ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1760
Committed: Thu Jun 21 19:26:46 2012 UTC (12 years, 10 months ago) by gezelter
File size: 39606 byte(s)
Log Message:
Some bugfixes (CholeskyDecomposition), more work on fluctuating charges,
migrating stats stuff into frameData

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SimInfo.cpp
45 * @author tlin
46 * @date 11/02/2004
47 * @version 1.0
48 */
49
50 #include <algorithm>
51 #include <set>
52 #include <map>
53
54 #include "brains/SimInfo.hpp"
55 #include "math/Vector3.hpp"
56 #include "primitives/Molecule.hpp"
57 #include "primitives/StuntDouble.hpp"
58 #include "utils/MemoryUtils.hpp"
59 #include "utils/simError.h"
60 #include "selection/SelectionManager.hpp"
61 #include "io/ForceFieldOptions.hpp"
62 #include "brains/ForceField.hpp"
63 #include "nonbonded/SwitchingFunction.hpp"
64 #ifdef IS_MPI
65 #include <mpi.h>
66 #endif
67
68 using namespace std;
69 namespace OpenMD {
70
71 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 forceField_(ff), simParams_(simParams),
73 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
77 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 calcBoxDipole_(false), useAtomicVirial_(true) {
80
81 MoleculeStamp* molStamp;
82 int nMolWithSameStamp;
83 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 int nGroups = 0; //total cutoff groups defined in meta-data file
85 CutoffGroupStamp* cgStamp;
86 RigidBodyStamp* rbStamp;
87 int nRigidAtoms = 0;
88
89 vector<Component*> components = simParams->getComponents();
90
91 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 molStamp = (*i)->getMoleculeStamp();
93 nMolWithSameStamp = (*i)->getNMol();
94
95 addMoleculeStamp(molStamp, nMolWithSameStamp);
96
97 //calculate atoms in molecules
98 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
99
100 //calculate atoms in cutoff groups
101 int nAtomsInGroups = 0;
102 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103
104 for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 cgStamp = molStamp->getCutoffGroupStamp(j);
106 nAtomsInGroups += cgStamp->getNMembers();
107 }
108
109 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110
111 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
112
113 //calculate atoms in rigid bodies
114 int nAtomsInRigidBodies = 0;
115 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116
117 for (int j=0; j < nRigidBodiesInStamp; j++) {
118 rbStamp = molStamp->getRigidBodyStamp(j);
119 nAtomsInRigidBodies += rbStamp->getNMembers();
120 }
121
122 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
124
125 }
126
127 //every free atom (atom does not belong to cutoff groups) is a cutoff
128 //group therefore the total number of cutoff groups in the system is
129 //equal to the total number of atoms minus number of atoms belong to
130 //cutoff group defined in meta-data file plus the number of cutoff
131 //groups defined in meta-data file
132
133 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134
135 //every free atom (atom does not belong to rigid bodies) is an
136 //integrable object therefore the total number of integrable objects
137 //in the system is equal to the total number of atoms minus number of
138 //atoms belong to rigid body defined in meta-data file plus the number
139 //of rigid bodies defined in meta-data file
140 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 + nGlobalRigidBodies_;
142
143 nGlobalMols_ = molStampIds_.size();
144 molToProcMap_.resize(nGlobalMols_);
145 }
146
147 SimInfo::~SimInfo() {
148 map<int, Molecule*>::iterator i;
149 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 delete i->second;
151 }
152 molecules_.clear();
153
154 delete sman_;
155 delete simParams_;
156 delete forceField_;
157 }
158
159
160 bool SimInfo::addMolecule(Molecule* mol) {
161 MoleculeIterator i;
162
163 i = molecules_.find(mol->getGlobalIndex());
164 if (i == molecules_.end() ) {
165
166 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167
168 nAtoms_ += mol->getNAtoms();
169 nBonds_ += mol->getNBonds();
170 nBends_ += mol->getNBends();
171 nTorsions_ += mol->getNTorsions();
172 nInversions_ += mol->getNInversions();
173 nRigidBodies_ += mol->getNRigidBodies();
174 nIntegrableObjects_ += mol->getNIntegrableObjects();
175 nCutoffGroups_ += mol->getNCutoffGroups();
176 nConstraints_ += mol->getNConstraintPairs();
177
178 addInteractionPairs(mol);
179
180 return true;
181 } else {
182 return false;
183 }
184 }
185
186 bool SimInfo::removeMolecule(Molecule* mol) {
187 MoleculeIterator i;
188 i = molecules_.find(mol->getGlobalIndex());
189
190 if (i != molecules_.end() ) {
191
192 assert(mol == i->second);
193
194 nAtoms_ -= mol->getNAtoms();
195 nBonds_ -= mol->getNBonds();
196 nBends_ -= mol->getNBends();
197 nTorsions_ -= mol->getNTorsions();
198 nInversions_ -= mol->getNInversions();
199 nRigidBodies_ -= mol->getNRigidBodies();
200 nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 nCutoffGroups_ -= mol->getNCutoffGroups();
202 nConstraints_ -= mol->getNConstraintPairs();
203
204 removeInteractionPairs(mol);
205 molecules_.erase(mol->getGlobalIndex());
206
207 delete mol;
208
209 return true;
210 } else {
211 return false;
212 }
213 }
214
215
216 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217 i = molecules_.begin();
218 return i == molecules_.end() ? NULL : i->second;
219 }
220
221 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222 ++i;
223 return i == molecules_.end() ? NULL : i->second;
224 }
225
226
227 void SimInfo::calcNdf() {
228 int ndf_local, nfq_local;
229 MoleculeIterator i;
230 vector<StuntDouble*>::iterator j;
231 vector<Atom*>::iterator k;
232
233 Molecule* mol;
234 StuntDouble* integrableObject;
235 Atom* atom;
236
237 ndf_local = 0;
238 nfq_local = 0;
239
240 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 integrableObject = mol->nextIntegrableObject(j)) {
243
244 ndf_local += 3;
245
246 if (integrableObject->isDirectional()) {
247 if (integrableObject->isLinear()) {
248 ndf_local += 2;
249 } else {
250 ndf_local += 3;
251 }
252 }
253 }
254 for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 atom = mol->nextFluctuatingCharge(k)) {
256 if (atom->isFluctuatingCharge()) {
257 nfq_local++;
258 }
259 }
260 }
261
262 ndfLocal_ = ndf_local;
263
264 // n_constraints is local, so subtract them on each processor
265 ndf_local -= nConstraints_;
266
267 #ifdef IS_MPI
268 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
269 MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
270 #else
271 ndf_ = ndf_local;
272 nGlobalFluctuatingCharges_ = nfq_local;
273 #endif
274
275 // nZconstraints_ is global, as are the 3 COM translations for the
276 // entire system:
277 ndf_ = ndf_ - 3 - nZconstraint_;
278
279 }
280
281 int SimInfo::getFdf() {
282 #ifdef IS_MPI
283 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 #else
285 fdf_ = fdf_local;
286 #endif
287 return fdf_;
288 }
289
290 unsigned int SimInfo::getNLocalCutoffGroups(){
291 int nLocalCutoffAtoms = 0;
292 Molecule* mol;
293 MoleculeIterator mi;
294 CutoffGroup* cg;
295 Molecule::CutoffGroupIterator ci;
296
297 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
298
299 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
300 cg = mol->nextCutoffGroup(ci)) {
301 nLocalCutoffAtoms += cg->getNumAtom();
302
303 }
304 }
305
306 return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
307 }
308
309 void SimInfo::calcNdfRaw() {
310 int ndfRaw_local;
311
312 MoleculeIterator i;
313 vector<StuntDouble*>::iterator j;
314 Molecule* mol;
315 StuntDouble* integrableObject;
316
317 // Raw degrees of freedom that we have to set
318 ndfRaw_local = 0;
319
320 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
321 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
322 integrableObject = mol->nextIntegrableObject(j)) {
323
324 ndfRaw_local += 3;
325
326 if (integrableObject->isDirectional()) {
327 if (integrableObject->isLinear()) {
328 ndfRaw_local += 2;
329 } else {
330 ndfRaw_local += 3;
331 }
332 }
333
334 }
335 }
336
337 #ifdef IS_MPI
338 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339 #else
340 ndfRaw_ = ndfRaw_local;
341 #endif
342 }
343
344 void SimInfo::calcNdfTrans() {
345 int ndfTrans_local;
346
347 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
348
349
350 #ifdef IS_MPI
351 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
352 #else
353 ndfTrans_ = ndfTrans_local;
354 #endif
355
356 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
357
358 }
359
360 void SimInfo::addInteractionPairs(Molecule* mol) {
361 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
362 vector<Bond*>::iterator bondIter;
363 vector<Bend*>::iterator bendIter;
364 vector<Torsion*>::iterator torsionIter;
365 vector<Inversion*>::iterator inversionIter;
366 Bond* bond;
367 Bend* bend;
368 Torsion* torsion;
369 Inversion* inversion;
370 int a;
371 int b;
372 int c;
373 int d;
374
375 // atomGroups can be used to add special interaction maps between
376 // groups of atoms that are in two separate rigid bodies.
377 // However, most site-site interactions between two rigid bodies
378 // are probably not special, just the ones between the physically
379 // bonded atoms. Interactions *within* a single rigid body should
380 // always be excluded. These are done at the bottom of this
381 // function.
382
383 map<int, set<int> > atomGroups;
384 Molecule::RigidBodyIterator rbIter;
385 RigidBody* rb;
386 Molecule::IntegrableObjectIterator ii;
387 StuntDouble* integrableObject;
388
389 for (integrableObject = mol->beginIntegrableObject(ii);
390 integrableObject != NULL;
391 integrableObject = mol->nextIntegrableObject(ii)) {
392
393 if (integrableObject->isRigidBody()) {
394 rb = static_cast<RigidBody*>(integrableObject);
395 vector<Atom*> atoms = rb->getAtoms();
396 set<int> rigidAtoms;
397 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398 rigidAtoms.insert(atoms[i]->getGlobalIndex());
399 }
400 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
401 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
402 }
403 } else {
404 set<int> oneAtomSet;
405 oneAtomSet.insert(integrableObject->getGlobalIndex());
406 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
407 }
408 }
409
410 for (bond= mol->beginBond(bondIter); bond != NULL;
411 bond = mol->nextBond(bondIter)) {
412
413 a = bond->getAtomA()->getGlobalIndex();
414 b = bond->getAtomB()->getGlobalIndex();
415
416 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
417 oneTwoInteractions_.addPair(a, b);
418 } else {
419 excludedInteractions_.addPair(a, b);
420 }
421 }
422
423 for (bend= mol->beginBend(bendIter); bend != NULL;
424 bend = mol->nextBend(bendIter)) {
425
426 a = bend->getAtomA()->getGlobalIndex();
427 b = bend->getAtomB()->getGlobalIndex();
428 c = bend->getAtomC()->getGlobalIndex();
429
430 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
431 oneTwoInteractions_.addPair(a, b);
432 oneTwoInteractions_.addPair(b, c);
433 } else {
434 excludedInteractions_.addPair(a, b);
435 excludedInteractions_.addPair(b, c);
436 }
437
438 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
439 oneThreeInteractions_.addPair(a, c);
440 } else {
441 excludedInteractions_.addPair(a, c);
442 }
443 }
444
445 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
446 torsion = mol->nextTorsion(torsionIter)) {
447
448 a = torsion->getAtomA()->getGlobalIndex();
449 b = torsion->getAtomB()->getGlobalIndex();
450 c = torsion->getAtomC()->getGlobalIndex();
451 d = torsion->getAtomD()->getGlobalIndex();
452
453 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
454 oneTwoInteractions_.addPair(a, b);
455 oneTwoInteractions_.addPair(b, c);
456 oneTwoInteractions_.addPair(c, d);
457 } else {
458 excludedInteractions_.addPair(a, b);
459 excludedInteractions_.addPair(b, c);
460 excludedInteractions_.addPair(c, d);
461 }
462
463 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
464 oneThreeInteractions_.addPair(a, c);
465 oneThreeInteractions_.addPair(b, d);
466 } else {
467 excludedInteractions_.addPair(a, c);
468 excludedInteractions_.addPair(b, d);
469 }
470
471 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
472 oneFourInteractions_.addPair(a, d);
473 } else {
474 excludedInteractions_.addPair(a, d);
475 }
476 }
477
478 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
479 inversion = mol->nextInversion(inversionIter)) {
480
481 a = inversion->getAtomA()->getGlobalIndex();
482 b = inversion->getAtomB()->getGlobalIndex();
483 c = inversion->getAtomC()->getGlobalIndex();
484 d = inversion->getAtomD()->getGlobalIndex();
485
486 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
487 oneTwoInteractions_.addPair(a, b);
488 oneTwoInteractions_.addPair(a, c);
489 oneTwoInteractions_.addPair(a, d);
490 } else {
491 excludedInteractions_.addPair(a, b);
492 excludedInteractions_.addPair(a, c);
493 excludedInteractions_.addPair(a, d);
494 }
495
496 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
497 oneThreeInteractions_.addPair(b, c);
498 oneThreeInteractions_.addPair(b, d);
499 oneThreeInteractions_.addPair(c, d);
500 } else {
501 excludedInteractions_.addPair(b, c);
502 excludedInteractions_.addPair(b, d);
503 excludedInteractions_.addPair(c, d);
504 }
505 }
506
507 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
508 rb = mol->nextRigidBody(rbIter)) {
509 vector<Atom*> atoms = rb->getAtoms();
510 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
511 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
512 a = atoms[i]->getGlobalIndex();
513 b = atoms[j]->getGlobalIndex();
514 excludedInteractions_.addPair(a, b);
515 }
516 }
517 }
518
519 }
520
521 void SimInfo::removeInteractionPairs(Molecule* mol) {
522 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
523 vector<Bond*>::iterator bondIter;
524 vector<Bend*>::iterator bendIter;
525 vector<Torsion*>::iterator torsionIter;
526 vector<Inversion*>::iterator inversionIter;
527 Bond* bond;
528 Bend* bend;
529 Torsion* torsion;
530 Inversion* inversion;
531 int a;
532 int b;
533 int c;
534 int d;
535
536 map<int, set<int> > atomGroups;
537 Molecule::RigidBodyIterator rbIter;
538 RigidBody* rb;
539 Molecule::IntegrableObjectIterator ii;
540 StuntDouble* integrableObject;
541
542 for (integrableObject = mol->beginIntegrableObject(ii);
543 integrableObject != NULL;
544 integrableObject = mol->nextIntegrableObject(ii)) {
545
546 if (integrableObject->isRigidBody()) {
547 rb = static_cast<RigidBody*>(integrableObject);
548 vector<Atom*> atoms = rb->getAtoms();
549 set<int> rigidAtoms;
550 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551 rigidAtoms.insert(atoms[i]->getGlobalIndex());
552 }
553 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
554 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
555 }
556 } else {
557 set<int> oneAtomSet;
558 oneAtomSet.insert(integrableObject->getGlobalIndex());
559 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
560 }
561 }
562
563 for (bond= mol->beginBond(bondIter); bond != NULL;
564 bond = mol->nextBond(bondIter)) {
565
566 a = bond->getAtomA()->getGlobalIndex();
567 b = bond->getAtomB()->getGlobalIndex();
568
569 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
570 oneTwoInteractions_.removePair(a, b);
571 } else {
572 excludedInteractions_.removePair(a, b);
573 }
574 }
575
576 for (bend= mol->beginBend(bendIter); bend != NULL;
577 bend = mol->nextBend(bendIter)) {
578
579 a = bend->getAtomA()->getGlobalIndex();
580 b = bend->getAtomB()->getGlobalIndex();
581 c = bend->getAtomC()->getGlobalIndex();
582
583 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
584 oneTwoInteractions_.removePair(a, b);
585 oneTwoInteractions_.removePair(b, c);
586 } else {
587 excludedInteractions_.removePair(a, b);
588 excludedInteractions_.removePair(b, c);
589 }
590
591 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
592 oneThreeInteractions_.removePair(a, c);
593 } else {
594 excludedInteractions_.removePair(a, c);
595 }
596 }
597
598 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
599 torsion = mol->nextTorsion(torsionIter)) {
600
601 a = torsion->getAtomA()->getGlobalIndex();
602 b = torsion->getAtomB()->getGlobalIndex();
603 c = torsion->getAtomC()->getGlobalIndex();
604 d = torsion->getAtomD()->getGlobalIndex();
605
606 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
607 oneTwoInteractions_.removePair(a, b);
608 oneTwoInteractions_.removePair(b, c);
609 oneTwoInteractions_.removePair(c, d);
610 } else {
611 excludedInteractions_.removePair(a, b);
612 excludedInteractions_.removePair(b, c);
613 excludedInteractions_.removePair(c, d);
614 }
615
616 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
617 oneThreeInteractions_.removePair(a, c);
618 oneThreeInteractions_.removePair(b, d);
619 } else {
620 excludedInteractions_.removePair(a, c);
621 excludedInteractions_.removePair(b, d);
622 }
623
624 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
625 oneFourInteractions_.removePair(a, d);
626 } else {
627 excludedInteractions_.removePair(a, d);
628 }
629 }
630
631 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
632 inversion = mol->nextInversion(inversionIter)) {
633
634 a = inversion->getAtomA()->getGlobalIndex();
635 b = inversion->getAtomB()->getGlobalIndex();
636 c = inversion->getAtomC()->getGlobalIndex();
637 d = inversion->getAtomD()->getGlobalIndex();
638
639 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
640 oneTwoInteractions_.removePair(a, b);
641 oneTwoInteractions_.removePair(a, c);
642 oneTwoInteractions_.removePair(a, d);
643 } else {
644 excludedInteractions_.removePair(a, b);
645 excludedInteractions_.removePair(a, c);
646 excludedInteractions_.removePair(a, d);
647 }
648
649 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
650 oneThreeInteractions_.removePair(b, c);
651 oneThreeInteractions_.removePair(b, d);
652 oneThreeInteractions_.removePair(c, d);
653 } else {
654 excludedInteractions_.removePair(b, c);
655 excludedInteractions_.removePair(b, d);
656 excludedInteractions_.removePair(c, d);
657 }
658 }
659
660 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
661 rb = mol->nextRigidBody(rbIter)) {
662 vector<Atom*> atoms = rb->getAtoms();
663 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
664 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
665 a = atoms[i]->getGlobalIndex();
666 b = atoms[j]->getGlobalIndex();
667 excludedInteractions_.removePair(a, b);
668 }
669 }
670 }
671
672 }
673
674
675 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
676 int curStampId;
677
678 //index from 0
679 curStampId = moleculeStamps_.size();
680
681 moleculeStamps_.push_back(molStamp);
682 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
683 }
684
685
686 /**
687 * update
688 *
689 * Performs the global checks and variable settings after the
690 * objects have been created.
691 *
692 */
693 void SimInfo::update() {
694 setupSimVariables();
695 calcNdf();
696 calcNdfRaw();
697 calcNdfTrans();
698 }
699
700 /**
701 * getSimulatedAtomTypes
702 *
703 * Returns an STL set of AtomType* that are actually present in this
704 * simulation. Must query all processors to assemble this information.
705 *
706 */
707 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
708 SimInfo::MoleculeIterator mi;
709 Molecule* mol;
710 Molecule::AtomIterator ai;
711 Atom* atom;
712 set<AtomType*> atomTypes;
713
714 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
715 for(atom = mol->beginAtom(ai); atom != NULL;
716 atom = mol->nextAtom(ai)) {
717 atomTypes.insert(atom->getAtomType());
718 }
719 }
720
721 #ifdef IS_MPI
722
723 // loop over the found atom types on this processor, and add their
724 // numerical idents to a vector:
725
726 vector<int> foundTypes;
727 set<AtomType*>::iterator i;
728 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
729 foundTypes.push_back( (*i)->getIdent() );
730
731 // count_local holds the number of found types on this processor
732 int count_local = foundTypes.size();
733
734 int nproc = MPI::COMM_WORLD.Get_size();
735
736 // we need arrays to hold the counts and displacement vectors for
737 // all processors
738 vector<int> counts(nproc, 0);
739 vector<int> disps(nproc, 0);
740
741 // fill the counts array
742 MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
743 1, MPI::INT);
744
745 // use the processor counts to compute the displacement array
746 disps[0] = 0;
747 int totalCount = counts[0];
748 for (int iproc = 1; iproc < nproc; iproc++) {
749 disps[iproc] = disps[iproc-1] + counts[iproc-1];
750 totalCount += counts[iproc];
751 }
752
753 // we need a (possibly redundant) set of all found types:
754 vector<int> ftGlobal(totalCount);
755
756 // now spray out the foundTypes to all the other processors:
757 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
758 &ftGlobal[0], &counts[0], &disps[0],
759 MPI::INT);
760
761 vector<int>::iterator j;
762
763 // foundIdents is a stl set, so inserting an already found ident
764 // will have no effect.
765 set<int> foundIdents;
766
767 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
768 foundIdents.insert((*j));
769
770 // now iterate over the foundIdents and get the actual atom types
771 // that correspond to these:
772 set<int>::iterator it;
773 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
774 atomTypes.insert( forceField_->getAtomType((*it)) );
775
776 #endif
777
778 return atomTypes;
779 }
780
781 void SimInfo::setupSimVariables() {
782 useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
784 calcBoxDipole_ = false;
785 if ( simParams_->haveAccumulateBoxDipole() )
786 if ( simParams_->getAccumulateBoxDipole() ) {
787 calcBoxDipole_ = true;
788 }
789
790 set<AtomType*>::iterator i;
791 set<AtomType*> atomTypes;
792 atomTypes = getSimulatedAtomTypes();
793 int usesElectrostatic = 0;
794 int usesMetallic = 0;
795 int usesDirectional = 0;
796 int usesFluctuatingCharges = 0;
797 //loop over all of the atom types
798 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
799 usesElectrostatic |= (*i)->isElectrostatic();
800 usesMetallic |= (*i)->isMetal();
801 usesDirectional |= (*i)->isDirectional();
802 usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
803 }
804
805 #ifdef IS_MPI
806 int temp;
807 temp = usesDirectional;
808 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
809
810 temp = usesMetallic;
811 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
812
813 temp = usesElectrostatic;
814 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
815
816 temp = usesFluctuatingCharges;
817 MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
818 #else
819
820 usesDirectionalAtoms_ = usesDirectional;
821 usesMetallicAtoms_ = usesMetallic;
822 usesElectrostaticAtoms_ = usesElectrostatic;
823 usesFluctuatingCharges_ = usesFluctuatingCharges;
824
825 #endif
826
827 requiresPrepair_ = usesMetallicAtoms_ ? true : false;
828 requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
829 requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;
830 }
831
832
833 vector<int> SimInfo::getGlobalAtomIndices() {
834 SimInfo::MoleculeIterator mi;
835 Molecule* mol;
836 Molecule::AtomIterator ai;
837 Atom* atom;
838
839 vector<int> GlobalAtomIndices(getNAtoms(), 0);
840
841 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
842
843 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
845 }
846 }
847 return GlobalAtomIndices;
848 }
849
850
851 vector<int> SimInfo::getGlobalGroupIndices() {
852 SimInfo::MoleculeIterator mi;
853 Molecule* mol;
854 Molecule::CutoffGroupIterator ci;
855 CutoffGroup* cg;
856
857 vector<int> GlobalGroupIndices;
858
859 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
860
861 //local index of cutoff group is trivial, it only depends on the
862 //order of travesing
863 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
864 cg = mol->nextCutoffGroup(ci)) {
865 GlobalGroupIndices.push_back(cg->getGlobalIndex());
866 }
867 }
868 return GlobalGroupIndices;
869 }
870
871
872 void SimInfo::prepareTopology() {
873 int nExclude, nOneTwo, nOneThree, nOneFour;
874
875 //calculate mass ratio of cutoff group
876 SimInfo::MoleculeIterator mi;
877 Molecule* mol;
878 Molecule::CutoffGroupIterator ci;
879 CutoffGroup* cg;
880 Molecule::AtomIterator ai;
881 Atom* atom;
882 RealType totalMass;
883
884 /**
885 * The mass factor is the relative mass of an atom to the total
886 * mass of the cutoff group it belongs to. By default, all atoms
887 * are their own cutoff groups, and therefore have mass factors of
888 * 1. We need some special handling for massless atoms, which
889 * will be treated as carrying the entire mass of the cutoff
890 * group.
891 */
892 massFactors_.clear();
893 massFactors_.resize(getNAtoms(), 1.0);
894
895 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
896 for (cg = mol->beginCutoffGroup(ci); cg != NULL;
897 cg = mol->nextCutoffGroup(ci)) {
898
899 totalMass = cg->getMass();
900 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
901 // Check for massless groups - set mfact to 1 if true
902 if (totalMass != 0)
903 massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
904 else
905 massFactors_[atom->getLocalIndex()] = 1.0;
906 }
907 }
908 }
909
910 // Build the identArray_
911
912 identArray_.clear();
913 identArray_.reserve(getNAtoms());
914 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
915 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
916 identArray_.push_back(atom->getIdent());
917 }
918 }
919
920 //scan topology
921
922 nExclude = excludedInteractions_.getSize();
923 nOneTwo = oneTwoInteractions_.getSize();
924 nOneThree = oneThreeInteractions_.getSize();
925 nOneFour = oneFourInteractions_.getSize();
926
927 int* excludeList = excludedInteractions_.getPairList();
928 int* oneTwoList = oneTwoInteractions_.getPairList();
929 int* oneThreeList = oneThreeInteractions_.getPairList();
930 int* oneFourList = oneFourInteractions_.getPairList();
931
932 topologyDone_ = true;
933 }
934
935 void SimInfo::addProperty(GenericData* genData) {
936 properties_.addProperty(genData);
937 }
938
939 void SimInfo::removeProperty(const string& propName) {
940 properties_.removeProperty(propName);
941 }
942
943 void SimInfo::clearProperties() {
944 properties_.clearProperties();
945 }
946
947 vector<string> SimInfo::getPropertyNames() {
948 return properties_.getPropertyNames();
949 }
950
951 vector<GenericData*> SimInfo::getProperties() {
952 return properties_.getProperties();
953 }
954
955 GenericData* SimInfo::getPropertyByName(const string& propName) {
956 return properties_.getPropertyByName(propName);
957 }
958
959 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
960 if (sman_ == sman) {
961 return;
962 }
963 delete sman_;
964 sman_ = sman;
965
966 Molecule* mol;
967 RigidBody* rb;
968 Atom* atom;
969 CutoffGroup* cg;
970 SimInfo::MoleculeIterator mi;
971 Molecule::RigidBodyIterator rbIter;
972 Molecule::AtomIterator atomIter;
973 Molecule::CutoffGroupIterator cgIter;
974
975 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
976
977 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
978 atom->setSnapshotManager(sman_);
979 }
980
981 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
982 rb->setSnapshotManager(sman_);
983 }
984
985 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
986 cg->setSnapshotManager(sman_);
987 }
988 }
989
990 }
991
992 Vector3d SimInfo::getComVel(){
993 SimInfo::MoleculeIterator i;
994 Molecule* mol;
995
996 Vector3d comVel(0.0);
997 RealType totalMass = 0.0;
998
999
1000 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1001 RealType mass = mol->getMass();
1002 totalMass += mass;
1003 comVel += mass * mol->getComVel();
1004 }
1005
1006 #ifdef IS_MPI
1007 RealType tmpMass = totalMass;
1008 Vector3d tmpComVel(comVel);
1009 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1010 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011 #endif
1012
1013 comVel /= totalMass;
1014
1015 return comVel;
1016 }
1017
1018 Vector3d SimInfo::getCom(){
1019 SimInfo::MoleculeIterator i;
1020 Molecule* mol;
1021
1022 Vector3d com(0.0);
1023 RealType totalMass = 0.0;
1024
1025 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1026 RealType mass = mol->getMass();
1027 totalMass += mass;
1028 com += mass * mol->getCom();
1029 }
1030
1031 #ifdef IS_MPI
1032 RealType tmpMass = totalMass;
1033 Vector3d tmpCom(com);
1034 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1035 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036 #endif
1037
1038 com /= totalMass;
1039
1040 return com;
1041
1042 }
1043
1044 ostream& operator <<(ostream& o, SimInfo& info) {
1045
1046 return o;
1047 }
1048
1049
1050 /*
1051 Returns center of mass and center of mass velocity in one function call.
1052 */
1053
1054 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1055 SimInfo::MoleculeIterator i;
1056 Molecule* mol;
1057
1058
1059 RealType totalMass = 0.0;
1060
1061
1062 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1063 RealType mass = mol->getMass();
1064 totalMass += mass;
1065 com += mass * mol->getCom();
1066 comVel += mass * mol->getComVel();
1067 }
1068
1069 #ifdef IS_MPI
1070 RealType tmpMass = totalMass;
1071 Vector3d tmpCom(com);
1072 Vector3d tmpComVel(comVel);
1073 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076 #endif
1077
1078 com /= totalMass;
1079 comVel /= totalMass;
1080 }
1081
1082 /*
1083 Return intertia tensor for entire system and angular momentum Vector.
1084
1085
1086 [ Ixx -Ixy -Ixz ]
1087 J =| -Iyx Iyy -Iyz |
1088 [ -Izx -Iyz Izz ]
1089 */
1090
1091 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1092
1093
1094 RealType xx = 0.0;
1095 RealType yy = 0.0;
1096 RealType zz = 0.0;
1097 RealType xy = 0.0;
1098 RealType xz = 0.0;
1099 RealType yz = 0.0;
1100 Vector3d com(0.0);
1101 Vector3d comVel(0.0);
1102
1103 getComAll(com, comVel);
1104
1105 SimInfo::MoleculeIterator i;
1106 Molecule* mol;
1107
1108 Vector3d thisq(0.0);
1109 Vector3d thisv(0.0);
1110
1111 RealType thisMass = 0.0;
1112
1113
1114
1115
1116 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1117
1118 thisq = mol->getCom()-com;
1119 thisv = mol->getComVel()-comVel;
1120 thisMass = mol->getMass();
1121 // Compute moment of intertia coefficients.
1122 xx += thisq[0]*thisq[0]*thisMass;
1123 yy += thisq[1]*thisq[1]*thisMass;
1124 zz += thisq[2]*thisq[2]*thisMass;
1125
1126 // compute products of intertia
1127 xy += thisq[0]*thisq[1]*thisMass;
1128 xz += thisq[0]*thisq[2]*thisMass;
1129 yz += thisq[1]*thisq[2]*thisMass;
1130
1131 angularMomentum += cross( thisq, thisv ) * thisMass;
1132
1133 }
1134
1135
1136 inertiaTensor(0,0) = yy + zz;
1137 inertiaTensor(0,1) = -xy;
1138 inertiaTensor(0,2) = -xz;
1139 inertiaTensor(1,0) = -xy;
1140 inertiaTensor(1,1) = xx + zz;
1141 inertiaTensor(1,2) = -yz;
1142 inertiaTensor(2,0) = -xz;
1143 inertiaTensor(2,1) = -yz;
1144 inertiaTensor(2,2) = xx + yy;
1145
1146 #ifdef IS_MPI
1147 Mat3x3d tmpI(inertiaTensor);
1148 Vector3d tmpAngMom;
1149 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151 #endif
1152
1153 return;
1154 }
1155
1156 //Returns the angular momentum of the system
1157 Vector3d SimInfo::getAngularMomentum(){
1158
1159 Vector3d com(0.0);
1160 Vector3d comVel(0.0);
1161 Vector3d angularMomentum(0.0);
1162
1163 getComAll(com,comVel);
1164
1165 SimInfo::MoleculeIterator i;
1166 Molecule* mol;
1167
1168 Vector3d thisr(0.0);
1169 Vector3d thisp(0.0);
1170
1171 RealType thisMass;
1172
1173 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1174 thisMass = mol->getMass();
1175 thisr = mol->getCom()-com;
1176 thisp = (mol->getComVel()-comVel)*thisMass;
1177
1178 angularMomentum += cross( thisr, thisp );
1179
1180 }
1181
1182 #ifdef IS_MPI
1183 Vector3d tmpAngMom;
1184 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1185 #endif
1186
1187 return angularMomentum;
1188 }
1189
1190 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1191 return IOIndexToIntegrableObject.at(index);
1192 }
1193
1194 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1195 IOIndexToIntegrableObject= v;
1196 }
1197
1198 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1199 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1200 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1201 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1202 */
1203 void SimInfo::getGyrationalVolume(RealType &volume){
1204 Mat3x3d intTensor;
1205 RealType det;
1206 Vector3d dummyAngMom;
1207 RealType sysconstants;
1208 RealType geomCnst;
1209
1210 geomCnst = 3.0/2.0;
1211 /* Get the inertial tensor and angular momentum for free*/
1212 getInertiaTensor(intTensor,dummyAngMom);
1213
1214 det = intTensor.determinant();
1215 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1216 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1217 return;
1218 }
1219
1220 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1221 Mat3x3d intTensor;
1222 Vector3d dummyAngMom;
1223 RealType sysconstants;
1224 RealType geomCnst;
1225
1226 geomCnst = 3.0/2.0;
1227 /* Get the inertial tensor and angular momentum for free*/
1228 getInertiaTensor(intTensor,dummyAngMom);
1229
1230 detI = intTensor.determinant();
1231 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1233 return;
1234 }
1235 /*
1236 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1237 assert( v.size() == nAtoms_ + nRigidBodies_);
1238 sdByGlobalIndex_ = v;
1239 }
1240
1241 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1242 //assert(index < nAtoms_ + nRigidBodies_);
1243 return sdByGlobalIndex_.at(index);
1244 }
1245 */
1246 int SimInfo::getNGlobalConstraints() {
1247 int nGlobalConstraints;
1248 #ifdef IS_MPI
1249 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1250 MPI_COMM_WORLD);
1251 #else
1252 nGlobalConstraints = nConstraints_;
1253 #endif
1254 return nGlobalConstraints;
1255 }
1256
1257 }//end namespace OpenMD
1258

Properties

Name Value
svn:keywords Author Id Revision Date