ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1045 by chrisfen, Thu Sep 21 18:25:17 2006 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 > #include "utils/MemoryUtils.hpp"
65 > #include "utils/simError.h"
66 > #include "selection/SelectionManager.hpp"
67 > #include "io/ForceFieldOptions.hpp"
68 > #include "UseTheForce/ForceField.hpp"
69  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
70   #ifdef IS_MPI
71 < #include "mpiSimulation.hpp"
72 < #endif
71 > #include "UseTheForce/mpiComponentPlan.h"
72 > #include "UseTheForce/DarkSide/simParallel_interface.h"
73 > #endif
74  
75 < inline double roundMe( double x ){
76 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
77 < }
78 <          
79 < inline double min( double a, double b ){
80 <  return (a < b ) ? a : b;
81 < }
75 > namespace oopse {
76 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 >    std::map<int, std::set<int> >::iterator i = container.find(index);
78 >    std::set<int> result;
79 >    if (i != container.end()) {
80 >        result = i->second;
81 >    }
82  
83 < SimInfo* currentInfo;
84 <
31 < SimInfo::SimInfo(){
32 <
33 <  n_constraints = 0;
34 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
83 >    return result;
84 >  }
85    
86 <  resetTime = 1e99;
86 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 >    forceField_(ff), simParams_(simParams),
88 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94  
95 <  orthoRhombic = 0;
96 <  orthoTolerance = 1E-6;
97 <  useInitXSstate = true;
95 >      MoleculeStamp* molStamp;
96 >      int nMolWithSameStamp;
97 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 >      CutoffGroupStamp* cgStamp;    
100 >      RigidBodyStamp* rbStamp;
101 >      int nRigidAtoms = 0;
102 >      std::vector<Component*> components = simParams->getComponents();
103 >      
104 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 >        molStamp = (*i)->getMoleculeStamp();
106 >        nMolWithSameStamp = (*i)->getNMol();
107 >        
108 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110 <  usePBC = 0;
111 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
110 >        //calculate atoms in molecules
111 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
113 <  haveCutoffGroups = false;
113 >        //calculate atoms in cutoff groups
114 >        int nAtomsInGroups = 0;
115 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116 >        
117 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 >          cgStamp = molStamp->getCutoffGroupStamp(j);
119 >          nAtomsInGroups += cgStamp->getNMembers();
120 >        }
121  
122 <  excludes = Exclude::Instance();
122 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123  
124 <  myConfiguration = new SimState();
124 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125  
126 <  has_minimizer = false;
127 <  the_minimizer =NULL;
126 >        //calculate atoms in rigid bodies
127 >        int nAtomsInRigidBodies = 0;
128 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 >        
130 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 >          rbStamp = molStamp->getRigidBodyStamp(j);
132 >          nAtomsInRigidBodies += rbStamp->getNMembers();
133 >        }
134  
135 <  ngroup = 0;
135 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 >        
138 >      }
139  
140 <  wrapMeSimInfo( this );
141 < }
140 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
141 >      //group therefore the total number of cutoff groups in the system is
142 >      //equal to the total number of atoms minus number of atoms belong to
143 >      //cutoff group defined in meta-data file plus the number of cutoff
144 >      //groups defined in meta-data file
145 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146  
147 <
148 < SimInfo::~SimInfo(){
149 <
150 <  delete myConfiguration;
151 <
152 <  map<string, GenericData*>::iterator i;
147 >      //every free atom (atom does not belong to rigid bodies) is an
148 >      //integrable object therefore the total number of integrable objects
149 >      //in the system is equal to the total number of atoms minus number of
150 >      //atoms belong to rigid body defined in meta-data file plus the number
151 >      //of rigid bodies defined in meta-data file
152 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 >                                                + nGlobalRigidBodies_;
154    
155 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
155 >      nGlobalMols_ = molStampIds_.size();
156  
157 < }
157 > #ifdef IS_MPI    
158 >      molToProcMap_.resize(nGlobalMols_);
159 > #endif
160  
161 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
161 >    }
162  
163 <  for(i=0; i<3; i++)
164 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
163 >  SimInfo::~SimInfo() {
164 >    std::map<int, Molecule*>::iterator i;
165 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 >      delete i->second;
167 >    }
168 >    molecules_.clear();
169 >      
170 >    delete sman_;
171 >    delete simParams_;
172 >    delete forceField_;
173 >  }
174  
175 <  tempMat[0][0] = newBox[0];
176 <  tempMat[1][1] = newBox[1];
177 <  tempMat[2][2] = newBox[2];
175 >  int SimInfo::getNGlobalConstraints() {
176 >    int nGlobalConstraints;
177 > #ifdef IS_MPI
178 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179 >                  MPI_COMM_WORLD);    
180 > #else
181 >    nGlobalConstraints =  nConstraints_;
182 > #endif
183 >    return nGlobalConstraints;
184 >  }
185  
186 <  setBoxM( tempMat );
186 >  bool SimInfo::addMolecule(Molecule* mol) {
187 >    MoleculeIterator i;
188  
189 < }
189 >    i = molecules_.find(mol->getGlobalIndex());
190 >    if (i == molecules_.end() ) {
191  
192 < void SimInfo::setBoxM( double theBox[3][3] ){
193 <  
194 <  int i, j;
195 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
196 <                         // ordering in the array is as follows:
197 <                         // [ 0 3 6 ]
198 <                         // [ 1 4 7 ]
199 <                         // [ 2 5 8 ]
200 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
201 <
202 <  if( !boxIsInit ) boxIsInit = 1;
203 <
204 <  for(i=0; i < 3; i++)
205 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
206 <  
207 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
192 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193 >        
194 >      nAtoms_ += mol->getNAtoms();
195 >      nBonds_ += mol->getNBonds();
196 >      nBends_ += mol->getNBends();
197 >      nTorsions_ += mol->getNTorsions();
198 >      nRigidBodies_ += mol->getNRigidBodies();
199 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
200 >      nCutoffGroups_ += mol->getNCutoffGroups();
201 >      nConstraints_ += mol->getNConstraintPairs();
202 >
203 >      addExcludePairs(mol);
204 >        
205 >      return true;
206 >    } else {
207 >      return false;
208      }
209    }
210  
211 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
212 <
213 < }
138 <
211 >  bool SimInfo::removeMolecule(Molecule* mol) {
212 >    MoleculeIterator i;
213 >    i = molecules_.find(mol->getGlobalIndex());
214  
215 < void SimInfo::getBoxM (double theBox[3][3]) {
215 >    if (i != molecules_.end() ) {
216  
217 <  int i, j;
218 <  for(i=0; i<3; i++)
219 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
220 < }
217 >      assert(mol == i->second);
218 >        
219 >      nAtoms_ -= mol->getNAtoms();
220 >      nBonds_ -= mol->getNBonds();
221 >      nBends_ -= mol->getNBends();
222 >      nTorsions_ -= mol->getNTorsions();
223 >      nRigidBodies_ -= mol->getNRigidBodies();
224 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 >      nCutoffGroups_ -= mol->getNCutoffGroups();
226 >      nConstraints_ -= mol->getNConstraintPairs();
227  
228 +      removeExcludePairs(mol);
229 +      molecules_.erase(mol->getGlobalIndex());
230  
231 < void SimInfo::scaleBox(double scale) {
232 <  double theBox[3][3];
233 <  int i, j;
231 >      delete mol;
232 >        
233 >      return true;
234 >    } else {
235 >      return false;
236 >    }
237  
152  // cerr << "Scaling box by " << scale << "\n";
238  
239 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
239 >  }    
240  
241 <  setBoxM(theBox);
241 >        
242 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 >    i = molecules_.begin();
244 >    return i == molecules_.end() ? NULL : i->second;
245 >  }    
246  
247 < }
247 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 >    ++i;
249 >    return i == molecules_.end() ? NULL : i->second;    
250 >  }
251  
161 void SimInfo::calcHmatInv( void ) {
162  
163  int oldOrtho;
164  int i,j;
165  double smallDiag;
166  double tol;
167  double sanity[3][3];
252  
253 <  invertMat3( Hmat, HmatInv );
253 >  void SimInfo::calcNdf() {
254 >    int ndf_local;
255 >    MoleculeIterator i;
256 >    std::vector<StuntDouble*>::iterator j;
257 >    Molecule* mol;
258 >    StuntDouble* integrableObject;
259  
260 <  // check to see if Hmat is orthorhombic
261 <  
262 <  oldOrtho = orthoRhombic;
260 >    ndf_local = 0;
261 >    
262 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 >           integrableObject = mol->nextIntegrableObject(j)) {
265  
266 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
266 >        ndf_local += 3;
267  
268 <  orthoRhombic = 1;
269 <  
270 <  for (i = 0; i < 3; i++ ) {
271 <    for (j = 0 ; j < 3; j++) {
272 <      if (i != j) {
273 <        if (orthoRhombic) {
274 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
275 <        }        
268 >        if (integrableObject->isDirectional()) {
269 >          if (integrableObject->isLinear()) {
270 >            ndf_local += 2;
271 >          } else {
272 >            ndf_local += 3;
273 >          }
274 >        }
275 >            
276        }
277      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
278      
279 <    if( orthoRhombic ) {
280 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
279 >    // n_constraints is local, so subtract them on each processor
280 >    ndf_local -= nConstraints_;
281  
282 < void SimInfo::calcBoxL( void ){
282 > #ifdef IS_MPI
283 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 > #else
285 >    ndf_ = ndf_local;
286 > #endif
287  
288 <  double dx, dy, dz, dsq;
288 >    // nZconstraints_ is global, as are the 3 COM translations for the
289 >    // entire system:
290 >    ndf_ = ndf_ - 3 - nZconstraint_;
291  
292 <  // boxVol = Determinant of Hmat
292 >  }
293  
294 <  boxVol = matDet3( Hmat );
294 >  int SimInfo::getFdf() {
295 > #ifdef IS_MPI
296 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 > #else
298 >    fdf_ = fdf_local;
299 > #endif
300 >    return fdf_;
301 >  }
302 >    
303 >  void SimInfo::calcNdfRaw() {
304 >    int ndfRaw_local;
305  
306 <  // boxLx
307 <  
308 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
309 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
306 >    MoleculeIterator i;
307 >    std::vector<StuntDouble*>::iterator j;
308 >    Molecule* mol;
309 >    StuntDouble* integrableObject;
310  
311 <  // boxLy
312 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
311 >    // Raw degrees of freedom that we have to set
312 >    ndfRaw_local = 0;
313      
314 <  crossProduct3(ri, rj, rij);
315 <  distXY = dotProduct3(rk,rij) / norm3(rij);
314 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 >           integrableObject = mol->nextIntegrableObject(j)) {
317  
318 <  crossProduct3(rj,rk, rjk);
280 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
281 <
282 <  crossProduct3(rk,ri, rki);
283 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
318 >        ndfRaw_local += 3;
319  
320 <  int i;
321 <  double scaled[3];
322 <
323 <  if( !orthoRhombic ){
324 <    // calc the scaled coordinates.
325 <  
326 <
327 <    matVecMul3(HmatInv, thePos, scaled);
320 >        if (integrableObject->isDirectional()) {
321 >          if (integrableObject->isLinear()) {
322 >            ndfRaw_local += 2;
323 >          } else {
324 >            ndfRaw_local += 3;
325 >          }
326 >        }
327 >            
328 >      }
329 >    }
330      
331 <    for(i=0; i<3; i++)
332 <      scaled[i] -= roundMe(scaled[i]);
333 <    
334 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
335 <    
306 <    matVecMul3(Hmat, scaled, thePos);
307 <
331 > #ifdef IS_MPI
332 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
333 > #else
334 >    ndfRaw_ = ndfRaw_local;
335 > #endif
336    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
337  
338 +  void SimInfo::calcNdfTrans() {
339 +    int ndfTrans_local;
340  
341 < int SimInfo::getNDF(){
330 <  int ndf_local;
341 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
342  
332  ndf_local = 0;
333  
334  for(int i = 0; i < integrableObjects.size(); i++){
335    ndf_local += 3;
336    if (integrableObjects[i]->isDirectional()) {
337      if (integrableObjects[i]->isLinear())
338        ndf_local += 2;
339      else
340        ndf_local += 3;
341    }
342  }
343  
344  // n_constraints is local, so subtract them on each processor:
345
346  ndf_local -= n_constraints;
347
344   #ifdef IS_MPI
345 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346   #else
347 <  ndf = ndf_local;
347 >    ndfTrans_ = ndfTrans_local;
348   #endif
349  
350 <  // nZconstraints is global, as are the 3 COM translations for the
351 <  // entire system:
350 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351 >
352 >  }
353  
354 <  ndf = ndf - 3 - nZconstraints;
354 >  void SimInfo::addExcludePairs(Molecule* mol) {
355 >    std::vector<Bond*>::iterator bondIter;
356 >    std::vector<Bend*>::iterator bendIter;
357 >    std::vector<Torsion*>::iterator torsionIter;
358 >    Bond* bond;
359 >    Bend* bend;
360 >    Torsion* torsion;
361 >    int a;
362 >    int b;
363 >    int c;
364 >    int d;
365  
366 <  return ndf;
360 < }
366 >    std::map<int, std::set<int> > atomGroups;
367  
368 < int SimInfo::getNDFraw() {
369 <  int ndfRaw_local;
368 >    Molecule::RigidBodyIterator rbIter;
369 >    RigidBody* rb;
370 >    Molecule::IntegrableObjectIterator ii;
371 >    StuntDouble* integrableObject;
372 >    
373 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 >           integrableObject = mol->nextIntegrableObject(ii)) {
375  
376 <  // Raw degrees of freedom that we have to set
377 <  ndfRaw_local = 0;
376 >      if (integrableObject->isRigidBody()) {
377 >          rb = static_cast<RigidBody*>(integrableObject);
378 >          std::vector<Atom*> atoms = rb->getAtoms();
379 >          std::set<int> rigidAtoms;
380 >          for (int i = 0; i < atoms.size(); ++i) {
381 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >          }
383 >          for (int i = 0; i < atoms.size(); ++i) {
384 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >          }      
386 >      } else {
387 >        std::set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 >      }
391 >    }  
392  
368  for(int i = 0; i < integrableObjects.size(); i++){
369    ndfRaw_local += 3;
370    if (integrableObjects[i]->isDirectional()) {
371       if (integrableObjects[i]->isLinear())
372        ndfRaw_local += 2;
373      else
374        ndfRaw_local += 3;
375    }
376  }
393      
394 < #ifdef IS_MPI
395 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfRaw = ndfRaw_local;
398 < #endif
394 >    
395 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();        
398 >      exclude_.addPair(a, b);
399 >    }
400  
401 <  return ndfRaw;
402 < }
401 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
402 >      a = bend->getAtomA()->getGlobalIndex();
403 >      b = bend->getAtomB()->getGlobalIndex();        
404 >      c = bend->getAtomC()->getGlobalIndex();
405 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408  
409 < int SimInfo::getNDFtranslational() {
410 <  int ndfTrans_local;
409 >      exclude_.addPairs(rigidSetA, rigidSetB);
410 >      exclude_.addPairs(rigidSetA, rigidSetC);
411 >      exclude_.addPairs(rigidSetB, rigidSetC);
412 >      
413 >      //exclude_.addPair(a, b);
414 >      //exclude_.addPair(a, c);
415 >      //exclude_.addPair(b, c);        
416 >    }
417  
418 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
418 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 >      a = torsion->getAtomA()->getGlobalIndex();
420 >      b = torsion->getAtomB()->getGlobalIndex();        
421 >      c = torsion->getAtomC()->getGlobalIndex();        
422 >      d = torsion->getAtomD()->getGlobalIndex();        
423 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427  
428 +      exclude_.addPairs(rigidSetA, rigidSetB);
429 +      exclude_.addPairs(rigidSetA, rigidSetC);
430 +      exclude_.addPairs(rigidSetA, rigidSetD);
431 +      exclude_.addPairs(rigidSetB, rigidSetC);
432 +      exclude_.addPairs(rigidSetB, rigidSetD);
433 +      exclude_.addPairs(rigidSetC, rigidSetD);
434  
435 < #ifdef IS_MPI
436 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
437 < #else
438 <  ndfTrans = ndfTrans_local;
439 < #endif
435 >      /*
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 >        
443 >      
444 >      exclude_.addPair(a, b);
445 >      exclude_.addPair(a, c);
446 >      exclude_.addPair(a, d);
447 >      exclude_.addPair(b, c);
448 >      exclude_.addPair(b, d);
449 >      exclude_.addPair(c, d);        
450 >      */
451 >    }
452  
453 <  ndfTrans = ndfTrans - 3 - nZconstraints;
453 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454 >      std::vector<Atom*> atoms = rb->getAtoms();
455 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
456 >        for (int j = i + 1; j < atoms.size(); ++j) {
457 >          a = atoms[i]->getGlobalIndex();
458 >          b = atoms[j]->getGlobalIndex();
459 >          exclude_.addPair(a, b);
460 >        }
461 >      }
462 >    }        
463  
464 <  return ndfTrans;
402 < }
464 >  }
465  
466 < int SimInfo::getTotIntegrableObjects() {
467 <  int nObjs_local;
468 <  int nObjs;
466 >  void SimInfo::removeExcludePairs(Molecule* mol) {
467 >    std::vector<Bond*>::iterator bondIter;
468 >    std::vector<Bend*>::iterator bendIter;
469 >    std::vector<Torsion*>::iterator torsionIter;
470 >    Bond* bond;
471 >    Bend* bend;
472 >    Torsion* torsion;
473 >    int a;
474 >    int b;
475 >    int c;
476 >    int d;
477  
478 <  nObjs_local =  integrableObjects.size();
478 >    std::map<int, std::set<int> > atomGroups;
479 >
480 >    Molecule::RigidBodyIterator rbIter;
481 >    RigidBody* rb;
482 >    Molecule::IntegrableObjectIterator ii;
483 >    StuntDouble* integrableObject;
484 >    
485 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 >           integrableObject = mol->nextIntegrableObject(ii)) {
487 >
488 >      if (integrableObject->isRigidBody()) {
489 >          rb = static_cast<RigidBody*>(integrableObject);
490 >          std::vector<Atom*> atoms = rb->getAtoms();
491 >          std::set<int> rigidAtoms;
492 >          for (int i = 0; i < atoms.size(); ++i) {
493 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 >          }
495 >          for (int i = 0; i < atoms.size(); ++i) {
496 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 >          }      
498 >      } else {
499 >        std::set<int> oneAtomSet;
500 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
501 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
502 >      }
503 >    }  
504  
505 +    
506 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507 +      a = bond->getAtomA()->getGlobalIndex();
508 +      b = bond->getAtomB()->getGlobalIndex();        
509 +      exclude_.removePair(a, b);
510 +    }
511  
512 < #ifdef IS_MPI
513 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
514 < #else
515 <  nObjs = nObjs_local;
415 < #endif
512 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
513 >      a = bend->getAtomA()->getGlobalIndex();
514 >      b = bend->getAtomB()->getGlobalIndex();        
515 >      c = bend->getAtomC()->getGlobalIndex();
516  
517 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520  
521 <  return nObjs;
522 < }
521 >      exclude_.removePairs(rigidSetA, rigidSetB);
522 >      exclude_.removePairs(rigidSetA, rigidSetC);
523 >      exclude_.removePairs(rigidSetB, rigidSetC);
524 >      
525 >      //exclude_.removePair(a, b);
526 >      //exclude_.removePair(a, c);
527 >      //exclude_.removePair(b, c);        
528 >    }
529  
530 < void SimInfo::refreshSim(){
530 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
531 >      a = torsion->getAtomA()->getGlobalIndex();
532 >      b = torsion->getAtomB()->getGlobalIndex();        
533 >      c = torsion->getAtomC()->getGlobalIndex();        
534 >      d = torsion->getAtomD()->getGlobalIndex();        
535  
536 <  simtype fInfo;
537 <  int isError;
538 <  int n_global;
539 <  int* excl;
536 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540  
541 <  fInfo.dielect = 0.0;
541 >      exclude_.removePairs(rigidSetA, rigidSetB);
542 >      exclude_.removePairs(rigidSetA, rigidSetC);
543 >      exclude_.removePairs(rigidSetA, rigidSetD);
544 >      exclude_.removePairs(rigidSetB, rigidSetC);
545 >      exclude_.removePairs(rigidSetB, rigidSetD);
546 >      exclude_.removePairs(rigidSetC, rigidSetD);
547  
548 <  if( useDipoles ){
549 <    if( useReactionField )fInfo.dielect = dielectric;
548 >      /*
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555 >
556 >      
557 >      exclude_.removePair(a, b);
558 >      exclude_.removePair(a, c);
559 >      exclude_.removePair(a, d);
560 >      exclude_.removePair(b, c);
561 >      exclude_.removePair(b, d);
562 >      exclude_.removePair(c, d);        
563 >      */
564 >    }
565 >
566 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567 >      std::vector<Atom*> atoms = rb->getAtoms();
568 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
569 >        for (int j = i + 1; j < atoms.size(); ++j) {
570 >          a = atoms[i]->getGlobalIndex();
571 >          b = atoms[j]->getGlobalIndex();
572 >          exclude_.removePair(a, b);
573 >        }
574 >      }
575 >    }        
576 >
577    }
578  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
579  
580 <  n_exclude = excludes->getSize();
581 <  excl = excludes->getFortranArray();
582 <  
580 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581 >    int curStampId;
582 >
583 >    //index from 0
584 >    curStampId = moleculeStamps_.size();
585 >
586 >    moleculeStamps_.push_back(molStamp);
587 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
588 >  }
589 >
590 >  void SimInfo::update() {
591 >
592 >    setupSimType();
593 >
594   #ifdef IS_MPI
595 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
595 >    setupFortranParallel();
596   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
597  
598 <  if( isError ){
598 >    setupFortranSim();
599 >
600 >    //setup fortran force field
601 >    /** @deprecate */    
602 >    int isError = 0;
603      
604 <    sprintf( painCave.errMsg,
605 <             "There was an error setting the simulation information in fortran.\n" );
606 <    painCave.isFatal = 1;
607 <    painCave.severity = OOPSE_ERROR;
608 <    simError();
604 >    setupCutoff();
605 >    
606 >    setupElectrostaticSummationMethod( isError );
607 >    setupSwitchingFunction();
608 >    setupAccumulateBoxDipole();
609 >
610 >    if(isError){
611 >      sprintf( painCave.errMsg,
612 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 >      painCave.isFatal = 1;
614 >      simError();
615 >    }
616 >
617 >    calcNdf();
618 >    calcNdfRaw();
619 >    calcNdfTrans();
620 >
621 >    fortranInitialized_ = true;
622    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
623  
624 < void SimInfo::setDefaultRcut( double theRcut ){
625 <  
626 <  haveRcut = 1;
627 <  rCut = theRcut;
628 <  rList = rCut + 1.0;
629 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
624 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625 >    SimInfo::MoleculeIterator mi;
626 >    Molecule* mol;
627 >    Molecule::AtomIterator ai;
628 >    Atom* atom;
629 >    std::set<AtomType*> atomTypes;
630  
631 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
631 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632  
633 <  rSw = theRsw;
634 <  setDefaultRcut( theRcut );
635 < }
633 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 >        atomTypes.insert(atom->getAtomType());
635 >      }
636 >        
637 >    }
638  
639 +    return atomTypes;        
640 +  }
641  
642 < void SimInfo::checkCutOffs( void ){
643 <  
644 <  if( boxIsInit ){
642 >  void SimInfo::setupSimType() {
643 >    std::set<AtomType*>::iterator i;
644 >    std::set<AtomType*> atomTypes;
645 >    atomTypes = getUniqueAtomTypes();
646      
647 <    //we need to check cutOffs against the box
647 >    int useLennardJones = 0;
648 >    int useElectrostatic = 0;
649 >    int useEAM = 0;
650 >    int useSC = 0;
651 >    int useCharge = 0;
652 >    int useDirectional = 0;
653 >    int useDipole = 0;
654 >    int useGayBerne = 0;
655 >    int useSticky = 0;
656 >    int useStickyPower = 0;
657 >    int useShape = 0;
658 >    int useFLARB = 0; //it is not in AtomType yet
659 >    int useDirectionalAtom = 0;    
660 >    int useElectrostatics = 0;
661 >    //usePBC and useRF are from simParams
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668 >
669 >    // set the useRF logical
670 >    useRF = 0;
671 >    useSF = 0;
672 >
673 >
674 >    if (simParams_->haveElectrostaticSummationMethod()) {
675 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 >      toUpper(myMethod);
677 >      if (myMethod == "REACTION_FIELD"){
678 >        useRF=1;
679 >      } else if (myMethod == "SHIFTED_FORCE"){
680 >        useSF = 1;
681 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 >        useSP = 1;
683 >      }
684 >    }
685      
686 <    if( rCut > maxCutoff ){
687 <      sprintf( painCave.errMsg,
688 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
525 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
686 >    if (simParams_->haveAccumulateBoxDipole())
687 >      if (simParams_->getAccumulateBoxDipole())
688 >        useBoxDipole = 1;
689  
690 < void SimInfo::addProperty(GenericData* prop){
690 >    //loop over all of the atom types
691 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 >      useLennardJones |= (*i)->isLennardJones();
693 >      useElectrostatic |= (*i)->isElectrostatic();
694 >      useEAM |= (*i)->isEAM();
695 >      useSC |= (*i)->isSC();
696 >      useCharge |= (*i)->isCharge();
697 >      useDirectional |= (*i)->isDirectional();
698 >      useDipole |= (*i)->isDipole();
699 >      useGayBerne |= (*i)->isGayBerne();
700 >      useSticky |= (*i)->isSticky();
701 >      useStickyPower |= (*i)->isStickyPower();
702 >      useShape |= (*i)->isShape();
703 >    }
704  
705 <  map<string, GenericData*>::iterator result;
706 <  result = properties.find(prop->getID());
707 <  
708 <  //we can't simply use  properties[prop->getID()] = prop,
709 <  //it will cause memory leak if we already contain a propery which has the same name of prop
710 <  
711 <  if(result != properties.end()){
705 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 >      useDirectionalAtom = 1;
707 >    }
708 >
709 >    if (useCharge || useDipole) {
710 >      useElectrostatics = 1;
711 >    }
712 >
713 > #ifdef IS_MPI    
714 >    int temp;
715 >
716 >    temp = usePBC;
717 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 >
719 >    temp = useDirectionalAtom;
720 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 >
722 >    temp = useLennardJones;
723 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >
725 >    temp = useElectrostatics;
726 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 >
728 >    temp = useCharge;
729 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 >
731 >    temp = useDipole;
732 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 >
734 >    temp = useSticky;
735 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >
737 >    temp = useStickyPower;
738 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739      
740 <    delete (*result).second;
741 <    (*result).second = prop;
740 >    temp = useGayBerne;
741 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >
743 >    temp = useEAM;
744 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 >
746 >    temp = useSC;
747 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 >    
749 >    temp = useShape;
750 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751 >
752 >    temp = useFLARB;
753 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
754 >
755 >    temp = useRF;
756 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 >
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 >
761 >    temp = useSP;
762 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 >
764 >    temp = useBoxDipole;
765 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 > #endif
768 >
769 >    fInfo_.SIM_uses_PBC = usePBC;    
770 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
772 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
773 >    fInfo_.SIM_uses_Charges = useCharge;
774 >    fInfo_.SIM_uses_Dipoles = useDipole;
775 >    fInfo_.SIM_uses_Sticky = useSticky;
776 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 >    fInfo_.SIM_uses_EAM = useEAM;
779 >    fInfo_.SIM_uses_SC = useSC;
780 >    fInfo_.SIM_uses_Shapes = useShape;
781 >    fInfo_.SIM_uses_FLARB = useFLARB;
782 >    fInfo_.SIM_uses_RF = useRF;
783 >    fInfo_.SIM_uses_SF = useSF;
784 >    fInfo_.SIM_uses_SP = useSP;
785 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786 >
787 >    if( myMethod == "REACTION_FIELD") {
788        
789 +      if (simParams_->haveDielectric()) {
790 +        fInfo_.dielect = simParams_->getDielectric();
791 +      } else {
792 +        sprintf(painCave.errMsg,
793 +                "SimSetup Error: No Dielectric constant was set.\n"
794 +                "\tYou are trying to use Reaction Field without"
795 +                "\tsetting a dielectric constant!\n");
796 +        painCave.isFatal = 1;
797 +        simError();
798 +      }      
799 +    }
800 +
801    }
552  else{
802  
803 <    properties[prop->getID()] = prop;
803 >  void SimInfo::setupFortranSim() {
804 >    int isError;
805 >    int nExclude;
806 >    std::vector<int> fortranGlobalGroupMembership;
807 >    
808 >    nExclude = exclude_.getSize();
809 >    isError = 0;
810  
811 <  }
811 >    //globalGroupMembership_ is filled by SimCreator    
812 >    for (int i = 0; i < nGlobalAtoms_; i++) {
813 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814 >    }
815 >
816 >    //calculate mass ratio of cutoff group
817 >    std::vector<RealType> mfact;
818 >    SimInfo::MoleculeIterator mi;
819 >    Molecule* mol;
820 >    Molecule::CutoffGroupIterator ci;
821 >    CutoffGroup* cg;
822 >    Molecule::AtomIterator ai;
823 >    Atom* atom;
824 >    RealType totalMass;
825 >
826 >    //to avoid memory reallocation, reserve enough space for mfact
827 >    mfact.reserve(getNCutoffGroups());
828      
829 < }
829 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
830 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
831  
832 < GenericData* SimInfo::getProperty(const string& propName){
833 <
834 <  map<string, GenericData*>::iterator result;
835 <  
836 <  //string lowerCaseName = ();
837 <  
838 <  result = properties.find(propName);
839 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
832 >        totalMass = cg->getMass();
833 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 >          // Check for massless groups - set mfact to 1 if true
835 >          if (totalMass != 0)
836 >            mfact.push_back(atom->getMass()/totalMass);
837 >          else
838 >            mfact.push_back( 1.0 );
839 >        }
840  
841 +      }      
842 +    }
843  
844 < void SimInfo::getFortranGroupArrays(SimInfo* info,
845 <                                    vector<int>& FglobalGroupMembership,
577 <                                    vector<double>& mfact){
578 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
844 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
845 >    std::vector<int> identArray;
846  
847 <  // Fix the silly fortran indexing problem
847 >    //to avoid memory reallocation, reserve enough space identArray
848 >    identArray.reserve(getNAtoms());
849 >    
850 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 >        identArray.push_back(atom->getIdent());
853 >      }
854 >    }    
855 >
856 >    //fill molMembershipArray
857 >    //molMembershipArray is filled by SimCreator    
858 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
859 >    for (int i = 0; i < nGlobalAtoms_; i++) {
860 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
861 >    }
862 >    
863 >    //setup fortran simulation
864 >    int nGlobalExcludes = 0;
865 >    int* globalExcludes = NULL;
866 >    int* excludeList = exclude_.getExcludeList();
867 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870 >
871 >    if( isError ){
872 >
873 >      sprintf( painCave.errMsg,
874 >               "There was an error setting the simulation information in fortran.\n" );
875 >      painCave.isFatal = 1;
876 >      painCave.severity = OOPSE_ERROR;
877 >      simError();
878 >    }
879 >
880   #ifdef IS_MPI
881 <  numAtom = mpiSim->getNAtomsGlobal();
882 < #else
883 <  numAtom = n_atoms;
881 >    sprintf( checkPointMsg,
882 >             "succesfully sent the simulation information to fortran.\n");
883 >    MPIcheckPoint();
884 > #endif // is_mpi
885 >  }
886 >
887 >
888 > #ifdef IS_MPI
889 >  void SimInfo::setupFortranParallel() {
890 >    
891 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 >    std::vector<int> localToGlobalCutoffGroupIndex;
894 >    SimInfo::MoleculeIterator mi;
895 >    Molecule::AtomIterator ai;
896 >    Molecule::CutoffGroupIterator ci;
897 >    Molecule* mol;
898 >    Atom* atom;
899 >    CutoffGroup* cg;
900 >    mpiSimData parallelData;
901 >    int isError;
902 >
903 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904 >
905 >      //local index(index in DataStorge) of atom is important
906 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 >      }
909 >
910 >      //local index of cutoff group is trivial, it only depends on the order of travesing
911 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 >      }        
914 >        
915 >    }
916 >
917 >    //fill up mpiSimData struct
918 >    parallelData.nMolGlobal = getNGlobalMolecules();
919 >    parallelData.nMolLocal = getNMolecules();
920 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
921 >    parallelData.nAtomsLocal = getNAtoms();
922 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 >    parallelData.nGroupsLocal = getNCutoffGroups();
924 >    parallelData.myNode = worldRank;
925 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926 >
927 >    //pass mpiSimData struct and index arrays to fortran
928 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 >                    &localToGlobalCutoffGroupIndex[0], &isError);
931 >
932 >    if (isError) {
933 >      sprintf(painCave.errMsg,
934 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 >      painCave.isFatal = 1;
936 >      simError();
937 >    }
938 >
939 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 >    MPIcheckPoint();
941 >
942 >
943 >  }
944 >
945   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
946  
947 <  myMols = info->molecules;
948 <  numMol = info->n_mol;
949 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
947 >  void SimInfo::setupCutoff() {          
948 >    
949 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950  
951 <      totalMass = myCutoffGroup->getMass();
951 >    // Check the cutoff policy
952 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953 >
954 >    std::string myPolicy;
955 >    if (forceFieldOptions_.haveCutoffPolicy()){
956 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 >    }else if (simParams_->haveCutoffPolicy()) {
958 >      myPolicy = simParams_->getCutoffPolicy();
959 >    }
960 >
961 >    if (!myPolicy.empty()){
962 >      toUpper(myPolicy);
963 >      if (myPolicy == "MIX") {
964 >        cp = MIX_CUTOFF_POLICY;
965 >      } else {
966 >        if (myPolicy == "MAX") {
967 >          cp = MAX_CUTOFF_POLICY;
968 >        } else {
969 >          if (myPolicy == "TRADITIONAL") {            
970 >            cp = TRADITIONAL_CUTOFF_POLICY;
971 >          } else {
972 >            // throw error        
973 >            sprintf( painCave.errMsg,
974 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 >            painCave.isFatal = 1;
976 >            simError();
977 >          }    
978 >        }          
979 >      }
980 >    }          
981 >    notifyFortranCutoffPolicy(&cp);
982 >
983 >    // Check the Skin Thickness for neighborlists
984 >    RealType skin;
985 >    if (simParams_->haveSkinThickness()) {
986 >      skin = simParams_->getSkinThickness();
987 >      notifyFortranSkinThickness(&skin);
988 >    }            
989 >        
990 >    // Check if the cutoff was set explicitly:
991 >    if (simParams_->haveCutoffRadius()) {
992 >      rcut_ = simParams_->getCutoffRadius();
993 >      if (simParams_->haveSwitchingRadius()) {
994 >        rsw_  = simParams_->getSwitchingRadius();
995 >      } else {
996 >        if (fInfo_.SIM_uses_Charges |
997 >            fInfo_.SIM_uses_Dipoles |
998 >            fInfo_.SIM_uses_RF) {
999 >          
1000 >          rsw_ = 0.85 * rcut_;
1001 >          sprintf(painCave.errMsg,
1002 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 >        painCave.isFatal = 0;
1006 >        simError();
1007 >        } else {
1008 >          rsw_ = rcut_;
1009 >          sprintf(painCave.errMsg,
1010 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 >          painCave.isFatal = 0;
1014 >          simError();
1015 >        }
1016 >      }
1017        
1018 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1019 <          cutoffAtom != NULL;
1020 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1021 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1022 <      }  
1018 >      notifyFortranCutoffs(&rcut_, &rsw_);
1019 >      
1020 >    } else {
1021 >      
1022 >      // For electrostatic atoms, we'll assume a large safe value:
1023 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 >        sprintf(painCave.errMsg,
1025 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 >                "\tOOPSE will use a default value of 15.0 angstroms"
1027 >                "\tfor the cutoffRadius.\n");
1028 >        painCave.isFatal = 0;
1029 >        simError();
1030 >        rcut_ = 15.0;
1031 >      
1032 >        if (simParams_->haveElectrostaticSummationMethod()) {
1033 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 >          toUpper(myMethod);
1035 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 >            if (simParams_->haveSwitchingRadius()){
1037 >              sprintf(painCave.errMsg,
1038 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 >                      "\teven though the electrostaticSummationMethod was\n"
1040 >                      "\tset to %s\n", myMethod.c_str());
1041 >              painCave.isFatal = 1;
1042 >              simError();            
1043 >            }
1044 >          }
1045 >        }
1046 >      
1047 >        if (simParams_->haveSwitchingRadius()){
1048 >          rsw_ = simParams_->getSwitchingRadius();
1049 >        } else {        
1050 >          sprintf(painCave.errMsg,
1051 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 >                  "\tOOPSE will use a default value of\n"
1053 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 >          painCave.isFatal = 0;
1055 >          simError();
1056 >          rsw_ = 0.85 * rcut_;
1057 >        }
1058 >        notifyFortranCutoffs(&rcut_, &rsw_);
1059 >      } else {
1060 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 >        // We'll punt and let fortran figure out the cutoffs later.
1062 >        
1063 >        notifyFortranYouAreOnYourOwn();
1064 >
1065 >      }
1066      }
1067    }
1068  
1069 < }
1069 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070 >    
1071 >    int errorOut;
1072 >    int esm =  NONE;
1073 >    int sm = UNDAMPED;
1074 >    RealType alphaVal;
1075 >    RealType dielectric;
1076 >    
1077 >    errorOut = isError;
1078 >    dielectric = simParams_->getDielectric();
1079 >
1080 >    if (simParams_->haveElectrostaticSummationMethod()) {
1081 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1082 >      toUpper(myMethod);
1083 >      if (myMethod == "NONE") {
1084 >        esm = NONE;
1085 >      } else {
1086 >        if (myMethod == "SWITCHING_FUNCTION") {
1087 >          esm = SWITCHING_FUNCTION;
1088 >        } else {
1089 >          if (myMethod == "SHIFTED_POTENTIAL") {
1090 >            esm = SHIFTED_POTENTIAL;
1091 >          } else {
1092 >            if (myMethod == "SHIFTED_FORCE") {            
1093 >              esm = SHIFTED_FORCE;
1094 >            } else {
1095 >              if (myMethod == "REACTION_FIELD") {            
1096 >                esm = REACTION_FIELD;
1097 >              } else {
1098 >                // throw error        
1099 >                sprintf( painCave.errMsg,
1100 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1101 >                         "\t(Input file specified %s .)\n"
1102 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1103 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1104 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1105 >                painCave.isFatal = 1;
1106 >                simError();
1107 >              }    
1108 >            }          
1109 >          }
1110 >        }
1111 >      }
1112 >    }
1113 >    
1114 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1115 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1116 >      toUpper(myScreen);
1117 >      if (myScreen == "UNDAMPED") {
1118 >        sm = UNDAMPED;
1119 >      } else {
1120 >        if (myScreen == "DAMPED") {
1121 >          sm = DAMPED;
1122 >          if (!simParams_->haveDampingAlpha()) {
1123 >            // first set a cutoff dependent alpha value
1124 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1125 >            alphaVal = 0.5125 - rcut_* 0.025;
1126 >            // for values rcut > 20.5, alpha is zero
1127 >            if (alphaVal < 0) alphaVal = 0;
1128 >
1129 >            // throw warning
1130 >            sprintf( painCave.errMsg,
1131 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1132 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1133 >            painCave.isFatal = 0;
1134 >            simError();
1135 >          }
1136 >        } else {
1137 >          // throw error        
1138 >          sprintf( painCave.errMsg,
1139 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1140 >                   "\t(Input file specified %s .)\n"
1141 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1142 >                   "or \"damped\".\n", myScreen.c_str() );
1143 >          painCave.isFatal = 1;
1144 >          simError();
1145 >        }
1146 >      }
1147 >    }
1148 >    
1149 >    // let's pass some summation method variables to fortran
1150 >    setElectrostaticSummationMethod( &esm );
1151 >    setFortranElectrostaticMethod( &esm );
1152 >    setScreeningMethod( &sm );
1153 >    setDampingAlpha( &alphaVal );
1154 >    setReactionFieldDielectric( &dielectric );
1155 >    initFortranFF( &errorOut );
1156 >  }
1157 >
1158 >  void SimInfo::setupSwitchingFunction() {    
1159 >    int ft = CUBIC;
1160 >
1161 >    if (simParams_->haveSwitchingFunctionType()) {
1162 >      std::string funcType = simParams_->getSwitchingFunctionType();
1163 >      toUpper(funcType);
1164 >      if (funcType == "CUBIC") {
1165 >        ft = CUBIC;
1166 >      } else {
1167 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1168 >          ft = FIFTH_ORDER_POLY;
1169 >        } else {
1170 >          // throw error        
1171 >          sprintf( painCave.errMsg,
1172 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1173 >          painCave.isFatal = 1;
1174 >          simError();
1175 >        }          
1176 >      }
1177 >    }
1178 >
1179 >    // send switching function notification to switcheroo
1180 >    setFunctionType(&ft);
1181 >
1182 >  }
1183 >
1184 >  void SimInfo::setupAccumulateBoxDipole() {    
1185 >
1186 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1187 >    if ( simParams_->haveAccumulateBoxDipole() )
1188 >      if ( simParams_->getAccumulateBoxDipole() ) {
1189 >        setAccumulateBoxDipole();
1190 >        calcBoxDipole_ = true;
1191 >      }
1192 >
1193 >  }
1194 >
1195 >  void SimInfo::addProperty(GenericData* genData) {
1196 >    properties_.addProperty(genData);  
1197 >  }
1198 >
1199 >  void SimInfo::removeProperty(const std::string& propName) {
1200 >    properties_.removeProperty(propName);  
1201 >  }
1202 >
1203 >  void SimInfo::clearProperties() {
1204 >    properties_.clearProperties();
1205 >  }
1206 >
1207 >  std::vector<std::string> SimInfo::getPropertyNames() {
1208 >    return properties_.getPropertyNames();  
1209 >  }
1210 >      
1211 >  std::vector<GenericData*> SimInfo::getProperties() {
1212 >    return properties_.getProperties();
1213 >  }
1214 >
1215 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1216 >    return properties_.getPropertyByName(propName);
1217 >  }
1218 >
1219 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1220 >    if (sman_ == sman) {
1221 >      return;
1222 >    }    
1223 >    delete sman_;
1224 >    sman_ = sman;
1225 >
1226 >    Molecule* mol;
1227 >    RigidBody* rb;
1228 >    Atom* atom;
1229 >    SimInfo::MoleculeIterator mi;
1230 >    Molecule::RigidBodyIterator rbIter;
1231 >    Molecule::AtomIterator atomIter;;
1232 >
1233 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1234 >        
1235 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1236 >        atom->setSnapshotManager(sman_);
1237 >      }
1238 >        
1239 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1240 >        rb->setSnapshotManager(sman_);
1241 >      }
1242 >    }    
1243 >    
1244 >  }
1245 >
1246 >  Vector3d SimInfo::getComVel(){
1247 >    SimInfo::MoleculeIterator i;
1248 >    Molecule* mol;
1249 >
1250 >    Vector3d comVel(0.0);
1251 >    RealType totalMass = 0.0;
1252 >    
1253 >
1254 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1255 >      RealType mass = mol->getMass();
1256 >      totalMass += mass;
1257 >      comVel += mass * mol->getComVel();
1258 >    }  
1259 >
1260 > #ifdef IS_MPI
1261 >    RealType tmpMass = totalMass;
1262 >    Vector3d tmpComVel(comVel);    
1263 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1264 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1265 > #endif
1266 >
1267 >    comVel /= totalMass;
1268 >
1269 >    return comVel;
1270 >  }
1271 >
1272 >  Vector3d SimInfo::getCom(){
1273 >    SimInfo::MoleculeIterator i;
1274 >    Molecule* mol;
1275 >
1276 >    Vector3d com(0.0);
1277 >    RealType totalMass = 0.0;
1278 >    
1279 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1280 >      RealType mass = mol->getMass();
1281 >      totalMass += mass;
1282 >      com += mass * mol->getCom();
1283 >    }  
1284 >
1285 > #ifdef IS_MPI
1286 >    RealType tmpMass = totalMass;
1287 >    Vector3d tmpCom(com);    
1288 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 > #endif
1291 >
1292 >    com /= totalMass;
1293 >
1294 >    return com;
1295 >
1296 >  }        
1297 >
1298 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1299 >
1300 >    return o;
1301 >  }
1302 >  
1303 >  
1304 >   /*
1305 >   Returns center of mass and center of mass velocity in one function call.
1306 >   */
1307 >  
1308 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1309 >      SimInfo::MoleculeIterator i;
1310 >      Molecule* mol;
1311 >      
1312 >    
1313 >      RealType totalMass = 0.0;
1314 >    
1315 >
1316 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1317 >         RealType mass = mol->getMass();
1318 >         totalMass += mass;
1319 >         com += mass * mol->getCom();
1320 >         comVel += mass * mol->getComVel();          
1321 >      }  
1322 >      
1323 > #ifdef IS_MPI
1324 >      RealType tmpMass = totalMass;
1325 >      Vector3d tmpCom(com);  
1326 >      Vector3d tmpComVel(comVel);
1327 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1330 > #endif
1331 >      
1332 >      com /= totalMass;
1333 >      comVel /= totalMass;
1334 >   }        
1335 >  
1336 >   /*
1337 >   Return intertia tensor for entire system and angular momentum Vector.
1338 >
1339 >
1340 >       [  Ixx -Ixy  -Ixz ]
1341 >  J =| -Iyx  Iyy  -Iyz |
1342 >       [ -Izx -Iyz   Izz ]
1343 >    */
1344 >
1345 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1346 >      
1347 >
1348 >      RealType xx = 0.0;
1349 >      RealType yy = 0.0;
1350 >      RealType zz = 0.0;
1351 >      RealType xy = 0.0;
1352 >      RealType xz = 0.0;
1353 >      RealType yz = 0.0;
1354 >      Vector3d com(0.0);
1355 >      Vector3d comVel(0.0);
1356 >      
1357 >      getComAll(com, comVel);
1358 >      
1359 >      SimInfo::MoleculeIterator i;
1360 >      Molecule* mol;
1361 >      
1362 >      Vector3d thisq(0.0);
1363 >      Vector3d thisv(0.0);
1364 >
1365 >      RealType thisMass = 0.0;
1366 >    
1367 >      
1368 >      
1369 >  
1370 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1371 >        
1372 >         thisq = mol->getCom()-com;
1373 >         thisv = mol->getComVel()-comVel;
1374 >         thisMass = mol->getMass();
1375 >         // Compute moment of intertia coefficients.
1376 >         xx += thisq[0]*thisq[0]*thisMass;
1377 >         yy += thisq[1]*thisq[1]*thisMass;
1378 >         zz += thisq[2]*thisq[2]*thisMass;
1379 >        
1380 >         // compute products of intertia
1381 >         xy += thisq[0]*thisq[1]*thisMass;
1382 >         xz += thisq[0]*thisq[2]*thisMass;
1383 >         yz += thisq[1]*thisq[2]*thisMass;
1384 >            
1385 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1386 >            
1387 >      }  
1388 >      
1389 >      
1390 >      inertiaTensor(0,0) = yy + zz;
1391 >      inertiaTensor(0,1) = -xy;
1392 >      inertiaTensor(0,2) = -xz;
1393 >      inertiaTensor(1,0) = -xy;
1394 >      inertiaTensor(1,1) = xx + zz;
1395 >      inertiaTensor(1,2) = -yz;
1396 >      inertiaTensor(2,0) = -xz;
1397 >      inertiaTensor(2,1) = -yz;
1398 >      inertiaTensor(2,2) = xx + yy;
1399 >      
1400 > #ifdef IS_MPI
1401 >      Mat3x3d tmpI(inertiaTensor);
1402 >      Vector3d tmpAngMom;
1403 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 > #endif
1406 >              
1407 >      return;
1408 >   }
1409 >
1410 >   //Returns the angular momentum of the system
1411 >   Vector3d SimInfo::getAngularMomentum(){
1412 >      
1413 >      Vector3d com(0.0);
1414 >      Vector3d comVel(0.0);
1415 >      Vector3d angularMomentum(0.0);
1416 >      
1417 >      getComAll(com,comVel);
1418 >      
1419 >      SimInfo::MoleculeIterator i;
1420 >      Molecule* mol;
1421 >      
1422 >      Vector3d thisr(0.0);
1423 >      Vector3d thisp(0.0);
1424 >      
1425 >      RealType thisMass;
1426 >      
1427 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1428 >        thisMass = mol->getMass();
1429 >        thisr = mol->getCom()-com;
1430 >        thisp = (mol->getComVel()-comVel)*thisMass;
1431 >        
1432 >        angularMomentum += cross( thisr, thisp );
1433 >        
1434 >      }  
1435 >      
1436 > #ifdef IS_MPI
1437 >      Vector3d tmpAngMom;
1438 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1439 > #endif
1440 >      
1441 >      return angularMomentum;
1442 >   }
1443 >  
1444 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1445 >    return IOIndexToIntegrableObject.at(index);
1446 >  }
1447 >  
1448 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1449 >    IOIndexToIntegrableObject= v;
1450 >  }
1451 >
1452 > /*
1453 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1454 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1455 >      sdByGlobalIndex_ = v;
1456 >    }
1457 >
1458 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1459 >      //assert(index < nAtoms_ + nRigidBodies_);
1460 >      return sdByGlobalIndex_.at(index);
1461 >    }  
1462 > */  
1463 > }//end namespace oopse
1464 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines