ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1627
Committed: Tue Sep 13 22:05:04 2011 UTC (13 years, 7 months ago) by gezelter
File size: 38782 byte(s)
Log Message:
Splitting out ifstrstream into a header and an implementation.  This
means that much of the code that depends on it can be compiled only
once and the parallel I/O is concentrated into a few files.  To do
this, a number of files that relied on basic_ifstrstream to load the
mpi header had to be modified to manage their own headers.


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "utils/MemoryUtils.hpp"
58 #include "utils/simError.h"
59 #include "selection/SelectionManager.hpp"
60 #include "io/ForceFieldOptions.hpp"
61 #include "UseTheForce/ForceField.hpp"
62 #include "nonbonded/SwitchingFunction.hpp"
63 #ifdef IS_MPI
64 #include <mpi.h>
65 #endif
66
67 using namespace std;
68 namespace OpenMD {
69
70 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
71 forceField_(ff), simParams_(simParams),
72 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
74 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
76 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
77 nConstraints_(0), sman_(NULL), topologyDone_(false),
78 calcBoxDipole_(false), useAtomicVirial_(true) {
79
80 MoleculeStamp* molStamp;
81 int nMolWithSameStamp;
82 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 int nGroups = 0; //total cutoff groups defined in meta-data file
84 CutoffGroupStamp* cgStamp;
85 RigidBodyStamp* rbStamp;
86 int nRigidAtoms = 0;
87
88 vector<Component*> components = simParams->getComponents();
89
90 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
91 molStamp = (*i)->getMoleculeStamp();
92 nMolWithSameStamp = (*i)->getNMol();
93
94 addMoleculeStamp(molStamp, nMolWithSameStamp);
95
96 //calculate atoms in molecules
97 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
98
99 //calculate atoms in cutoff groups
100 int nAtomsInGroups = 0;
101 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102
103 for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 cgStamp = molStamp->getCutoffGroupStamp(j);
105 nAtomsInGroups += cgStamp->getNMembers();
106 }
107
108 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109
110 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
111
112 //calculate atoms in rigid bodies
113 int nAtomsInRigidBodies = 0;
114 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
115
116 for (int j=0; j < nRigidBodiesInStamp; j++) {
117 rbStamp = molStamp->getRigidBodyStamp(j);
118 nAtomsInRigidBodies += rbStamp->getNMembers();
119 }
120
121 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
122 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
123
124 }
125
126 //every free atom (atom does not belong to cutoff groups) is a cutoff
127 //group therefore the total number of cutoff groups in the system is
128 //equal to the total number of atoms minus number of atoms belong to
129 //cutoff group defined in meta-data file plus the number of cutoff
130 //groups defined in meta-data file
131
132 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133
134 //every free atom (atom does not belong to rigid bodies) is an
135 //integrable object therefore the total number of integrable objects
136 //in the system is equal to the total number of atoms minus number of
137 //atoms belong to rigid body defined in meta-data file plus the number
138 //of rigid bodies defined in meta-data file
139 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
140 + nGlobalRigidBodies_;
141
142 nGlobalMols_ = molStampIds_.size();
143 molToProcMap_.resize(nGlobalMols_);
144 }
145
146 SimInfo::~SimInfo() {
147 map<int, Molecule*>::iterator i;
148 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
149 delete i->second;
150 }
151 molecules_.clear();
152
153 delete sman_;
154 delete simParams_;
155 delete forceField_;
156 }
157
158
159 bool SimInfo::addMolecule(Molecule* mol) {
160 MoleculeIterator i;
161
162 i = molecules_.find(mol->getGlobalIndex());
163 if (i == molecules_.end() ) {
164
165 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
166
167 nAtoms_ += mol->getNAtoms();
168 nBonds_ += mol->getNBonds();
169 nBends_ += mol->getNBends();
170 nTorsions_ += mol->getNTorsions();
171 nInversions_ += mol->getNInversions();
172 nRigidBodies_ += mol->getNRigidBodies();
173 nIntegrableObjects_ += mol->getNIntegrableObjects();
174 nCutoffGroups_ += mol->getNCutoffGroups();
175 nConstraints_ += mol->getNConstraintPairs();
176
177 addInteractionPairs(mol);
178
179 return true;
180 } else {
181 return false;
182 }
183 }
184
185 bool SimInfo::removeMolecule(Molecule* mol) {
186 MoleculeIterator i;
187 i = molecules_.find(mol->getGlobalIndex());
188
189 if (i != molecules_.end() ) {
190
191 assert(mol == i->second);
192
193 nAtoms_ -= mol->getNAtoms();
194 nBonds_ -= mol->getNBonds();
195 nBends_ -= mol->getNBends();
196 nTorsions_ -= mol->getNTorsions();
197 nInversions_ -= mol->getNInversions();
198 nRigidBodies_ -= mol->getNRigidBodies();
199 nIntegrableObjects_ -= mol->getNIntegrableObjects();
200 nCutoffGroups_ -= mol->getNCutoffGroups();
201 nConstraints_ -= mol->getNConstraintPairs();
202
203 removeInteractionPairs(mol);
204 molecules_.erase(mol->getGlobalIndex());
205
206 delete mol;
207
208 return true;
209 } else {
210 return false;
211 }
212 }
213
214
215 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
216 i = molecules_.begin();
217 return i == molecules_.end() ? NULL : i->second;
218 }
219
220 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
221 ++i;
222 return i == molecules_.end() ? NULL : i->second;
223 }
224
225
226 void SimInfo::calcNdf() {
227 int ndf_local;
228 MoleculeIterator i;
229 vector<StuntDouble*>::iterator j;
230 Molecule* mol;
231 StuntDouble* integrableObject;
232
233 ndf_local = 0;
234
235 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
236 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
237 integrableObject = mol->nextIntegrableObject(j)) {
238
239 ndf_local += 3;
240
241 if (integrableObject->isDirectional()) {
242 if (integrableObject->isLinear()) {
243 ndf_local += 2;
244 } else {
245 ndf_local += 3;
246 }
247 }
248
249 }
250 }
251
252 // n_constraints is local, so subtract them on each processor
253 ndf_local -= nConstraints_;
254
255 #ifdef IS_MPI
256 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
257 #else
258 ndf_ = ndf_local;
259 #endif
260
261 // nZconstraints_ is global, as are the 3 COM translations for the
262 // entire system:
263 ndf_ = ndf_ - 3 - nZconstraint_;
264
265 }
266
267 int SimInfo::getFdf() {
268 #ifdef IS_MPI
269 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 #else
271 fdf_ = fdf_local;
272 #endif
273 return fdf_;
274 }
275
276 unsigned int SimInfo::getNLocalCutoffGroups(){
277 int nLocalCutoffAtoms = 0;
278 Molecule* mol;
279 MoleculeIterator mi;
280 CutoffGroup* cg;
281 Molecule::CutoffGroupIterator ci;
282
283 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
284
285 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
286 cg = mol->nextCutoffGroup(ci)) {
287 nLocalCutoffAtoms += cg->getNumAtom();
288
289 }
290 }
291
292 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
293 }
294
295 void SimInfo::calcNdfRaw() {
296 int ndfRaw_local;
297
298 MoleculeIterator i;
299 vector<StuntDouble*>::iterator j;
300 Molecule* mol;
301 StuntDouble* integrableObject;
302
303 // Raw degrees of freedom that we have to set
304 ndfRaw_local = 0;
305
306 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
307 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
308 integrableObject = mol->nextIntegrableObject(j)) {
309
310 ndfRaw_local += 3;
311
312 if (integrableObject->isDirectional()) {
313 if (integrableObject->isLinear()) {
314 ndfRaw_local += 2;
315 } else {
316 ndfRaw_local += 3;
317 }
318 }
319
320 }
321 }
322
323 #ifdef IS_MPI
324 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
325 #else
326 ndfRaw_ = ndfRaw_local;
327 #endif
328 }
329
330 void SimInfo::calcNdfTrans() {
331 int ndfTrans_local;
332
333 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
334
335
336 #ifdef IS_MPI
337 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
338 #else
339 ndfTrans_ = ndfTrans_local;
340 #endif
341
342 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
343
344 }
345
346 void SimInfo::addInteractionPairs(Molecule* mol) {
347 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
348 vector<Bond*>::iterator bondIter;
349 vector<Bend*>::iterator bendIter;
350 vector<Torsion*>::iterator torsionIter;
351 vector<Inversion*>::iterator inversionIter;
352 Bond* bond;
353 Bend* bend;
354 Torsion* torsion;
355 Inversion* inversion;
356 int a;
357 int b;
358 int c;
359 int d;
360
361 // atomGroups can be used to add special interaction maps between
362 // groups of atoms that are in two separate rigid bodies.
363 // However, most site-site interactions between two rigid bodies
364 // are probably not special, just the ones between the physically
365 // bonded atoms. Interactions *within* a single rigid body should
366 // always be excluded. These are done at the bottom of this
367 // function.
368
369 map<int, set<int> > atomGroups;
370 Molecule::RigidBodyIterator rbIter;
371 RigidBody* rb;
372 Molecule::IntegrableObjectIterator ii;
373 StuntDouble* integrableObject;
374
375 for (integrableObject = mol->beginIntegrableObject(ii);
376 integrableObject != NULL;
377 integrableObject = mol->nextIntegrableObject(ii)) {
378
379 if (integrableObject->isRigidBody()) {
380 rb = static_cast<RigidBody*>(integrableObject);
381 vector<Atom*> atoms = rb->getAtoms();
382 set<int> rigidAtoms;
383 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 }
386 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
387 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 }
389 } else {
390 set<int> oneAtomSet;
391 oneAtomSet.insert(integrableObject->getGlobalIndex());
392 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
393 }
394 }
395
396 for (bond= mol->beginBond(bondIter); bond != NULL;
397 bond = mol->nextBond(bondIter)) {
398
399 a = bond->getAtomA()->getGlobalIndex();
400 b = bond->getAtomB()->getGlobalIndex();
401
402 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
403 oneTwoInteractions_.addPair(a, b);
404 } else {
405 excludedInteractions_.addPair(a, b);
406 }
407 }
408
409 for (bend= mol->beginBend(bendIter); bend != NULL;
410 bend = mol->nextBend(bendIter)) {
411
412 a = bend->getAtomA()->getGlobalIndex();
413 b = bend->getAtomB()->getGlobalIndex();
414 c = bend->getAtomC()->getGlobalIndex();
415
416 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 oneTwoInteractions_.addPair(a, b);
418 oneTwoInteractions_.addPair(b, c);
419 } else {
420 excludedInteractions_.addPair(a, b);
421 excludedInteractions_.addPair(b, c);
422 }
423
424 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
425 oneThreeInteractions_.addPair(a, c);
426 } else {
427 excludedInteractions_.addPair(a, c);
428 }
429 }
430
431 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
432 torsion = mol->nextTorsion(torsionIter)) {
433
434 a = torsion->getAtomA()->getGlobalIndex();
435 b = torsion->getAtomB()->getGlobalIndex();
436 c = torsion->getAtomC()->getGlobalIndex();
437 d = torsion->getAtomD()->getGlobalIndex();
438
439 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
440 oneTwoInteractions_.addPair(a, b);
441 oneTwoInteractions_.addPair(b, c);
442 oneTwoInteractions_.addPair(c, d);
443 } else {
444 excludedInteractions_.addPair(a, b);
445 excludedInteractions_.addPair(b, c);
446 excludedInteractions_.addPair(c, d);
447 }
448
449 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
450 oneThreeInteractions_.addPair(a, c);
451 oneThreeInteractions_.addPair(b, d);
452 } else {
453 excludedInteractions_.addPair(a, c);
454 excludedInteractions_.addPair(b, d);
455 }
456
457 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
458 oneFourInteractions_.addPair(a, d);
459 } else {
460 excludedInteractions_.addPair(a, d);
461 }
462 }
463
464 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
465 inversion = mol->nextInversion(inversionIter)) {
466
467 a = inversion->getAtomA()->getGlobalIndex();
468 b = inversion->getAtomB()->getGlobalIndex();
469 c = inversion->getAtomC()->getGlobalIndex();
470 d = inversion->getAtomD()->getGlobalIndex();
471
472 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
473 oneTwoInteractions_.addPair(a, b);
474 oneTwoInteractions_.addPair(a, c);
475 oneTwoInteractions_.addPair(a, d);
476 } else {
477 excludedInteractions_.addPair(a, b);
478 excludedInteractions_.addPair(a, c);
479 excludedInteractions_.addPair(a, d);
480 }
481
482 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
483 oneThreeInteractions_.addPair(b, c);
484 oneThreeInteractions_.addPair(b, d);
485 oneThreeInteractions_.addPair(c, d);
486 } else {
487 excludedInteractions_.addPair(b, c);
488 excludedInteractions_.addPair(b, d);
489 excludedInteractions_.addPair(c, d);
490 }
491 }
492
493 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
494 rb = mol->nextRigidBody(rbIter)) {
495 vector<Atom*> atoms = rb->getAtoms();
496 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
497 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
498 a = atoms[i]->getGlobalIndex();
499 b = atoms[j]->getGlobalIndex();
500 excludedInteractions_.addPair(a, b);
501 }
502 }
503 }
504
505 }
506
507 void SimInfo::removeInteractionPairs(Molecule* mol) {
508 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
509 vector<Bond*>::iterator bondIter;
510 vector<Bend*>::iterator bendIter;
511 vector<Torsion*>::iterator torsionIter;
512 vector<Inversion*>::iterator inversionIter;
513 Bond* bond;
514 Bend* bend;
515 Torsion* torsion;
516 Inversion* inversion;
517 int a;
518 int b;
519 int c;
520 int d;
521
522 map<int, set<int> > atomGroups;
523 Molecule::RigidBodyIterator rbIter;
524 RigidBody* rb;
525 Molecule::IntegrableObjectIterator ii;
526 StuntDouble* integrableObject;
527
528 for (integrableObject = mol->beginIntegrableObject(ii);
529 integrableObject != NULL;
530 integrableObject = mol->nextIntegrableObject(ii)) {
531
532 if (integrableObject->isRigidBody()) {
533 rb = static_cast<RigidBody*>(integrableObject);
534 vector<Atom*> atoms = rb->getAtoms();
535 set<int> rigidAtoms;
536 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 rigidAtoms.insert(atoms[i]->getGlobalIndex());
538 }
539 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
540 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
541 }
542 } else {
543 set<int> oneAtomSet;
544 oneAtomSet.insert(integrableObject->getGlobalIndex());
545 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
546 }
547 }
548
549 for (bond= mol->beginBond(bondIter); bond != NULL;
550 bond = mol->nextBond(bondIter)) {
551
552 a = bond->getAtomA()->getGlobalIndex();
553 b = bond->getAtomB()->getGlobalIndex();
554
555 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
556 oneTwoInteractions_.removePair(a, b);
557 } else {
558 excludedInteractions_.removePair(a, b);
559 }
560 }
561
562 for (bend= mol->beginBend(bendIter); bend != NULL;
563 bend = mol->nextBend(bendIter)) {
564
565 a = bend->getAtomA()->getGlobalIndex();
566 b = bend->getAtomB()->getGlobalIndex();
567 c = bend->getAtomC()->getGlobalIndex();
568
569 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 oneTwoInteractions_.removePair(a, b);
571 oneTwoInteractions_.removePair(b, c);
572 } else {
573 excludedInteractions_.removePair(a, b);
574 excludedInteractions_.removePair(b, c);
575 }
576
577 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
578 oneThreeInteractions_.removePair(a, c);
579 } else {
580 excludedInteractions_.removePair(a, c);
581 }
582 }
583
584 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
585 torsion = mol->nextTorsion(torsionIter)) {
586
587 a = torsion->getAtomA()->getGlobalIndex();
588 b = torsion->getAtomB()->getGlobalIndex();
589 c = torsion->getAtomC()->getGlobalIndex();
590 d = torsion->getAtomD()->getGlobalIndex();
591
592 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
593 oneTwoInteractions_.removePair(a, b);
594 oneTwoInteractions_.removePair(b, c);
595 oneTwoInteractions_.removePair(c, d);
596 } else {
597 excludedInteractions_.removePair(a, b);
598 excludedInteractions_.removePair(b, c);
599 excludedInteractions_.removePair(c, d);
600 }
601
602 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
603 oneThreeInteractions_.removePair(a, c);
604 oneThreeInteractions_.removePair(b, d);
605 } else {
606 excludedInteractions_.removePair(a, c);
607 excludedInteractions_.removePair(b, d);
608 }
609
610 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
611 oneFourInteractions_.removePair(a, d);
612 } else {
613 excludedInteractions_.removePair(a, d);
614 }
615 }
616
617 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
618 inversion = mol->nextInversion(inversionIter)) {
619
620 a = inversion->getAtomA()->getGlobalIndex();
621 b = inversion->getAtomB()->getGlobalIndex();
622 c = inversion->getAtomC()->getGlobalIndex();
623 d = inversion->getAtomD()->getGlobalIndex();
624
625 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
626 oneTwoInteractions_.removePair(a, b);
627 oneTwoInteractions_.removePair(a, c);
628 oneTwoInteractions_.removePair(a, d);
629 } else {
630 excludedInteractions_.removePair(a, b);
631 excludedInteractions_.removePair(a, c);
632 excludedInteractions_.removePair(a, d);
633 }
634
635 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
636 oneThreeInteractions_.removePair(b, c);
637 oneThreeInteractions_.removePair(b, d);
638 oneThreeInteractions_.removePair(c, d);
639 } else {
640 excludedInteractions_.removePair(b, c);
641 excludedInteractions_.removePair(b, d);
642 excludedInteractions_.removePair(c, d);
643 }
644 }
645
646 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
647 rb = mol->nextRigidBody(rbIter)) {
648 vector<Atom*> atoms = rb->getAtoms();
649 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
650 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
651 a = atoms[i]->getGlobalIndex();
652 b = atoms[j]->getGlobalIndex();
653 excludedInteractions_.removePair(a, b);
654 }
655 }
656 }
657
658 }
659
660
661 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
662 int curStampId;
663
664 //index from 0
665 curStampId = moleculeStamps_.size();
666
667 moleculeStamps_.push_back(molStamp);
668 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
669 }
670
671
672 /**
673 * update
674 *
675 * Performs the global checks and variable settings after the
676 * objects have been created.
677 *
678 */
679 void SimInfo::update() {
680 setupSimVariables();
681 calcNdf();
682 calcNdfRaw();
683 calcNdfTrans();
684 }
685
686 /**
687 * getSimulatedAtomTypes
688 *
689 * Returns an STL set of AtomType* that are actually present in this
690 * simulation. Must query all processors to assemble this information.
691 *
692 */
693 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
694 SimInfo::MoleculeIterator mi;
695 Molecule* mol;
696 Molecule::AtomIterator ai;
697 Atom* atom;
698 set<AtomType*> atomTypes;
699
700 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
701 for(atom = mol->beginAtom(ai); atom != NULL;
702 atom = mol->nextAtom(ai)) {
703 atomTypes.insert(atom->getAtomType());
704 }
705 }
706
707 #ifdef IS_MPI
708
709 // loop over the found atom types on this processor, and add their
710 // numerical idents to a vector:
711
712 vector<int> foundTypes;
713 set<AtomType*>::iterator i;
714 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
715 foundTypes.push_back( (*i)->getIdent() );
716
717 // count_local holds the number of found types on this processor
718 int count_local = foundTypes.size();
719
720 int nproc = MPI::COMM_WORLD.Get_size();
721
722 // we need arrays to hold the counts and displacement vectors for
723 // all processors
724 vector<int> counts(nproc, 0);
725 vector<int> disps(nproc, 0);
726
727 // fill the counts array
728 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
729 1, MPI::INT);
730
731 // use the processor counts to compute the displacement array
732 disps[0] = 0;
733 int totalCount = counts[0];
734 for (int iproc = 1; iproc < nproc; iproc++) {
735 disps[iproc] = disps[iproc-1] + counts[iproc-1];
736 totalCount += counts[iproc];
737 }
738
739 // we need a (possibly redundant) set of all found types:
740 vector<int> ftGlobal(totalCount);
741
742 // now spray out the foundTypes to all the other processors:
743 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
744 &ftGlobal[0], &counts[0], &disps[0],
745 MPI::INT);
746
747 vector<int>::iterator j;
748
749 // foundIdents is a stl set, so inserting an already found ident
750 // will have no effect.
751 set<int> foundIdents;
752
753 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
754 foundIdents.insert((*j));
755
756 // now iterate over the foundIdents and get the actual atom types
757 // that correspond to these:
758 set<int>::iterator it;
759 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
760 atomTypes.insert( forceField_->getAtomType((*it)) );
761
762 #endif
763
764 return atomTypes;
765 }
766
767 void SimInfo::setupSimVariables() {
768 useAtomicVirial_ = simParams_->getUseAtomicVirial();
769 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
770 calcBoxDipole_ = false;
771 if ( simParams_->haveAccumulateBoxDipole() )
772 if ( simParams_->getAccumulateBoxDipole() ) {
773 calcBoxDipole_ = true;
774 }
775
776 set<AtomType*>::iterator i;
777 set<AtomType*> atomTypes;
778 atomTypes = getSimulatedAtomTypes();
779 int usesElectrostatic = 0;
780 int usesMetallic = 0;
781 int usesDirectional = 0;
782 //loop over all of the atom types
783 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784 usesElectrostatic |= (*i)->isElectrostatic();
785 usesMetallic |= (*i)->isMetal();
786 usesDirectional |= (*i)->isDirectional();
787 }
788
789 #ifdef IS_MPI
790 int temp;
791 temp = usesDirectional;
792 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
793
794 temp = usesMetallic;
795 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796
797 temp = usesElectrostatic;
798 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
799 #else
800
801 usesDirectionalAtoms_ = usesDirectional;
802 usesMetallicAtoms_ = usesMetallic;
803 usesElectrostaticAtoms_ = usesElectrostatic;
804
805 #endif
806
807 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
808 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
809 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
810 }
811
812
813 vector<int> SimInfo::getGlobalAtomIndices() {
814 SimInfo::MoleculeIterator mi;
815 Molecule* mol;
816 Molecule::AtomIterator ai;
817 Atom* atom;
818
819 vector<int> GlobalAtomIndices(getNAtoms(), 0);
820
821 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
822
823 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
824 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
825 }
826 }
827 return GlobalAtomIndices;
828 }
829
830
831 vector<int> SimInfo::getGlobalGroupIndices() {
832 SimInfo::MoleculeIterator mi;
833 Molecule* mol;
834 Molecule::CutoffGroupIterator ci;
835 CutoffGroup* cg;
836
837 vector<int> GlobalGroupIndices;
838
839 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
840
841 //local index of cutoff group is trivial, it only depends on the
842 //order of travesing
843 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
844 cg = mol->nextCutoffGroup(ci)) {
845 GlobalGroupIndices.push_back(cg->getGlobalIndex());
846 }
847 }
848 return GlobalGroupIndices;
849 }
850
851
852 void SimInfo::prepareTopology() {
853 int nExclude, nOneTwo, nOneThree, nOneFour;
854
855 //calculate mass ratio of cutoff group
856 SimInfo::MoleculeIterator mi;
857 Molecule* mol;
858 Molecule::CutoffGroupIterator ci;
859 CutoffGroup* cg;
860 Molecule::AtomIterator ai;
861 Atom* atom;
862 RealType totalMass;
863
864 /**
865 * The mass factor is the relative mass of an atom to the total
866 * mass of the cutoff group it belongs to. By default, all atoms
867 * are their own cutoff groups, and therefore have mass factors of
868 * 1. We need some special handling for massless atoms, which
869 * will be treated as carrying the entire mass of the cutoff
870 * group.
871 */
872 massFactors_.clear();
873 massFactors_.resize(getNAtoms(), 1.0);
874
875 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
876 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
877 cg = mol->nextCutoffGroup(ci)) {
878
879 totalMass = cg->getMass();
880 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
881 // Check for massless groups - set mfact to 1 if true
882 if (totalMass != 0)
883 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
884 else
885 massFactors_[atom->getLocalIndex()] = 1.0;
886 }
887 }
888 }
889
890 // Build the identArray_
891
892 identArray_.clear();
893 identArray_.reserve(getNAtoms());
894 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
895 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 identArray_.push_back(atom->getIdent());
897 }
898 }
899
900 //scan topology
901
902 nExclude = excludedInteractions_.getSize();
903 nOneTwo = oneTwoInteractions_.getSize();
904 nOneThree = oneThreeInteractions_.getSize();
905 nOneFour = oneFourInteractions_.getSize();
906
907 int* excludeList = excludedInteractions_.getPairList();
908 int* oneTwoList = oneTwoInteractions_.getPairList();
909 int* oneThreeList = oneThreeInteractions_.getPairList();
910 int* oneFourList = oneFourInteractions_.getPairList();
911
912 topologyDone_ = true;
913 }
914
915 void SimInfo::addProperty(GenericData* genData) {
916 properties_.addProperty(genData);
917 }
918
919 void SimInfo::removeProperty(const string& propName) {
920 properties_.removeProperty(propName);
921 }
922
923 void SimInfo::clearProperties() {
924 properties_.clearProperties();
925 }
926
927 vector<string> SimInfo::getPropertyNames() {
928 return properties_.getPropertyNames();
929 }
930
931 vector<GenericData*> SimInfo::getProperties() {
932 return properties_.getProperties();
933 }
934
935 GenericData* SimInfo::getPropertyByName(const string& propName) {
936 return properties_.getPropertyByName(propName);
937 }
938
939 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
940 if (sman_ == sman) {
941 return;
942 }
943 delete sman_;
944 sman_ = sman;
945
946 Molecule* mol;
947 RigidBody* rb;
948 Atom* atom;
949 CutoffGroup* cg;
950 SimInfo::MoleculeIterator mi;
951 Molecule::RigidBodyIterator rbIter;
952 Molecule::AtomIterator atomIter;
953 Molecule::CutoffGroupIterator cgIter;
954
955 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
956
957 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
958 atom->setSnapshotManager(sman_);
959 }
960
961 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
962 rb->setSnapshotManager(sman_);
963 }
964
965 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
966 cg->setSnapshotManager(sman_);
967 }
968 }
969
970 }
971
972 Vector3d SimInfo::getComVel(){
973 SimInfo::MoleculeIterator i;
974 Molecule* mol;
975
976 Vector3d comVel(0.0);
977 RealType totalMass = 0.0;
978
979
980 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
981 RealType mass = mol->getMass();
982 totalMass += mass;
983 comVel += mass * mol->getComVel();
984 }
985
986 #ifdef IS_MPI
987 RealType tmpMass = totalMass;
988 Vector3d tmpComVel(comVel);
989 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
990 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
991 #endif
992
993 comVel /= totalMass;
994
995 return comVel;
996 }
997
998 Vector3d SimInfo::getCom(){
999 SimInfo::MoleculeIterator i;
1000 Molecule* mol;
1001
1002 Vector3d com(0.0);
1003 RealType totalMass = 0.0;
1004
1005 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1006 RealType mass = mol->getMass();
1007 totalMass += mass;
1008 com += mass * mol->getCom();
1009 }
1010
1011 #ifdef IS_MPI
1012 RealType tmpMass = totalMass;
1013 Vector3d tmpCom(com);
1014 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1015 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1016 #endif
1017
1018 com /= totalMass;
1019
1020 return com;
1021
1022 }
1023
1024 ostream& operator <<(ostream& o, SimInfo& info) {
1025
1026 return o;
1027 }
1028
1029
1030 /*
1031 Returns center of mass and center of mass velocity in one function call.
1032 */
1033
1034 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1035 SimInfo::MoleculeIterator i;
1036 Molecule* mol;
1037
1038
1039 RealType totalMass = 0.0;
1040
1041
1042 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1043 RealType mass = mol->getMass();
1044 totalMass += mass;
1045 com += mass * mol->getCom();
1046 comVel += mass * mol->getComVel();
1047 }
1048
1049 #ifdef IS_MPI
1050 RealType tmpMass = totalMass;
1051 Vector3d tmpCom(com);
1052 Vector3d tmpComVel(comVel);
1053 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1054 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1056 #endif
1057
1058 com /= totalMass;
1059 comVel /= totalMass;
1060 }
1061
1062 /*
1063 Return intertia tensor for entire system and angular momentum Vector.
1064
1065
1066 [ Ixx -Ixy -Ixz ]
1067 J =| -Iyx Iyy -Iyz |
1068 [ -Izx -Iyz Izz ]
1069 */
1070
1071 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1072
1073
1074 RealType xx = 0.0;
1075 RealType yy = 0.0;
1076 RealType zz = 0.0;
1077 RealType xy = 0.0;
1078 RealType xz = 0.0;
1079 RealType yz = 0.0;
1080 Vector3d com(0.0);
1081 Vector3d comVel(0.0);
1082
1083 getComAll(com, comVel);
1084
1085 SimInfo::MoleculeIterator i;
1086 Molecule* mol;
1087
1088 Vector3d thisq(0.0);
1089 Vector3d thisv(0.0);
1090
1091 RealType thisMass = 0.0;
1092
1093
1094
1095
1096 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1097
1098 thisq = mol->getCom()-com;
1099 thisv = mol->getComVel()-comVel;
1100 thisMass = mol->getMass();
1101 // Compute moment of intertia coefficients.
1102 xx += thisq[0]*thisq[0]*thisMass;
1103 yy += thisq[1]*thisq[1]*thisMass;
1104 zz += thisq[2]*thisq[2]*thisMass;
1105
1106 // compute products of intertia
1107 xy += thisq[0]*thisq[1]*thisMass;
1108 xz += thisq[0]*thisq[2]*thisMass;
1109 yz += thisq[1]*thisq[2]*thisMass;
1110
1111 angularMomentum += cross( thisq, thisv ) * thisMass;
1112
1113 }
1114
1115
1116 inertiaTensor(0,0) = yy + zz;
1117 inertiaTensor(0,1) = -xy;
1118 inertiaTensor(0,2) = -xz;
1119 inertiaTensor(1,0) = -xy;
1120 inertiaTensor(1,1) = xx + zz;
1121 inertiaTensor(1,2) = -yz;
1122 inertiaTensor(2,0) = -xz;
1123 inertiaTensor(2,1) = -yz;
1124 inertiaTensor(2,2) = xx + yy;
1125
1126 #ifdef IS_MPI
1127 Mat3x3d tmpI(inertiaTensor);
1128 Vector3d tmpAngMom;
1129 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1130 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1131 #endif
1132
1133 return;
1134 }
1135
1136 //Returns the angular momentum of the system
1137 Vector3d SimInfo::getAngularMomentum(){
1138
1139 Vector3d com(0.0);
1140 Vector3d comVel(0.0);
1141 Vector3d angularMomentum(0.0);
1142
1143 getComAll(com,comVel);
1144
1145 SimInfo::MoleculeIterator i;
1146 Molecule* mol;
1147
1148 Vector3d thisr(0.0);
1149 Vector3d thisp(0.0);
1150
1151 RealType thisMass;
1152
1153 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1154 thisMass = mol->getMass();
1155 thisr = mol->getCom()-com;
1156 thisp = (mol->getComVel()-comVel)*thisMass;
1157
1158 angularMomentum += cross( thisr, thisp );
1159
1160 }
1161
1162 #ifdef IS_MPI
1163 Vector3d tmpAngMom;
1164 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1165 #endif
1166
1167 return angularMomentum;
1168 }
1169
1170 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1171 return IOIndexToIntegrableObject.at(index);
1172 }
1173
1174 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1175 IOIndexToIntegrableObject= v;
1176 }
1177
1178 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1179 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1180 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1181 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1182 */
1183 void SimInfo::getGyrationalVolume(RealType &volume){
1184 Mat3x3d intTensor;
1185 RealType det;
1186 Vector3d dummyAngMom;
1187 RealType sysconstants;
1188 RealType geomCnst;
1189
1190 geomCnst = 3.0/2.0;
1191 /* Get the inertial tensor and angular momentum for free*/
1192 getInertiaTensor(intTensor,dummyAngMom);
1193
1194 det = intTensor.determinant();
1195 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1196 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1197 return;
1198 }
1199
1200 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1201 Mat3x3d intTensor;
1202 Vector3d dummyAngMom;
1203 RealType sysconstants;
1204 RealType geomCnst;
1205
1206 geomCnst = 3.0/2.0;
1207 /* Get the inertial tensor and angular momentum for free*/
1208 getInertiaTensor(intTensor,dummyAngMom);
1209
1210 detI = intTensor.determinant();
1211 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1212 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1213 return;
1214 }
1215 /*
1216 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1217 assert( v.size() == nAtoms_ + nRigidBodies_);
1218 sdByGlobalIndex_ = v;
1219 }
1220
1221 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1222 //assert(index < nAtoms_ + nRigidBodies_);
1223 return sdByGlobalIndex_.at(index);
1224 }
1225 */
1226 int SimInfo::getNGlobalConstraints() {
1227 int nGlobalConstraints;
1228 #ifdef IS_MPI
1229 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1230 MPI_COMM_WORLD);
1231 #else
1232 nGlobalConstraints = nConstraints_;
1233 #endif
1234 return nGlobalConstraints;
1235 }
1236
1237 }//end namespace OpenMD
1238

Properties

Name Value
svn:keywords Author Id Revision Date