion->getAtomC()->getGlobalIndex();        
484 >      d = inversion->getAtomD()->getGlobalIndex();        
485 >
486 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 >        oneTwoInteractions_.addPair(a, b);      
488 >        oneTwoInteractions_.addPair(a, c);
489 >        oneTwoInteractions_.addPair(a, d);
490 >      } else {
491 >        excludedInteractions_.addPair(a, b);
492 >        excludedInteractions_.addPair(a, c);
493 >        excludedInteractions_.addPair(a, d);
494 >      }
495 >
496 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 >        oneThreeInteractions_.addPair(b, c);    
498 >        oneThreeInteractions_.addPair(b, d);    
499 >        oneThreeInteractions_.addPair(c, d);      
500 >      } else {
501 >        excludedInteractions_.addPair(b, c);
502 >        excludedInteractions_.addPair(b, d);
503 >        excludedInteractions_.addPair(c, d);
504 >      }
505 >    }
506 >
507 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 >         rb = mol->nextRigidBody(rbIter)) {
509 >      vector<Atom*> atoms = rb->getAtoms();
510 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512            a = atoms[i]->getGlobalIndex();
513            b = atoms[j]->getGlobalIndex();
514 <          exclude_.addPair(a, b);
514 >          excludedInteractions_.addPair(a, b);
515          }
516        }
517      }        
518  
519    }
520  
521 <  void SimInfo::removeExcludePairs(Molecule* mol) {
522 <    std::vector<Bond*>::iterator bondIter;
523 <    std::vector<Bend*>::iterator bendIter;
524 <    std::vector<Torsion*>::iterator torsionIter;
521 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
522 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 >    vector<Bond*>::iterator bondIter;
524 >    vector<Bend*>::iterator bendIter;
525 >    vector<Torsion*>::iterator torsionIter;
526 >    vector<Inversion*>::iterator inversionIter;
527      Bond* bond;
528      Bend* bend;
529      Torsion* torsion;
530 +    Inversion* inversion;
531      int a;
532      int b;
533      int c;
534      int d;
535  
536 <    std::map<int, std::set<int> > atomGroups;
481 <
536 >    map<int, set<int> > atomGroups;
537      Molecule::RigidBodyIterator rbIter;
538      RigidBody* rb;
539      Molecule::IntegrableObjectIterator ii;
540      StuntDouble* integrableObject;
541      
542 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
543 <           integrableObject = mol->nextIntegrableObject(ii)) {
544 <
542 >    for (integrableObject = mol->beginIntegrableObject(ii);
543 >         integrableObject != NULL;
544 >         integrableObject = mol->nextIntegrableObject(ii)) {
545 >      
546        if (integrableObject->isRigidBody()) {
547 <          rb = static_cast<RigidBody*>(integrableObject);
548 <          std::vector<Atom*> atoms = rb->getAtoms();
549 <          std::set<int> rigidAtoms;
550 <          for (int i = 0; i < atoms.size(); ++i) {
551 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 <          }
553 <          for (int i = 0; i < atoms.size(); ++i) {
554 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 <          }      
547 >        rb = static_cast<RigidBody*>(integrableObject);
548 >        vector<Atom*> atoms = rb->getAtoms();
549 >        set<int> rigidAtoms;
550 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 >        }
553 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 >        }      
556        } else {
557 <        std::set<int> oneAtomSet;
557 >        set<int> oneAtomSet;
558          oneAtomSet.insert(integrableObject->getGlobalIndex());
559 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
559 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560        }
561      }  
562  
563 <    
564 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
563 >    for (bond= mol->beginBond(bondIter); bond != NULL;
564 >         bond = mol->nextBond(bondIter)) {
565 >      
566        a = bond->getAtomA()->getGlobalIndex();
567 <      b = bond->getAtomB()->getGlobalIndex();        
568 <      exclude_.removePair(a, b);
567 >      b = bond->getAtomB()->getGlobalIndex();  
568 >    
569 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 >        oneTwoInteractions_.removePair(a, b);
571 >      } else {
572 >        excludedInteractions_.removePair(a, b);
573 >      }
574      }
575  
576 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
576 >    for (bend= mol->beginBend(bendIter); bend != NULL;
577 >         bend = mol->nextBend(bendIter)) {
578 >
579        a = bend->getAtomA()->getGlobalIndex();
580        b = bend->getAtomB()->getGlobalIndex();        
581        c = bend->getAtomC()->getGlobalIndex();
518
519      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522
523      exclude_.removePairs(rigidSetA, rigidSetB);
524      exclude_.removePairs(rigidSetA, rigidSetC);
525      exclude_.removePairs(rigidSetB, rigidSetC);
582        
583 <      //exclude_.removePair(a, b);
584 <      //exclude_.removePair(a, c);
585 <      //exclude_.removePair(b, c);        
583 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 >        oneTwoInteractions_.removePair(a, b);      
585 >        oneTwoInteractions_.removePair(b, c);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >      }
590 >
591 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 >        oneThreeInteractions_.removePair(a, c);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >      }
596      }
597  
598 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
598 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 >         torsion = mol->nextTorsion(torsionIter)) {
600 >
601        a = torsion->getAtomA()->getGlobalIndex();
602        b = torsion->getAtomB()->getGlobalIndex();        
603        c = torsion->getAtomC()->getGlobalIndex();        
604 <      d = torsion->getAtomD()->getGlobalIndex();        
604 >      d = torsion->getAtomD()->getGlobalIndex();      
605 >  
606 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 >        oneTwoInteractions_.removePair(a, b);      
608 >        oneTwoInteractions_.removePair(b, c);
609 >        oneTwoInteractions_.removePair(c, d);
610 >      } else {
611 >        excludedInteractions_.removePair(a, b);
612 >        excludedInteractions_.removePair(b, c);
613 >        excludedInteractions_.removePair(c, d);
614 >      }
615  
616 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
617 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
618 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
619 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
616 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 >        oneThreeInteractions_.removePair(a, c);      
618 >        oneThreeInteractions_.removePair(b, d);      
619 >      } else {
620 >        excludedInteractions_.removePair(a, c);
621 >        excludedInteractions_.removePair(b, d);
622 >      }
623  
624 <      exclude_.removePairs(rigidSetA, rigidSetB);
625 <      exclude_.removePairs(rigidSetA, rigidSetC);
626 <      exclude_.removePairs(rigidSetA, rigidSetD);
627 <      exclude_.removePairs(rigidSetB, rigidSetC);
628 <      exclude_.removePairs(rigidSetB, rigidSetD);
629 <      exclude_.removePairs(rigidSetC, rigidSetD);
624 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 >        oneFourInteractions_.removePair(a, d);      
626 >      } else {
627 >        excludedInteractions_.removePair(a, d);
628 >      }
629 >    }
630  
631 <      /*
632 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
631 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 >         inversion = mol->nextInversion(inversionIter)) {
633  
634 <      
635 <      exclude_.removePair(a, b);
636 <      exclude_.removePair(a, c);
637 <      exclude_.removePair(a, d);
638 <      exclude_.removePair(b, c);
639 <      exclude_.removePair(b, d);
640 <      exclude_.removePair(c, d);        
641 <      */
634 >      a = inversion->getAtomA()->getGlobalIndex();
635 >      b = inversion->getAtomB()->getGlobalIndex();        
636 >      c = inversion->getAtomC()->getGlobalIndex();        
637 >      d = inversion->getAtomD()->getGlobalIndex();        
638 >
639 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 >        oneTwoInteractions_.removePair(a, b);      
641 >        oneTwoInteractions_.removePair(a, c);
642 >        oneTwoInteractions_.removePair(a, d);
643 >      } else {
644 >        excludedInteractions_.removePair(a, b);
645 >        excludedInteractions_.removePair(a, c);
646 >        excludedInteractions_.removePair(a, d);
647 >      }
648 >
649 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 >        oneThreeInteractions_.removePair(b, c);    
651 >        oneThreeInteractions_.removePair(b, d);    
652 >        oneThreeInteractions_.removePair(c, d);      
653 >      } else {
654 >        excludedInteractions_.removePair(b, c);
655 >        excludedInteractions_.removePair(b, d);
656 >        excludedInteractions_.removePair(c, d);
657 >      }
658      }
659  
660 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
661 <      std::vector<Atom*> atoms = rb->getAtoms();
662 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
663 <        for (int j = i + 1; j < atoms.size(); ++j) {
660 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 >         rb = mol->nextRigidBody(rbIter)) {
662 >      vector<Atom*> atoms = rb->getAtoms();
663 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665            a = atoms[i]->getGlobalIndex();
666            b = atoms[j]->getGlobalIndex();
667 <          exclude_.removePair(a, b);
667 >          excludedInteractions_.removePair(a, b);
668          }
669        }
670      }        
671 <
671 >    
672    }
673 <
674 <
673 >  
674 >  
675    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676      int curStampId;
677 <
677 >    
678      //index from 0
679      curStampId = moleculeStamps_.size();
680  
# Line 589 | Line 682 | namespace oopse {
682      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683    }
684  
592  void SimInfo::update() {
685  
686 <    setupSimType();
687 <
688 < #ifdef IS_MPI
689 <    setupFortranParallel();
690 < #endif
691 <
692 <    setupFortranSim();
693 <
694 <    //setup fortran force field
603 <    /** @deprecate */    
604 <    int isError = 0;
605 <    
606 <    setupCutoff();
607 <    
608 <    setupElectrostaticSummationMethod( isError );
609 <    setupSwitchingFunction();
610 <    setupAccumulateBoxDipole();
611 <
612 <    if(isError){
613 <      sprintf( painCave.errMsg,
614 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
615 <      painCave.isFatal = 1;
616 <      simError();
617 <    }
618 <
686 >  /**
687 >   * update
688 >   *
689 >   *  Performs the global checks and variable settings after the
690 >   *  objects have been created.
691 >   *
692 >   */
693 >  void SimInfo::update() {  
694 >    setupSimVariables();
695      calcNdf();
696      calcNdfRaw();
697      calcNdfTrans();
622
623    fortranInitialized_ = true;
698    }
699 <
700 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  
700 >  /**
701 >   * getSimulatedAtomTypes
702 >   *
703 >   * Returns an STL set of AtomType* that are actually present in this
704 >   * simulation.  Must query all processors to assemble this information.
705 >   *
706 >   */
707 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708      SimInfo::MoleculeIterator mi;
709      Molecule* mol;
710      Molecule::AtomIterator ai;
711      Atom* atom;
712 <    std::set<AtomType*> atomTypes;
713 <
712 >    set<AtomType*> atomTypes;
713 >    
714      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 <
716 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
715 >      for(atom = mol->beginAtom(ai); atom != NULL;
716 >          atom = mol->nextAtom(ai)) {
717          atomTypes.insert(atom->getAtomType());
718 <      }
719 <        
718 >      }      
719 >    }    
720 >    
721 > #ifdef IS_MPI
722 >
723 >    // loop over the found atom types on this processor, and add their
724 >    // numerical idents to a vector:
725 >    
726 >    vector<int> foundTypes;
727 >    set<AtomType*>::iterator i;
728 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 >      foundTypes.push_back( (*i)->getIdent() );
730 >
731 >    // count_local holds the number of found types on this processor
732 >    int count_local = foundTypes.size();
733 >
734 >    int nproc = MPI::COMM_WORLD.Get_size();
735 >
736 >    // we need arrays to hold the counts and displacement vectors for
737 >    // all processors
738 >    vector<int> counts(nproc, 0);
739 >    vector<int> disps(nproc, 0);
740 >
741 >    // fill the counts array
742 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 >                              1, MPI::INT);
744 >  
745 >    // use the processor counts to compute the displacement array
746 >    disps[0] = 0;    
747 >    int totalCount = counts[0];
748 >    for (int iproc = 1; iproc < nproc; iproc++) {
749 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 >      totalCount += counts[iproc];
751      }
752  
753 <    return atomTypes;        
754 <  }
643 <
644 <  void SimInfo::setupSimType() {
645 <    std::set<AtomType*>::iterator i;
646 <    std::set<AtomType*> atomTypes;
647 <    atomTypes = getUniqueAtomTypes();
753 >    // we need a (possibly redundant) set of all found types:
754 >    vector<int> ftGlobal(totalCount);
755      
756 <    int useLennardJones = 0;
757 <    int useElectrostatic = 0;
758 <    int useEAM = 0;
759 <    int useSC = 0;
653 <    int useCharge = 0;
654 <    int useDirectional = 0;
655 <    int useDipole = 0;
656 <    int useGayBerne = 0;
657 <    int useSticky = 0;
658 <    int useStickyPower = 0;
659 <    int useShape = 0;
660 <    int useFLARB = 0; //it is not in AtomType yet
661 <    int useDirectionalAtom = 0;    
662 <    int useElectrostatics = 0;
663 <    //usePBC and useRF are from simParams
664 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 <    int useRF;
666 <    int useSF;
667 <    int useSP;
668 <    int useBoxDipole;
669 <    std::string myMethod;
756 >    // now spray out the foundTypes to all the other processors:    
757 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 >                               &ftGlobal[0], &counts[0], &disps[0],
759 >                               MPI::INT);
760  
761 <    // set the useRF logical
672 <    useRF = 0;
673 <    useSF = 0;
674 <    useSP = 0;
761 >    vector<int>::iterator j;
762  
763 +    // foundIdents is a stl set, so inserting an already found ident
764 +    // will have no effect.
765 +    set<int> foundIdents;
766  
767 <    if (simParams_->haveElectrostaticSummationMethod()) {
768 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
679 <      toUpper(myMethod);
680 <      if (myMethod == "REACTION_FIELD"){
681 <        useRF = 1;
682 <      } else if (myMethod == "SHIFTED_FORCE"){
683 <        useSF = 1;
684 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 <        useSP = 1;
686 <      }
687 <    }
767 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 >      foundIdents.insert((*j));
769      
770 <    if (simParams_->haveAccumulateBoxDipole())
771 <      if (simParams_->getAccumulateBoxDipole())
772 <        useBoxDipole = 1;
770 >    // now iterate over the foundIdents and get the actual atom types
771 >    // that correspond to these:
772 >    set<int>::iterator it;
773 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 >      atomTypes.insert( forceField_->getAtomType((*it)) );
775 >
776 > #endif
777  
778 +    return atomTypes;        
779 +  }
780 +
781 +  void SimInfo::setupSimVariables() {
782 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 +    calcBoxDipole_ = false;
785 +    if ( simParams_->haveAccumulateBoxDipole() )
786 +      if ( simParams_->getAccumulateBoxDipole() ) {
787 +        calcBoxDipole_ = true;      
788 +      }
789 +    
790 +    set<AtomType*>::iterator i;
791 +    set<AtomType*> atomTypes;
792 +    atomTypes = getSimulatedAtomTypes();    
793 +    int usesElectrostatic = 0;
794 +    int usesMetallic = 0;
795 +    int usesDirectional = 0;
796 +    int usesFluctuatingCharges =  0;
797      //loop over all of the atom types
798      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 <      useLennardJones |= (*i)->isLennardJones();
800 <      useElectrostatic |= (*i)->isElectrostatic();
801 <      useEAM |= (*i)->isEAM();
802 <      useSC |= (*i)->isSC();
699 <      useCharge |= (*i)->isCharge();
700 <      useDirectional |= (*i)->isDirectional();
701 <      useDipole |= (*i)->isDipole();
702 <      useGayBerne |= (*i)->isGayBerne();
703 <      useSticky |= (*i)->isSticky();
704 <      useStickyPower |= (*i)->isStickyPower();
705 <      useShape |= (*i)->isShape();
799 >      usesElectrostatic |= (*i)->isElectrostatic();
800 >      usesMetallic |= (*i)->isMetal();
801 >      usesDirectional |= (*i)->isDirectional();
802 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803      }
804 <
708 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 <      useDirectionalAtom = 1;
710 <    }
711 <
712 <    if (useCharge || useDipole) {
713 <      useElectrostatics = 1;
714 <    }
715 <
804 >    
805   #ifdef IS_MPI    
806      int temp;
807 +    temp = usesDirectional;
808 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 +    
810 +    temp = usesMetallic;
811 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
812 +    
813 +    temp = usesElectrostatic;
814 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815  
816 <    temp = usePBC;
817 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >    temp = usesFluctuatingCharges;
817 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818 > #else
819  
820 <    temp = useDirectionalAtom;
821 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820 >    usesDirectionalAtoms_ = usesDirectional;
821 >    usesMetallicAtoms_ = usesMetallic;
822 >    usesElectrostaticAtoms_ = usesElectrostatic;
823 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
824  
825 <    temp = useLennardJones;
826 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825 > #endif
826 >    
827 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
828 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
829 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
830 >  }
831  
728    temp = useElectrostatics;
729    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832  
833 <    temp = useCharge;
834 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 >  vector<int> SimInfo::getGlobalAtomIndices() {
834 >    SimInfo::MoleculeIterator mi;
835 >    Molecule* mol;
836 >    Molecule::AtomIterator ai;
837 >    Atom* atom;
838  
839 <    temp = useDipole;
735 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 <
737 <    temp = useSticky;
738 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 <
740 <    temp = useStickyPower;
741 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
840      
841 <    temp = useGayBerne;
842 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
841 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
842 >      
843 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
845 >      }
846 >    }
847 >    return GlobalAtomIndices;
848 >  }
849  
746    temp = useEAM;
747    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850  
851 <    temp = useSC;
852 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
853 <    
854 <    temp = useShape;
855 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
851 >  vector<int> SimInfo::getGlobalGroupIndices() {
852 >    SimInfo::MoleculeIterator mi;
853 >    Molecule* mol;
854 >    Molecule::CutoffGroupIterator ci;
855 >    CutoffGroup* cg;
856  
857 <    temp = useFLARB;
858 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
859 <
860 <    temp = useRF;
861 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
862 <
863 <    temp = useSF;
864 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
865 <
866 <    temp = useSP;
867 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
868 <
767 <    temp = useBoxDipole;
768 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 <
770 < #endif
771 <
772 <    fInfo_.SIM_uses_PBC = usePBC;    
773 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
774 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
775 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
776 <    fInfo_.SIM_uses_Charges = useCharge;
777 <    fInfo_.SIM_uses_Dipoles = useDipole;
778 <    fInfo_.SIM_uses_Sticky = useSticky;
779 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
780 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
781 <    fInfo_.SIM_uses_EAM = useEAM;
782 <    fInfo_.SIM_uses_SC = useSC;
783 <    fInfo_.SIM_uses_Shapes = useShape;
784 <    fInfo_.SIM_uses_FLARB = useFLARB;
785 <    fInfo_.SIM_uses_RF = useRF;
786 <    fInfo_.SIM_uses_SF = useSF;
787 <    fInfo_.SIM_uses_SP = useSP;
788 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
857 >    vector<int> GlobalGroupIndices;
858 >    
859 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
860 >      
861 >      //local index of cutoff group is trivial, it only depends on the
862 >      //order of travesing
863 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
864 >           cg = mol->nextCutoffGroup(ci)) {
865 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
866 >      }        
867 >    }
868 >    return GlobalGroupIndices;
869    }
870  
791  void SimInfo::setupFortranSim() {
792    int isError;
793    int nExclude;
794    std::vector<int> fortranGlobalGroupMembership;
795    
796    nExclude = exclude_.getSize();
797    isError = 0;
871  
872 <    //globalGroupMembership_ is filled by SimCreator    
873 <    for (int i = 0; i < nGlobalAtoms_; i++) {
801 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
802 <    }
872 >  void SimInfo::prepareTopology() {
873 >    int nExclude, nOneTwo, nOneThree, nOneFour;
874  
875      //calculate mass ratio of cutoff group
805    std::vector<RealType> mfact;
876      SimInfo::MoleculeIterator mi;
877      Molecule* mol;
878      Molecule::CutoffGroupIterator ci;
# Line 811 | Line 881 | namespace oopse {
881      Atom* atom;
882      RealType totalMass;
883  
884 <    //to avoid memory reallocation, reserve enough space for mfact
885 <    mfact.reserve(getNCutoffGroups());
884 >    /**
885 >     * The mass factor is the relative mass of an atom to the total
886 >     * mass of the cutoff group it belongs to.  By default, all atoms
887 >     * are their own cutoff groups, and therefore have mass factors of
888 >     * 1.  We need some special handling for massless atoms, which
889 >     * will be treated as carrying the entire mass of the cutoff
890 >     * group.
891 >     */
892 >    massFactors_.clear();
893 >    massFactors_.resize(getNAtoms(), 1.0);
894      
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
896 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 >           cg = mol->nextCutoffGroup(ci)) {
898  
899          totalMass = cg->getMass();
900          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901            // Check for massless groups - set mfact to 1 if true
902 <          if (totalMass != 0)
903 <            mfact.push_back(atom->getMass()/totalMass);
902 >          if (totalMass != 0)
903 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
904            else
905 <            mfact.push_back( 1.0 );
905 >            massFactors_[atom->getLocalIndex()] = 1.0;
906          }
828
907        }      
908      }
909  
910 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
833 <    std::vector<int> identArray;
910 >    // Build the identArray_
911  
912 <    //to avoid memory reallocation, reserve enough space identArray
913 <    identArray.reserve(getNAtoms());
837 <    
912 >    identArray_.clear();
913 >    identArray_.reserve(getNAtoms());    
914      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
915        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
916 <        identArray.push_back(atom->getIdent());
916 >        identArray_.push_back(atom->getIdent());
917        }
918      }    
843
844    //fill molMembershipArray
845    //molMembershipArray is filled by SimCreator    
846    std::vector<int> molMembershipArray(nGlobalAtoms_);
847    for (int i = 0; i < nGlobalAtoms_; i++) {
848      molMembershipArray[i] = globalMolMembership_[i] + 1;
849    }
919      
920 <    //setup fortran simulation
852 <    int nGlobalExcludes = 0;
853 <    int* globalExcludes = NULL;
854 <    int* excludeList = exclude_.getExcludeList();
855 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
856 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
920 >    //scan topology
921  
922 <    if( isError ){
922 >    nExclude = excludedInteractions_.getSize();
923 >    nOneTwo = oneTwoInteractions_.getSize();
924 >    nOneThree = oneThreeInteractions_.getSize();
925 >    nOneFour = oneFourInteractions_.getSize();
926  
927 <      sprintf( painCave.errMsg,
928 <               "There was an error setting the simulation information in fortran.\n" );
929 <      painCave.isFatal = 1;
930 <      painCave.severity = OOPSE_ERROR;
865 <      simError();
866 <    }
867 <
868 < #ifdef IS_MPI
869 <    sprintf( checkPointMsg,
870 <             "succesfully sent the simulation information to fortran.\n");
871 <    MPIcheckPoint();
872 < #endif // is_mpi
873 <
874 <    // Setup number of neighbors in neighbor list if present
875 <    if (simParams_->haveNeighborListNeighbors()) {
876 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
877 <      setNeighbors(&nlistNeighbors);
878 <    }
879 <  
880 <
881 <  }
882 <
883 <
884 < #ifdef IS_MPI
885 <  void SimInfo::setupFortranParallel() {
886 <    
887 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
888 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 <    std::vector<int> localToGlobalCutoffGroupIndex;
890 <    SimInfo::MoleculeIterator mi;
891 <    Molecule::AtomIterator ai;
892 <    Molecule::CutoffGroupIterator ci;
893 <    Molecule* mol;
894 <    Atom* atom;
895 <    CutoffGroup* cg;
896 <    mpiSimData parallelData;
897 <    int isError;
898 <
899 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
900 <
901 <      //local index(index in DataStorge) of atom is important
902 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
903 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
904 <      }
905 <
906 <      //local index of cutoff group is trivial, it only depends on the order of travesing
907 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
908 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
909 <      }        
910 <        
911 <    }
912 <
913 <    //fill up mpiSimData struct
914 <    parallelData.nMolGlobal = getNGlobalMolecules();
915 <    parallelData.nMolLocal = getNMolecules();
916 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
917 <    parallelData.nAtomsLocal = getNAtoms();
918 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
919 <    parallelData.nGroupsLocal = getNCutoffGroups();
920 <    parallelData.myNode = worldRank;
921 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
922 <
923 <    //pass mpiSimData struct and index arrays to fortran
924 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
925 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
926 <                    &localToGlobalCutoffGroupIndex[0], &isError);
927 <
928 <    if (isError) {
929 <      sprintf(painCave.errMsg,
930 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
931 <      painCave.isFatal = 1;
932 <      simError();
933 <    }
934 <
935 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
936 <    MPIcheckPoint();
937 <
938 <
939 <  }
940 <
941 < #endif
942 <
943 <  void SimInfo::setupCutoff() {          
944 <    
945 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
946 <
947 <    // Check the cutoff policy
948 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
949 <
950 <    std::string myPolicy;
951 <    if (forceFieldOptions_.haveCutoffPolicy()){
952 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
953 <    }else if (simParams_->haveCutoffPolicy()) {
954 <      myPolicy = simParams_->getCutoffPolicy();
955 <    }
956 <
957 <    if (!myPolicy.empty()){
958 <      toUpper(myPolicy);
959 <      if (myPolicy == "MIX") {
960 <        cp = MIX_CUTOFF_POLICY;
961 <      } else {
962 <        if (myPolicy == "MAX") {
963 <          cp = MAX_CUTOFF_POLICY;
964 <        } else {
965 <          if (myPolicy == "TRADITIONAL") {            
966 <            cp = TRADITIONAL_CUTOFF_POLICY;
967 <          } else {
968 <            // throw error        
969 <            sprintf( painCave.errMsg,
970 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
971 <            painCave.isFatal = 1;
972 <            simError();
973 <          }    
974 <        }          
975 <      }
976 <    }          
977 <    notifyFortranCutoffPolicy(&cp);
978 <
979 <    // Check the Skin Thickness for neighborlists
980 <    RealType skin;
981 <    if (simParams_->haveSkinThickness()) {
982 <      skin = simParams_->getSkinThickness();
983 <      notifyFortranSkinThickness(&skin);
984 <    }            
985 <        
986 <    // Check if the cutoff was set explicitly:
987 <    if (simParams_->haveCutoffRadius()) {
988 <      rcut_ = simParams_->getCutoffRadius();
989 <      if (simParams_->haveSwitchingRadius()) {
990 <        rsw_  = simParams_->getSwitchingRadius();
991 <      } else {
992 <        if (fInfo_.SIM_uses_Charges |
993 <            fInfo_.SIM_uses_Dipoles |
994 <            fInfo_.SIM_uses_RF) {
995 <          
996 <          rsw_ = 0.85 * rcut_;
997 <          sprintf(painCave.errMsg,
998 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
999 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1000 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1001 <        painCave.isFatal = 0;
1002 <        simError();
1003 <        } else {
1004 <          rsw_ = rcut_;
1005 <          sprintf(painCave.errMsg,
1006 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1008 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 <          painCave.isFatal = 0;
1010 <          simError();
1011 <        }
1012 <      }
1013 <      
1014 <      notifyFortranCutoffs(&rcut_, &rsw_);
1015 <      
1016 <    } else {
1017 <      
1018 <      // For electrostatic atoms, we'll assume a large safe value:
1019 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1020 <        sprintf(painCave.errMsg,
1021 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1022 <                "\tOOPSE will use a default value of 15.0 angstroms"
1023 <                "\tfor the cutoffRadius.\n");
1024 <        painCave.isFatal = 0;
1025 <        simError();
1026 <        rcut_ = 15.0;
1027 <      
1028 <        if (simParams_->haveElectrostaticSummationMethod()) {
1029 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1030 <          toUpper(myMethod);
1031 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1032 <            if (simParams_->haveSwitchingRadius()){
1033 <              sprintf(painCave.errMsg,
1034 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1035 <                      "\teven though the electrostaticSummationMethod was\n"
1036 <                      "\tset to %s\n", myMethod.c_str());
1037 <              painCave.isFatal = 1;
1038 <              simError();            
1039 <            }
1040 <          }
1041 <        }
1042 <      
1043 <        if (simParams_->haveSwitchingRadius()){
1044 <          rsw_ = simParams_->getSwitchingRadius();
1045 <        } else {        
1046 <          sprintf(painCave.errMsg,
1047 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1048 <                  "\tOOPSE will use a default value of\n"
1049 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1050 <          painCave.isFatal = 0;
1051 <          simError();
1052 <          rsw_ = 0.85 * rcut_;
1053 <        }
1054 <        notifyFortranCutoffs(&rcut_, &rsw_);
1055 <      } else {
1056 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1057 <        // We'll punt and let fortran figure out the cutoffs later.
1058 <        
1059 <        notifyFortranYouAreOnYourOwn();
1060 <
1061 <      }
1062 <    }
1063 <  }
1064 <
1065 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1066 <    
1067 <    int errorOut;
1068 <    int esm =  NONE;
1069 <    int sm = UNDAMPED;
1070 <    RealType alphaVal;
1071 <    RealType dielectric;
1072 <    
1073 <    errorOut = isError;
927 >    int* excludeList = excludedInteractions_.getPairList();
928 >    int* oneTwoList = oneTwoInteractions_.getPairList();
929 >    int* oneThreeList = oneThreeInteractions_.getPairList();
930 >    int* oneFourList = oneFourInteractions_.getPairList();
931  
932 <    if (simParams_->haveElectrostaticSummationMethod()) {
1076 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1077 <      toUpper(myMethod);
1078 <      if (myMethod == "NONE") {
1079 <        esm = NONE;
1080 <      } else {
1081 <        if (myMethod == "SWITCHING_FUNCTION") {
1082 <          esm = SWITCHING_FUNCTION;
1083 <        } else {
1084 <          if (myMethod == "SHIFTED_POTENTIAL") {
1085 <            esm = SHIFTED_POTENTIAL;
1086 <          } else {
1087 <            if (myMethod == "SHIFTED_FORCE") {            
1088 <              esm = SHIFTED_FORCE;
1089 <            } else {
1090 <              if (myMethod == "REACTION_FIELD") {
1091 <                esm = REACTION_FIELD;
1092 <                dielectric = simParams_->getDielectric();
1093 <                if (!simParams_->haveDielectric()) {
1094 <                  // throw warning
1095 <                  sprintf( painCave.errMsg,
1096 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1097 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1098 <                  painCave.isFatal = 0;
1099 <                  simError();
1100 <                }
1101 <              } else {
1102 <                // throw error        
1103 <                sprintf( painCave.errMsg,
1104 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1105 <                         "\t(Input file specified %s .)\n"
1106 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1107 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1108 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1109 <                painCave.isFatal = 1;
1110 <                simError();
1111 <              }    
1112 <            }          
1113 <          }
1114 <        }
1115 <      }
1116 <    }
1117 <    
1118 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1119 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1120 <      toUpper(myScreen);
1121 <      if (myScreen == "UNDAMPED") {
1122 <        sm = UNDAMPED;
1123 <      } else {
1124 <        if (myScreen == "DAMPED") {
1125 <          sm = DAMPED;
1126 <          if (!simParams_->haveDampingAlpha()) {
1127 <            // first set a cutoff dependent alpha value
1128 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1129 <            alphaVal = 0.5125 - rcut_* 0.025;
1130 <            // for values rcut > 20.5, alpha is zero
1131 <            if (alphaVal < 0) alphaVal = 0;
1132 <
1133 <            // throw warning
1134 <            sprintf( painCave.errMsg,
1135 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1136 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1137 <            painCave.isFatal = 0;
1138 <            simError();
1139 <          } else {
1140 <            alphaVal = simParams_->getDampingAlpha();
1141 <          }
1142 <          
1143 <        } else {
1144 <          // throw error        
1145 <          sprintf( painCave.errMsg,
1146 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1147 <                   "\t(Input file specified %s .)\n"
1148 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1149 <                   "or \"damped\".\n", myScreen.c_str() );
1150 <          painCave.isFatal = 1;
1151 <          simError();
1152 <        }
1153 <      }
1154 <    }
1155 <    
1156 <    // let's pass some summation method variables to fortran
1157 <    setElectrostaticSummationMethod( &esm );
1158 <    setFortranElectrostaticMethod( &esm );
1159 <    setScreeningMethod( &sm );
1160 <    setDampingAlpha( &alphaVal );
1161 <    setReactionFieldDielectric( &dielectric );
1162 <    initFortranFF( &errorOut );
1163 <  }
1164 <
1165 <  void SimInfo::setupSwitchingFunction() {    
1166 <    int ft = CUBIC;
1167 <
1168 <    if (simParams_->haveSwitchingFunctionType()) {
1169 <      std::string funcType = simParams_->getSwitchingFunctionType();
1170 <      toUpper(funcType);
1171 <      if (funcType == "CUBIC") {
1172 <        ft = CUBIC;
1173 <      } else {
1174 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1175 <          ft = FIFTH_ORDER_POLY;
1176 <        } else {
1177 <          // throw error        
1178 <          sprintf( painCave.errMsg,
1179 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1180 <          painCave.isFatal = 1;
1181 <          simError();
1182 <        }          
1183 <      }
1184 <    }
1185 <
1186 <    // send switching function notification to switcheroo
1187 <    setFunctionType(&ft);
1188 <
1189 <  }
1190 <
1191 <  void SimInfo::setupAccumulateBoxDipole() {    
1192 <
1193 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1194 <    if ( simParams_->haveAccumulateBoxDipole() )
1195 <      if ( simParams_->getAccumulateBoxDipole() ) {
1196 <        setAccumulateBoxDipole();
1197 <        calcBoxDipole_ = true;
1198 <      }
1199 <
932 >    topologyDone_ = true;
933    }
934  
935    void SimInfo::addProperty(GenericData* genData) {
936      properties_.addProperty(genData);  
937    }
938  
939 <  void SimInfo::removeProperty(const std::string& propName) {
939 >  void SimInfo::removeProperty(const string& propName) {
940      properties_.removeProperty(propName);  
941    }
942  
# Line 1211 | Line 944 | namespace oopse {
944      properties_.clearProperties();
945    }
946  
947 <  std::vector<std::string> SimInfo::getPropertyNames() {
947 >  vector<string> SimInfo::getPropertyNames() {
948      return properties_.getPropertyNames();  
949    }
950        
951 <  std::vector<GenericData*> SimInfo::getProperties() {
951 >  vector<GenericData*> SimInfo::getProperties() {
952      return properties_.getProperties();
953    }
954  
955 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
955 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
956      return properties_.getPropertyByName(propName);
957    }
958  
# Line 1233 | Line 966 | namespace oopse {
966      Molecule* mol;
967      RigidBody* rb;
968      Atom* atom;
969 +    CutoffGroup* cg;
970      SimInfo::MoleculeIterator mi;
971      Molecule::RigidBodyIterator rbIter;
972 <    Molecule::AtomIterator atomIter;;
972 >    Molecule::AtomIterator atomIter;
973 >    Molecule::CutoffGroupIterator cgIter;
974  
975      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
976          
# Line 1246 | Line 981 | namespace oopse {
981        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
982          rb->setSnapshotManager(sman_);
983        }
984 +
985 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
986 +        cg->setSnapshotManager(sman_);
987 +      }
988      }    
989      
990    }
# Line 1302 | Line 1041 | namespace oopse {
1041  
1042    }        
1043  
1044 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1044 >  ostream& operator <<(ostream& o, SimInfo& info) {
1045  
1046      return o;
1047    }
# Line 1345 | Line 1084 | namespace oopse {
1084  
1085  
1086         [  Ixx -Ixy  -Ixz ]
1087 <  J =| -Iyx  Iyy  -Iyz |
1087 >    J =| -Iyx  Iyy  -Iyz |
1088         [ -Izx -Iyz   Izz ]
1089      */
1090  
# Line 1452 | Line 1191 | namespace oopse {
1191      return IOIndexToIntegrableObject.at(index);
1192    }
1193    
1194 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1194 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1195      IOIndexToIntegrableObject= v;
1196    }
1197  
# Line 1474 | Line 1213 | namespace oopse {
1213      
1214      det = intTensor.determinant();
1215      sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1216 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1216 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1217      return;
1218    }
1219  
# Line 1490 | Line 1229 | namespace oopse {
1229      
1230      detI = intTensor.determinant();
1231      sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1232 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1233      return;
1234    }
1235   /*
1236 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1236 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1237        assert( v.size() == nAtoms_ + nRigidBodies_);
1238        sdByGlobalIndex_ = v;
1239      }
# Line 1504 | Line 1243 | namespace oopse {
1243        return sdByGlobalIndex_.at(index);
1244      }  
1245   */  
1246 < }//end namespace oopse
1246 >  int SimInfo::getNGlobalConstraints() {
1247 >    int nGlobalConstraints;
1248 > #ifdef IS_MPI
1249 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1250 >                  MPI_COMM_WORLD);    
1251 > #else
1252 >    nGlobalConstraints =  nConstraints_;
1253 > #endif
1254 >    return nGlobalConstraints;
1255 >  }
1256  
1257 + }//end namespace OpenMD
1258 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1121 by chuckv, Mon Feb 26 04:45:42 2007 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines