ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 331 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
70 <
71 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                                ForceField* ff, Globals* simParams) :
73 <                                forceField_(ff), simParams_(simParams),
74 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
77 <
78 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77      MoleculeStamp* molStamp;
78      int nMolWithSameStamp;
79      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81      CutoffGroupStamp* cgStamp;    
82      RigidBodyStamp* rbStamp;
83      int nRigidAtoms = 0;
84      
85 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
86 <        molStamp = i->first;
87 <        nMolWithSameStamp = i->second;
88 <        
89 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
90 <
91 <        //calculate atoms in molecules
92 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
93 <
94 <
95 <        //calculate atoms in cutoff groups
96 <        int nAtomsInGroups = 0;
97 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
98 <        
99 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
100 <            cgStamp = molStamp->getCutoffGroup(j);
101 <            nAtomsInGroups += cgStamp->getNMembers();
102 <        }
103 <
104 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
105 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
106 <
107 <        //calculate atoms in rigid bodies
108 <        int nAtomsInRigidBodies = 0;
109 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
110 <        
111 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
112 <            rbStamp = molStamp->getRigidBody(j);
113 <            nAtomsInRigidBodies += rbStamp->getNMembers();
114 <        }
115 <
116 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
117 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
118 <        
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103 >      }
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 +    std::cerr << "nG = " << nGroups << "\n";
131  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
132      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133  
134 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
135 <    //therefore the total number of  integrable objects in the system is equal to
136 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
137 <    //file plus the number of  rigid bodies defined in meta-data file
138 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
139 <
134 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
145      molToProcMap_.resize(nGlobalMols_);
146 < #endif
147 <
148 <    selectMan_ = new SelectionManager(this);
149 <    selectMan_->selectAll();
150 < }
151 <
152 < SimInfo::~SimInfo() {
153 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
154 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 >      delete i->second;
152 >    }
153 >    molecules_.clear();
154 >      
155      delete sman_;
156      delete simParams_;
157      delete forceField_;
158 <    delete selectMan_;
155 < }
158 >  }
159  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
160  
161 < bool SimInfo::addMolecule(Molecule* mol) {
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
169 <        nAtoms_ += mol->getNAtoms();
170 <        nBonds_ += mol->getNBonds();
171 <        nBends_ += mol->getNBends();
172 <        nTorsions_ += mol->getNTorsions();
173 <        nRigidBodies_ += mol->getNRigidBodies();
174 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
175 <        nCutoffGroups_ += mol->getNCutoffGroups();
176 <        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <        addExcludePairs(mol);
179 <        
180 <        return true;
181 <    } else {
182 <        return false;
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184      }
185 < }
186 <
187 < bool SimInfo::removeMolecule(Molecule* mol) {
185 >  }
186 >  
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
190  
191      if (i != molecules_.end() ) {
192  
193 <        assert(mol == i->second);
193 >      assert(mol == i->second);
194          
195 <        nAtoms_ -= mol->getNAtoms();
196 <        nBonds_ -= mol->getNBonds();
197 <        nBends_ -= mol->getNBends();
198 <        nTorsions_ -= mol->getNTorsions();
199 <        nRigidBodies_ -= mol->getNRigidBodies();
200 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 <        nCutoffGroups_ -= mol->getNCutoffGroups();
202 <        nConstraints_ -= mol->getNConstraintPairs();
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <        removeExcludePairs(mol);
206 <        molecules_.erase(mol->getGlobalIndex());
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <        delete mol;
208 >      delete mol;
209          
210 <        return true;
210 >      return true;
211      } else {
212 <        return false;
212 >      return false;
213      }
214 +  }    
215  
220
221 }    
222
216          
217 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218      i = molecules_.begin();
219      return i == molecules_.end() ? NULL : i->second;
220 < }    
220 >  }    
221  
222 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223      ++i;
224      return i == molecules_.end() ? NULL : i->second;    
225 < }
225 >  }
226  
227  
228 < void SimInfo::calcNdf() {
228 >  void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
235      ndf_local = 0;
236      
237      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
238 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239 <               integrableObject = mol->nextIntegrableObject(j)) {
238 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239 >           integrableObject = mol->nextIntegrableObject(j)) {
240  
241 <            ndf_local += 3;
241 >        ndf_local += 3;
242  
243 <            if (integrableObject->isDirectional()) {
244 <                if (integrableObject->isLinear()) {
245 <                    ndf_local += 2;
246 <                } else {
247 <                    ndf_local += 3;
248 <                }
249 <            }
243 >        if (integrableObject->isDirectional()) {
244 >          if (integrableObject->isLinear()) {
245 >            ndf_local += 2;
246 >          } else {
247 >            ndf_local += 3;
248 >          }
249 >        }
250              
251 <        }//end for (integrableObject)
252 <    }// end for (mol)
251 >      }
252 >    }
253      
254      // n_constraints is local, so subtract them on each processor
255      ndf_local -= nConstraints_;
# Line 271 | Line 264 | void SimInfo::calcNdf() {
264      // entire system:
265      ndf_ = ndf_ - 3 - nZconstraint_;
266  
267 < }
267 >  }
268  
269 < void SimInfo::calcNdfRaw() {
269 >  int SimInfo::getFdf() {
270 > #ifdef IS_MPI
271 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 > #else
273 >    fdf_ = fdf_local;
274 > #endif
275 >    return fdf_;
276 >  }
277 >    
278 >  void SimInfo::calcNdfRaw() {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 285 | Line 287 | void SimInfo::calcNdfRaw() {
287      ndfRaw_local = 0;
288      
289      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 <               integrableObject = mol->nextIntegrableObject(j)) {
290 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 >           integrableObject = mol->nextIntegrableObject(j)) {
292  
293 <            ndfRaw_local += 3;
293 >        ndfRaw_local += 3;
294  
295 <            if (integrableObject->isDirectional()) {
296 <                if (integrableObject->isLinear()) {
297 <                    ndfRaw_local += 2;
298 <                } else {
299 <                    ndfRaw_local += 3;
300 <                }
301 <            }
295 >        if (integrableObject->isDirectional()) {
296 >          if (integrableObject->isLinear()) {
297 >            ndfRaw_local += 2;
298 >          } else {
299 >            ndfRaw_local += 3;
300 >          }
301 >        }
302              
303 <        }
303 >      }
304      }
305      
306   #ifdef IS_MPI
# Line 306 | Line 308 | void SimInfo::calcNdfRaw() {
308   #else
309      ndfRaw_ = ndfRaw_local;
310   #endif
311 < }
311 >  }
312  
313 < void SimInfo::calcNdfTrans() {
313 >  void SimInfo::calcNdfTrans() {
314      int ndfTrans_local;
315  
316      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 324 | void SimInfo::calcNdfTrans() {
324  
325      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
326  
327 < }
327 >  }
328  
329 < void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
343  
344 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
345 <        a = bend->getAtomA()->getGlobalIndex();
346 <        b = bend->getAtomB()->getGlobalIndex();        
347 <        c = bend->getAtomC()->getGlobalIndex();
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351  
352 <        exclude_.addPair(a, b);
353 <        exclude_.addPair(a, c);
354 <        exclude_.addPair(b, c);        
355 <    }
356 <
357 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
358 <        a = torsion->getAtomA()->getGlobalIndex();
359 <        b = torsion->getAtomB()->getGlobalIndex();        
360 <        c = torsion->getAtomC()->getGlobalIndex();        
361 <        d = torsion->getAtomD()->getGlobalIndex();        
352 >    map<int, set<int> > atomGroups;
353 >    Molecule::RigidBodyIterator rbIter;
354 >    RigidBody* rb;
355 >    Molecule::IntegrableObjectIterator ii;
356 >    StuntDouble* integrableObject;
357 >    
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362 >      if (integrableObject->isRigidBody()) {
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376 >      }
377 >    }  
378 >          
379 >    for (bond= mol->beginBond(bondIter); bond != NULL;
380 >         bond = mol->nextBond(bondIter)) {
381  
382 <        exclude_.addPair(a, b);
383 <        exclude_.addPair(a, c);
384 <        exclude_.addPair(a, d);
385 <        exclude_.addPair(b, c);
386 <        exclude_.addPair(b, d);
387 <        exclude_.addPair(c, d);        
382 >      a = bond->getAtomA()->getGlobalIndex();
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    
393 < }
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394  
395 < void SimInfo::removeExcludePairs(Molecule* mol) {
396 <    std::vector<Bond*>::iterator bondIter;
397 <    std::vector<Bend*>::iterator bendIter;
398 <    std::vector<Torsion*>::iterator torsionIter;
395 >      a = bend->getAtomA()->getGlobalIndex();
396 >      b = bend->getAtomB()->getGlobalIndex();        
397 >      c = bend->getAtomC()->getGlobalIndex();
398 >      
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);      
401 >        oneTwoInteractions_.addPair(b, c);
402 >      } else {
403 >        excludedInteractions_.addPair(a, b);
404 >        excludedInteractions_.addPair(b, c);
405 >      }
406 >
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412 >    }
413 >
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417 >      a = torsion->getAtomA()->getGlobalIndex();
418 >      b = torsion->getAtomB()->getGlobalIndex();        
419 >      c = torsion->getAtomC()->getGlobalIndex();        
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421 >
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431 >
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445 >    }
446 >
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481 >          a = atoms[i]->getGlobalIndex();
482 >          b = atoms[j]->getGlobalIndex();
483 >          excludedInteractions_.addPair(a, b);
484 >        }
485 >      }
486 >    }        
487 >
488 >  }
489 >
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504 +
505 +    map<int, set<int> > atomGroups;
506 +    Molecule::RigidBodyIterator rbIter;
507 +    RigidBody* rb;
508 +    Molecule::IntegrableObjectIterator ii;
509 +    StuntDouble* integrableObject;
510      
511 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
512 <        a = bond->getAtomA()->getGlobalIndex();
513 <        b = bond->getAtomB()->getGlobalIndex();        
514 <        exclude_.removePair(a, b);
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515 >      if (integrableObject->isRigidBody()) {
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525 >      } else {
526 >        set<int> oneAtomSet;
527 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529 >      }
530 >    }  
531 >
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535 >      a = bond->getAtomA()->getGlobalIndex();
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
546 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547  
548 <        exclude_.removePair(a, b);
549 <        exclude_.removePair(a, c);
550 <        exclude_.removePair(b, c);        
548 >      a = bend->getAtomA()->getGlobalIndex();
549 >      b = bend->getAtomB()->getGlobalIndex();        
550 >      c = bend->getAtomC()->getGlobalIndex();
551 >      
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);      
554 >        oneTwoInteractions_.removePair(b, c);
555 >      } else {
556 >        excludedInteractions_.removePair(a, b);
557 >        excludedInteractions_.removePair(b, c);
558 >      }
559 >
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
568 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569  
570 <        exclude_.removePair(a, b);
571 <        exclude_.removePair(a, c);
572 <        exclude_.removePair(a, d);
573 <        exclude_.removePair(b, c);
574 <        exclude_.removePair(b, d);
575 <        exclude_.removePair(c, d);        
570 >      a = torsion->getAtomA()->getGlobalIndex();
571 >      b = torsion->getAtomB()->getGlobalIndex();        
572 >      c = torsion->getAtomC()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584 >
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592 >
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598      }
599  
600 < }
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602  
603 +      a = inversion->getAtomA()->getGlobalIndex();
604 +      b = inversion->getAtomB()->getGlobalIndex();        
605 +      c = inversion->getAtomC()->getGlobalIndex();        
606 +      d = inversion->getAtomD()->getGlobalIndex();        
607  
608 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
609 <    int curStampId;
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617  
618 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 +        oneThreeInteractions_.removePair(b, c);    
620 +        oneThreeInteractions_.removePair(b, d);    
621 +        oneThreeInteractions_.removePair(c, d);      
622 +      } else {
623 +        excludedInteractions_.removePair(b, c);
624 +        excludedInteractions_.removePair(b, d);
625 +        excludedInteractions_.removePair(c, d);
626 +      }
627 +    }
628 +
629 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 +         rb = mol->nextRigidBody(rbIter)) {
631 +      vector<Atom*> atoms = rb->getAtoms();
632 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634 +          a = atoms[i]->getGlobalIndex();
635 +          b = atoms[j]->getGlobalIndex();
636 +          excludedInteractions_.removePair(a, b);
637 +        }
638 +      }
639 +    }        
640 +    
641 +  }
642 +  
643 +  
644 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645 +    int curStampId;
646 +    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
650      moleculeStamps_.push_back(molStamp);
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652 < }
652 >  }
653  
427 void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
438 <    /** @deprecate */    
439 <    int isError = 0;
440 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441 <    if(isError){
442 <        sprintf( painCave.errMsg,
443 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <  
448 <    
449 <    setupCutoff();
450 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
667 <
668 <    fortranInitialized_ = true;
669 < }
670 <
671 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
667 >  }
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685 >        atomTypes.insert(atom->getAtomType());
686 >      }      
687 >    }    
688  
689 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
689 > #ifdef IS_MPI
690  
691 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 <            atomTypes.insert(atom->getAtomType());
469 <        }
470 <        
471 <    }
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    return atomTypes;        
695 < }
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 < void SimInfo::setupSimType() {
700 <    std::set<AtomType*>::iterator i;
478 <    std::set<AtomType*> atomTypes;
479 <    atomTypes = getUniqueAtomTypes();
480 <    
481 <    int useLennardJones = 0;
482 <    int useElectrostatic = 0;
483 <    int useEAM = 0;
484 <    int useCharge = 0;
485 <    int useDirectional = 0;
486 <    int useDipole = 0;
487 <    int useGayBerne = 0;
488 <    int useSticky = 0;
489 <    int useShape = 0;
490 <    int useFLARB = 0; //it is not in AtomType yet
491 <    int useDirectionalAtom = 0;    
492 <    int useElectrostatics = 0;
493 <    //usePBC and useRF are from simParams
494 <    int usePBC = simParams_->getPBC();
495 <    int useRF = simParams_->getUseRF();
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 +    // count holds the total number of found types on all processors
703 +    // (some will be redundant with the ones found locally):
704 +    int count;
705 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706 +
707 +    // create a vector to hold the globally found types, and resize it:
708 +    vector<int> ftGlobal;
709 +    ftGlobal.resize(count);
710 +    vector<int> counts;
711 +
712 +    int nproc = MPI::COMM_WORLD.Get_size();
713 +    counts.resize(nproc);
714 +    vector<int> disps;
715 +    disps.resize(nproc);
716 +
717 +    // now spray out the foundTypes to all the other processors:
718 +    
719 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721 +
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737 +    return atomTypes;        
738 +  }
739 +
740 +  void SimInfo::setupSimVariables() {
741 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 +    calcBoxDipole_ = false;
744 +    if ( simParams_->haveAccumulateBoxDipole() )
745 +      if ( simParams_->getAccumulateBoxDipole() ) {
746 +        calcBoxDipole_ = true;      
747 +      }
748 +
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <        useLennardJones |= (*i)->isLennardJones();
758 <        useElectrostatic |= (*i)->isElectrostatic();
759 <        useEAM |= (*i)->isEAM();
502 <        useCharge |= (*i)->isCharge();
503 <        useDirectional |= (*i)->isDirectional();
504 <        useDipole |= (*i)->isDipole();
505 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
510    if (useSticky || useDipole || useGayBerne || useShape) {
511        useDirectionalAtom = 1;
512    }
513
514    if (useCharge || useDipole) {
515        useElectrostatics = 1;
516    }
517
762   #ifdef IS_MPI    
763      int temp;
764 +    temp = usesDirectional;
765 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = usePBC;
768 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useDirectionalAtom;
771 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 > #endif
773 >  }
774  
527    temp = useLennardJones;
528    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
775  
776 <    temp = useElectrostatics;
777 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776 >  vector<int> SimInfo::getGlobalAtomIndices() {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule* mol;
779 >    Molecule::AtomIterator ai;
780 >    Atom* atom;
781  
782 <    temp = useCharge;
534 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
535 <
536 <    temp = useDipole;
537 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
783      
784 < #endif
784 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
785 >      
786 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
787 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
788 >      }
789 >    }
790 >    return GlobalAtomIndices;
791 >  }
792  
559    fInfo_.SIM_uses_PBC = usePBC;    
560    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561    fInfo_.SIM_uses_LennardJones = useLennardJones;
562    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563    fInfo_.SIM_uses_Charges = useCharge;
564    fInfo_.SIM_uses_Dipoles = useDipole;
565    fInfo_.SIM_uses_Sticky = useSticky;
566    fInfo_.SIM_uses_GayBerne = useGayBerne;
567    fInfo_.SIM_uses_EAM = useEAM;
568    fInfo_.SIM_uses_Shapes = useShape;
569    fInfo_.SIM_uses_FLARB = useFLARB;
570    fInfo_.SIM_uses_RF = useRF;
793  
794 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
794 >  vector<int> SimInfo::getGlobalGroupIndices() {
795 >    SimInfo::MoleculeIterator mi;
796 >    Molecule* mol;
797 >    Molecule::CutoffGroupIterator ci;
798 >    CutoffGroup* cg;
799  
800 <        if (simParams_->haveDielectric()) {
801 <            fInfo_.dielect = simParams_->getDielectric();
802 <        } else {
803 <            sprintf(painCave.errMsg,
804 <                    "SimSetup Error: No Dielectric constant was set.\n"
805 <                    "\tYou are trying to use Reaction Field without"
806 <                    "\tsetting a dielectric constant!\n");
807 <            painCave.isFatal = 1;
808 <            simError();
809 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
800 >    vector<int> GlobalGroupIndices;
801 >    
802 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
803 >      
804 >      //local index of cutoff group is trivial, it only depends on the
805 >      //order of travesing
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
807 >           cg = mol->nextCutoffGroup(ci)) {
808 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
809 >      }        
810      }
811 +    return GlobalGroupIndices;
812 +  }
813  
589 }
814  
815 < void SimInfo::setupFortranSim() {
816 <    int isError;
593 <    int nExclude;
594 <    std::vector<int> fortranGlobalGroupMembership;
595 <    
596 <    nExclude = exclude_.getSize();
597 <    isError = 0;
815 >  void SimInfo::prepareTopology() {
816 >    int nExclude, nOneTwo, nOneThree, nOneFour;
817  
599    //globalGroupMembership_ is filled by SimCreator    
600    for (int i = 0; i < nGlobalAtoms_; i++) {
601        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
602    }
603
818      //calculate mass ratio of cutoff group
605    std::vector<double> mfact;
819      SimInfo::MoleculeIterator mi;
820      Molecule* mol;
821      Molecule::CutoffGroupIterator ci;
822      CutoffGroup* cg;
823      Molecule::AtomIterator ai;
824      Atom* atom;
825 <    double totalMass;
825 >    RealType totalMass;
826  
827 <    //to avoid memory reallocation, reserve enough space for mfact
828 <    mfact.reserve(getNCutoffGroups());
827 >    //to avoid memory reallocation, reserve enough space for massFactors_
828 >    massFactors_.clear();
829 >    massFactors_.reserve(getNCutoffGroups());
830      
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
832 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
833 >           cg = mol->nextCutoffGroup(ci)) {
834  
835 <            totalMass = cg->getMass();
836 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
837 <                        mfact.push_back(atom->getMass()/totalMass);
838 <            }
839 <
840 <        }      
835 >        totalMass = cg->getMass();
836 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
837 >          // Check for massless groups - set mfact to 1 if true
838 >          if (totalMass != 0)
839 >            massFactors_.push_back(atom->getMass()/totalMass);
840 >          else
841 >            massFactors_.push_back( 1.0 );
842 >        }
843 >      }      
844      }
845  
846 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629 <    std::vector<int> identArray;
846 >    // Build the identArray_
847  
848 <    //to avoid memory reallocation, reserve enough space identArray
849 <    identArray.reserve(getNAtoms());
633 <    
848 >    identArray_.clear();
849 >    identArray_.reserve(getNAtoms());    
850      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 <            identArray.push_back(atom->getIdent());
853 <        }
851 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 >        identArray_.push_back(atom->getIdent());
853 >      }
854      }    
639
640    //fill molMembershipArray
641    //molMembershipArray is filled by SimCreator    
642    std::vector<int> molMembershipArray(nGlobalAtoms_);
643    for (int i = 0; i < nGlobalAtoms_; i++) {
644        molMembershipArray[i] = globalMolMembership_[i] + 1;
645    }
855      
856 <    //setup fortran simulation
648 <    //gloalExcludes and molMembershipArray should go away (They are never used)
649 <    //why the hell fortran need to know molecule?
650 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651 <    int nGlobalExcludes = 0;
652 <    int* globalExcludes = NULL;
653 <    int* excludeList = exclude_.getExcludeList();
654 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
856 >    //scan topology
857  
858 <    if( isError ){
858 >    nExclude = excludedInteractions_.getSize();
859 >    nOneTwo = oneTwoInteractions_.getSize();
860 >    nOneThree = oneThreeInteractions_.getSize();
861 >    nOneFour = oneFourInteractions_.getSize();
862  
863 <        sprintf( painCave.errMsg,
864 <                 "There was an error setting the simulation information in fortran.\n" );
865 <        painCave.isFatal = 1;
866 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
863 >    int* excludeList = excludedInteractions_.getPairList();
864 >    int* oneTwoList = oneTwoInteractions_.getPairList();
865 >    int* oneThreeList = oneThreeInteractions_.getPairList();
866 >    int* oneFourList = oneFourInteractions_.getPairList();
867  
868 < #ifdef IS_MPI
869 <    sprintf( checkPointMsg,
870 <       "succesfully sent the simulation information to fortran.\n");
871 <    MPIcheckPoint();
872 < #endif // is_mpi
873 < }
874 <
674 <
675 < #ifdef IS_MPI
676 < void SimInfo::setupFortranParallel() {
868 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
869 >    //               &nExclude, excludeList,
870 >    //               &nOneTwo, oneTwoList,
871 >    //               &nOneThree, oneThreeList,
872 >    //               &nOneFour, oneFourList,
873 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874 >    //               &fortranGlobalGroupMembership[0], &isError);
875      
876 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
877 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
680 <    std::vector<int> localToGlobalCutoffGroupIndex;
681 <    SimInfo::MoleculeIterator mi;
682 <    Molecule::AtomIterator ai;
683 <    Molecule::CutoffGroupIterator ci;
684 <    Molecule* mol;
685 <    Atom* atom;
686 <    CutoffGroup* cg;
687 <    mpiSimData parallelData;
688 <    int isError;
876 >    topologyDone_ = true;
877 >  }
878  
879 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
879 >  void SimInfo::addProperty(GenericData* genData) {
880 >    properties_.addProperty(genData);  
881 >  }
882  
883 <        //local index(index in DataStorge) of atom is important
884 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
885 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
695 <        }
883 >  void SimInfo::removeProperty(const string& propName) {
884 >    properties_.removeProperty(propName);  
885 >  }
886  
887 <        //local index of cutoff group is trivial, it only depends on the order of travesing
888 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
889 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700 <        }        
701 <        
702 <    }
887 >  void SimInfo::clearProperties() {
888 >    properties_.clearProperties();
889 >  }
890  
891 <    //fill up mpiSimData struct
892 <    parallelData.nMolGlobal = getNGlobalMolecules();
893 <    parallelData.nMolLocal = getNMolecules();
894 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
895 <    parallelData.nAtomsLocal = getNAtoms();
896 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
897 <    parallelData.nGroupsLocal = getNCutoffGroups();
711 <    parallelData.myNode = worldRank;
712 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
891 >  vector<string> SimInfo::getPropertyNames() {
892 >    return properties_.getPropertyNames();  
893 >  }
894 >      
895 >  vector<GenericData*> SimInfo::getProperties() {
896 >    return properties_.getProperties();
897 >  }
898  
899 <    //pass mpiSimData struct and index arrays to fortran
900 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
901 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
717 <                    &localToGlobalCutoffGroupIndex[0], &isError);
899 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
900 >    return properties_.getPropertyByName(propName);
901 >  }
902  
903 <    if (isError) {
904 <        sprintf(painCave.errMsg,
905 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
906 <        painCave.isFatal = 1;
723 <        simError();
724 <    }
725 <
726 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
727 <    MPIcheckPoint();
728 <
729 <
730 < }
731 <
732 < #endif
733 <
734 < double SimInfo::calcMaxCutoffRadius() {
735 <
736 <
737 <    std::set<AtomType*> atomTypes;
738 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
740 <
741 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
748 <
749 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 < #ifdef IS_MPI
751 <    //pick the max cutoff radius among the processors
752 < #endif
753 <
754 <    return maxCutoffRadius;
755 < }
756 <
757 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
814 <    properties_.addProperty(genData);  
815 < }
816 <
817 < void SimInfo::removeProperty(const std::string& propName) {
818 <    properties_.removeProperty(propName);  
819 < }
820 <
821 < void SimInfo::clearProperties() {
822 <    properties_.clearProperties();
823 < }
824 <
825 < std::vector<std::string> SimInfo::getPropertyNames() {
826 <    return properties_.getPropertyNames();  
827 < }
828 <      
829 < std::vector<GenericData*> SimInfo::getProperties() {
830 <    return properties_.getProperties();
831 < }
832 <
833 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
834 <    return properties_.getPropertyByName(propName);
835 < }
836 <
837 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
838 <    if (sman_ == sman_) {
839 <        return;
840 <    }
841 <    
903 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
904 >    if (sman_ == sman) {
905 >      return;
906 >    }    
907      delete sman_;
908      sman_ = sman;
909  
910      Molecule* mol;
911      RigidBody* rb;
912      Atom* atom;
913 +    CutoffGroup* cg;
914      SimInfo::MoleculeIterator mi;
915      Molecule::RigidBodyIterator rbIter;
916 <    Molecule::AtomIterator atomIter;;
916 >    Molecule::AtomIterator atomIter;
917 >    Molecule::CutoffGroupIterator cgIter;
918  
919      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
920          
921 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
922 <            atom->setSnapshotManager(sman_);
923 <        }
921 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
922 >        atom->setSnapshotManager(sman_);
923 >      }
924          
925 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
926 <            rb->setSnapshotManager(sman_);
927 <        }
925 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
926 >        rb->setSnapshotManager(sman_);
927 >      }
928 >
929 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
930 >        cg->setSnapshotManager(sman_);
931 >      }
932      }    
933      
934 < }
934 >  }
935  
936 < Vector3d SimInfo::getComVel(){
936 >  Vector3d SimInfo::getComVel(){
937      SimInfo::MoleculeIterator i;
938      Molecule* mol;
939  
940      Vector3d comVel(0.0);
941 <    double totalMass = 0.0;
941 >    RealType totalMass = 0.0;
942      
943  
944      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
945 <        double mass = mol->getMass();
946 <        totalMass += mass;
947 <        comVel += mass * mol->getComVel();
945 >      RealType mass = mol->getMass();
946 >      totalMass += mass;
947 >      comVel += mass * mol->getComVel();
948      }  
949  
950   #ifdef IS_MPI
951 <    double tmpMass = totalMass;
951 >    RealType tmpMass = totalMass;
952      Vector3d tmpComVel(comVel);    
953 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
954 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
953 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
954 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
955   #endif
956  
957      comVel /= totalMass;
958  
959      return comVel;
960 < }
960 >  }
961  
962 < Vector3d SimInfo::getCom(){
962 >  Vector3d SimInfo::getCom(){
963      SimInfo::MoleculeIterator i;
964      Molecule* mol;
965  
966      Vector3d com(0.0);
967 <    double totalMass = 0.0;
967 >    RealType totalMass = 0.0;
968      
969      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
970 <        double mass = mol->getMass();
971 <        totalMass += mass;
972 <        com += mass * mol->getCom();
970 >      RealType mass = mol->getMass();
971 >      totalMass += mass;
972 >      com += mass * mol->getCom();
973      }  
974  
975   #ifdef IS_MPI
976 <    double tmpMass = totalMass;
976 >    RealType tmpMass = totalMass;
977      Vector3d tmpCom(com);    
978 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
979 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
978 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
979 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
980   #endif
981  
982      com /= totalMass;
983  
984      return com;
985  
986 < }        
986 >  }        
987  
988 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
988 >  ostream& operator <<(ostream& o, SimInfo& info) {
989  
990      return o;
991 < }
991 >  }
992 >  
993 >  
994 >   /*
995 >   Returns center of mass and center of mass velocity in one function call.
996 >   */
997 >  
998 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
999 >      SimInfo::MoleculeIterator i;
1000 >      Molecule* mol;
1001 >      
1002 >    
1003 >      RealType totalMass = 0.0;
1004 >    
1005  
1006 < }//end namespace oopse
1006 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 >         RealType mass = mol->getMass();
1008 >         totalMass += mass;
1009 >         com += mass * mol->getCom();
1010 >         comVel += mass * mol->getComVel();          
1011 >      }  
1012 >      
1013 > #ifdef IS_MPI
1014 >      RealType tmpMass = totalMass;
1015 >      Vector3d tmpCom(com);  
1016 >      Vector3d tmpComVel(comVel);
1017 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1019 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020 > #endif
1021 >      
1022 >      com /= totalMass;
1023 >      comVel /= totalMass;
1024 >   }        
1025 >  
1026 >   /*
1027 >   Return intertia tensor for entire system and angular momentum Vector.
1028  
1029 +
1030 +       [  Ixx -Ixy  -Ixz ]
1031 +    J =| -Iyx  Iyy  -Iyz |
1032 +       [ -Izx -Iyz   Izz ]
1033 +    */
1034 +
1035 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1036 +      
1037 +
1038 +      RealType xx = 0.0;
1039 +      RealType yy = 0.0;
1040 +      RealType zz = 0.0;
1041 +      RealType xy = 0.0;
1042 +      RealType xz = 0.0;
1043 +      RealType yz = 0.0;
1044 +      Vector3d com(0.0);
1045 +      Vector3d comVel(0.0);
1046 +      
1047 +      getComAll(com, comVel);
1048 +      
1049 +      SimInfo::MoleculeIterator i;
1050 +      Molecule* mol;
1051 +      
1052 +      Vector3d thisq(0.0);
1053 +      Vector3d thisv(0.0);
1054 +
1055 +      RealType thisMass = 0.0;
1056 +    
1057 +      
1058 +      
1059 +  
1060 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 +        
1062 +         thisq = mol->getCom()-com;
1063 +         thisv = mol->getComVel()-comVel;
1064 +         thisMass = mol->getMass();
1065 +         // Compute moment of intertia coefficients.
1066 +         xx += thisq[0]*thisq[0]*thisMass;
1067 +         yy += thisq[1]*thisq[1]*thisMass;
1068 +         zz += thisq[2]*thisq[2]*thisMass;
1069 +        
1070 +         // compute products of intertia
1071 +         xy += thisq[0]*thisq[1]*thisMass;
1072 +         xz += thisq[0]*thisq[2]*thisMass;
1073 +         yz += thisq[1]*thisq[2]*thisMass;
1074 +            
1075 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1076 +            
1077 +      }  
1078 +      
1079 +      
1080 +      inertiaTensor(0,0) = yy + zz;
1081 +      inertiaTensor(0,1) = -xy;
1082 +      inertiaTensor(0,2) = -xz;
1083 +      inertiaTensor(1,0) = -xy;
1084 +      inertiaTensor(1,1) = xx + zz;
1085 +      inertiaTensor(1,2) = -yz;
1086 +      inertiaTensor(2,0) = -xz;
1087 +      inertiaTensor(2,1) = -yz;
1088 +      inertiaTensor(2,2) = xx + yy;
1089 +      
1090 + #ifdef IS_MPI
1091 +      Mat3x3d tmpI(inertiaTensor);
1092 +      Vector3d tmpAngMom;
1093 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1094 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1095 + #endif
1096 +              
1097 +      return;
1098 +   }
1099 +
1100 +   //Returns the angular momentum of the system
1101 +   Vector3d SimInfo::getAngularMomentum(){
1102 +      
1103 +      Vector3d com(0.0);
1104 +      Vector3d comVel(0.0);
1105 +      Vector3d angularMomentum(0.0);
1106 +      
1107 +      getComAll(com,comVel);
1108 +      
1109 +      SimInfo::MoleculeIterator i;
1110 +      Molecule* mol;
1111 +      
1112 +      Vector3d thisr(0.0);
1113 +      Vector3d thisp(0.0);
1114 +      
1115 +      RealType thisMass;
1116 +      
1117 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1118 +        thisMass = mol->getMass();
1119 +        thisr = mol->getCom()-com;
1120 +        thisp = (mol->getComVel()-comVel)*thisMass;
1121 +        
1122 +        angularMomentum += cross( thisr, thisp );
1123 +        
1124 +      }  
1125 +      
1126 + #ifdef IS_MPI
1127 +      Vector3d tmpAngMom;
1128 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1129 + #endif
1130 +      
1131 +      return angularMomentum;
1132 +   }
1133 +  
1134 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1135 +    return IOIndexToIntegrableObject.at(index);
1136 +  }
1137 +  
1138 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1139 +    IOIndexToIntegrableObject= v;
1140 +  }
1141 +
1142 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1143 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1144 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1145 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1146 +  */
1147 +  void SimInfo::getGyrationalVolume(RealType &volume){
1148 +    Mat3x3d intTensor;
1149 +    RealType det;
1150 +    Vector3d dummyAngMom;
1151 +    RealType sysconstants;
1152 +    RealType geomCnst;
1153 +
1154 +    geomCnst = 3.0/2.0;
1155 +    /* Get the inertial tensor and angular momentum for free*/
1156 +    getInertiaTensor(intTensor,dummyAngMom);
1157 +    
1158 +    det = intTensor.determinant();
1159 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1160 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1161 +    return;
1162 +  }
1163 +
1164 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1165 +    Mat3x3d intTensor;
1166 +    Vector3d dummyAngMom;
1167 +    RealType sysconstants;
1168 +    RealType geomCnst;
1169 +
1170 +    geomCnst = 3.0/2.0;
1171 +    /* Get the inertial tensor and angular momentum for free*/
1172 +    getInertiaTensor(intTensor,dummyAngMom);
1173 +    
1174 +    detI = intTensor.determinant();
1175 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1176 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1177 +    return;
1178 +  }
1179 + /*
1180 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1181 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1182 +      sdByGlobalIndex_ = v;
1183 +    }
1184 +
1185 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1186 +      //assert(index < nAtoms_ + nRigidBodies_);
1187 +      return sdByGlobalIndex_.at(index);
1188 +    }  
1189 + */  
1190 +  int SimInfo::getNGlobalConstraints() {
1191 +    int nGlobalConstraints;
1192 + #ifdef IS_MPI
1193 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1194 +                  MPI_COMM_WORLD);    
1195 + #else
1196 +    nGlobalConstraints =  nConstraints_;
1197 + #endif
1198 +    return nGlobalConstraints;
1199 +  }
1200 +
1201 + }//end namespace OpenMD
1202 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 331 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines