ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC vs.
Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60   #include "io/ForceFieldOptions.hpp"
61   #include "UseTheForce/ForceField.hpp"
62 < #include "nonbonded/InteractionManager.hpp"
62 > #include "nonbonded/SwitchingFunction.hpp"
63  
69
70 #ifdef IS_MPI
71 #include "UseTheForce/mpiComponentPlan.h"
72 #include "UseTheForce/DarkSide/simParallel_interface.h"
73 #endif
74
64   using namespace std;
65   namespace OpenMD {
66    
# Line 82 | Line 71 | namespace OpenMD {
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75      calcBoxDipole_(false), useAtomicVirial_(true) {    
76      
77      MoleculeStamp* molStamp;
# Line 136 | Line 125 | namespace OpenMD {
125      //equal to the total number of atoms minus number of atoms belong to
126      //cutoff group defined in meta-data file plus the number of cutoff
127      //groups defined in meta-data file
128 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 +    std::cerr << "nG = " << nGroups << "\n";
131 +
132      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133 +
134 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135      
136      //every free atom (atom does not belong to rigid bodies) is an
137      //integrable object therefore the total number of integrable objects
# Line 656 | Line 651 | namespace OpenMD {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
659  void SimInfo::update() {
654  
655 <    setupSimType();
656 <    setupCutoffRadius();
657 <    setupSwitchingRadius();
658 <    setupCutoffMethod();
659 <    setupSkinThickness();
660 <    setupSwitchingFunction();
661 <    setupAccumulateBoxDipole();
662 <
663 < #ifdef IS_MPI
670 <    setupFortranParallel();
671 < #endif
672 <    setupFortranSim();
673 <    fortranInitialized_ = true;
674 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
667    }
668    
669 +  /**
670 +   * getSimulatedAtomTypes
671 +   *
672 +   * Returns an STL set of AtomType* that are actually present in this
673 +   * simulation.  Must query all processors to assemble this information.
674 +   *
675 +   */
676    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
# Line 684 | Line 680 | namespace OpenMD {
680      Atom* atom;
681      set<AtomType*> atomTypes;
682      
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
688 <      
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <      
688 <    }
686 >      }      
687 >    }    
688 >
689 > #ifdef IS_MPI
690 >
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693 >
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698 >
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701 >
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706 >
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711 >
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716 >
717 >    // now spray out the foundTypes to all the other processors:
718      
719 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721 +
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737      return atomTypes;        
738    }
739  
740 <  /**
741 <   * setupCutoffRadius
742 <   *
743 <   *  If the cutoffRadius was explicitly set, use that value.
744 <   *  If the cutoffRadius was not explicitly set:
745 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
746 <   *      No electrostatic atoms?  Poll the atom types present in the
705 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 <   *      Use the maximum suggested value that was found.
707 <   */
708 <  void SimInfo::setupCutoffRadius() {
709 <    
710 <    if (simParams_->haveCutoffRadius()) {
711 <      cutoffRadius_ = simParams_->getCutoffRadius();
712 <    } else {      
713 <      if (usesElectrostaticAtoms_) {
714 <        sprintf(painCave.errMsg,
715 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 <                "\tOpenMD will use a default value of 12.0 angstroms"
717 <                "\tfor the cutoffRadius.\n");
718 <        painCave.isFatal = 0;
719 <        simError();
720 <        cutoffRadius_ = 12.0;
721 <      } else {
722 <        RealType thisCut;
723 <        set<AtomType*>::iterator i;
724 <        set<AtomType*> atomTypes;
725 <        atomTypes = getSimulatedAtomTypes();        
726 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 <        }
730 <        sprintf(painCave.errMsg,
731 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 <                "\tOpenMD will use %lf angstroms.\n",
733 <                cutoffRadius_);
734 <        painCave.isFatal = 0;
735 <        simError();
736 <      }            
737 <    }
738 <
739 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
740 <  }
741 <  
742 <  /**
743 <   * setupSwitchingRadius
744 <   *
745 <   *  If the switchingRadius was explicitly set, use that value (but check it)
746 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
747 <   */
748 <  void SimInfo::setupSwitchingRadius() {
749 <    
750 <    if (simParams_->haveSwitchingRadius()) {
751 <      switchingRadius_ = simParams_->getSwitchingRadius();
752 <      if (switchingRadius_ > cutoffRadius_) {        
753 <        sprintf(painCave.errMsg,
754 <                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 <                switchingRadius_, cutoffRadius_);
756 <        painCave.isFatal = 1;
757 <        simError();
758 <
740 >  void SimInfo::setupSimVariables() {
741 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 >    calcBoxDipole_ = false;
744 >    if ( simParams_->haveAccumulateBoxDipole() )
745 >      if ( simParams_->getAccumulateBoxDipole() ) {
746 >        calcBoxDipole_ = true;      
747        }
760    } else {      
761      switchingRadius_ = 0.85 * cutoffRadius_;
762      sprintf(painCave.errMsg,
763              "SimInfo Warning: No value was set for the switchingRadius.\n"
764              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766      painCave.isFatal = 0;
767      simError();
768    }            
769    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770  }
748  
772  /**
773   * setupSkinThickness
774   *
775   *  If the skinThickness was explicitly set, use that value (but check it)
776   *  If the skinThickness was not explicitly set: use 1.0 angstroms
777   */
778  void SimInfo::setupSkinThickness() {    
779    if (simParams_->haveSkinThickness()) {
780      skinThickness_ = simParams_->getSkinThickness();
781    } else {      
782      skinThickness_ = 1.0;
783      sprintf(painCave.errMsg,
784              "SimInfo Warning: No value was set for the skinThickness.\n"
785              "\tOpenMD will use a default value of %f Angstroms\n"
786              "\tfor this simulation\n", skinThickness_);
787      painCave.isFatal = 0;
788      simError();
789    }            
790  }
791
792  void SimInfo::setupSimType() {
749      set<AtomType*>::iterator i;
750      set<AtomType*> atomTypes;
751 <    atomTypes = getSimulatedAtomTypes();
796 <
797 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798 <
751 >    atomTypes = getSimulatedAtomTypes();    
752      int usesElectrostatic = 0;
753      int usesMetallic = 0;
754      int usesDirectional = 0;
# Line 817 | Line 770 | namespace OpenMD {
770      temp = usesElectrostatic;
771      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772   #endif
820    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
821    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
822    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
823    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
773    }
774  
828  void SimInfo::setupFortranSim() {
829    int isError;
830    int nExclude, nOneTwo, nOneThree, nOneFour;
831    vector<int> fortranGlobalGroupMembership;
832    
833    notifyFortranSkinThickness(&skinThickness_);
775  
776 <    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
777 <    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
778 <    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
776 >  vector<int> SimInfo::getGlobalAtomIndices() {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule* mol;
779 >    Molecule::AtomIterator ai;
780 >    Atom* atom;
781  
782 <    isError = 0;
782 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
783 >    
784 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
785 >      
786 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
787 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
788 >      }
789 >    }
790 >    return GlobalAtomIndices;
791 >  }
792  
793 <    //globalGroupMembership_ is filled by SimCreator    
794 <    for (int i = 0; i < nGlobalAtoms_; i++) {
795 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
793 >
794 >  vector<int> SimInfo::getGlobalGroupIndices() {
795 >    SimInfo::MoleculeIterator mi;
796 >    Molecule* mol;
797 >    Molecule::CutoffGroupIterator ci;
798 >    CutoffGroup* cg;
799 >
800 >    vector<int> GlobalGroupIndices;
801 >    
802 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
803 >      
804 >      //local index of cutoff group is trivial, it only depends on the
805 >      //order of travesing
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
807 >           cg = mol->nextCutoffGroup(ci)) {
808 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
809 >      }        
810      }
811 +    return GlobalGroupIndices;
812 +  }
813  
814 +
815 +  void SimInfo::prepareTopology() {
816 +    int nExclude, nOneTwo, nOneThree, nOneFour;
817 +
818      //calculate mass ratio of cutoff group
847    vector<RealType> mfact;
819      SimInfo::MoleculeIterator mi;
820      Molecule* mol;
821      Molecule::CutoffGroupIterator ci;
# Line 853 | Line 824 | namespace OpenMD {
824      Atom* atom;
825      RealType totalMass;
826  
827 <    //to avoid memory reallocation, reserve enough space for mfact
828 <    mfact.reserve(getNCutoffGroups());
827 >    //to avoid memory reallocation, reserve enough space for massFactors_
828 >    massFactors_.clear();
829 >    massFactors_.reserve(getNCutoffGroups());
830      
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
832 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
833 >           cg = mol->nextCutoffGroup(ci)) {
834  
835          totalMass = cg->getMass();
836          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
837            // Check for massless groups - set mfact to 1 if true
838            if (totalMass != 0)
839 <            mfact.push_back(atom->getMass()/totalMass);
839 >            massFactors_.push_back(atom->getMass()/totalMass);
840            else
841 <            mfact.push_back( 1.0 );
841 >            massFactors_.push_back( 1.0 );
842          }
843        }      
844      }
845  
846 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    vector<int> identArray;
846 >    // Build the identArray_
847  
848 <    //to avoid memory reallocation, reserve enough space identArray
849 <    identArray.reserve(getNAtoms());
878 <    
848 >    identArray_.clear();
849 >    identArray_.reserve(getNAtoms());    
850      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 <        identArray.push_back(atom->getIdent());
852 >        identArray_.push_back(atom->getIdent());
853        }
854      }    
884
885    //fill molMembershipArray
886    //molMembershipArray is filled by SimCreator    
887    vector<int> molMembershipArray(nGlobalAtoms_);
888    for (int i = 0; i < nGlobalAtoms_; i++) {
889      molMembershipArray[i] = globalMolMembership_[i] + 1;
890    }
855      
856 <    //setup fortran simulation
856 >    //scan topology
857  
858      nExclude = excludedInteractions_.getSize();
859      nOneTwo = oneTwoInteractions_.getSize();
# Line 901 | Line 865 | namespace OpenMD {
865      int* oneThreeList = oneThreeInteractions_.getPairList();
866      int* oneFourList = oneFourInteractions_.getPairList();
867  
868 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
869 <                   &nExclude, excludeList,
870 <                   &nOneTwo, oneTwoList,
871 <                   &nOneThree, oneThreeList,
872 <                   &nOneFour, oneFourList,
873 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874 <                   &fortranGlobalGroupMembership[0], &isError);
868 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
869 >    //               &nExclude, excludeList,
870 >    //               &nOneTwo, oneTwoList,
871 >    //               &nOneThree, oneThreeList,
872 >    //               &nOneFour, oneFourList,
873 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874 >    //               &fortranGlobalGroupMembership[0], &isError);
875      
876 <    if( isError ){
913 <      
914 <      sprintf( painCave.errMsg,
915 <               "There was an error setting the simulation information in fortran.\n" );
916 <      painCave.isFatal = 1;
917 <      painCave.severity = OPENMD_ERROR;
918 <      simError();
919 <    }
920 <    
921 <    
922 <    sprintf( checkPointMsg,
923 <             "succesfully sent the simulation information to fortran.\n");
924 <    
925 <    errorCheckPoint();
926 <    
927 <    // Setup number of neighbors in neighbor list if present
928 <    if (simParams_->haveNeighborListNeighbors()) {
929 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 <      setNeighbors(&nlistNeighbors);
931 <    }
932 <  
933 <
934 <  }
935 <
936 <
937 <  void SimInfo::setupFortranParallel() {
938 < #ifdef IS_MPI    
939 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940 <    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 <    vector<int> localToGlobalCutoffGroupIndex;
942 <    SimInfo::MoleculeIterator mi;
943 <    Molecule::AtomIterator ai;
944 <    Molecule::CutoffGroupIterator ci;
945 <    Molecule* mol;
946 <    Atom* atom;
947 <    CutoffGroup* cg;
948 <    mpiSimData parallelData;
949 <    int isError;
950 <
951 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
952 <
953 <      //local index(index in DataStorge) of atom is important
954 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
956 <      }
957 <
958 <      //local index of cutoff group is trivial, it only depends on the order of travesing
959 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
960 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
961 <      }        
962 <        
963 <    }
964 <
965 <    //fill up mpiSimData struct
966 <    parallelData.nMolGlobal = getNGlobalMolecules();
967 <    parallelData.nMolLocal = getNMolecules();
968 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
969 <    parallelData.nAtomsLocal = getNAtoms();
970 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
971 <    parallelData.nGroupsLocal = getNCutoffGroups();
972 <    parallelData.myNode = worldRank;
973 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
974 <
975 <    //pass mpiSimData struct and index arrays to fortran
976 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
977 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
978 <                    &localToGlobalCutoffGroupIndex[0], &isError);
979 <
980 <    if (isError) {
981 <      sprintf(painCave.errMsg,
982 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
983 <      painCave.isFatal = 1;
984 <      simError();
985 <    }
986 <
987 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
988 <    errorCheckPoint();
989 <
990 < #endif
991 <  }
992 <
993 <
994 <  void SimInfo::setupSwitchingFunction() {    
995 <    int ft = CUBIC;
996 <    
997 <    if (simParams_->haveSwitchingFunctionType()) {
998 <      string funcType = simParams_->getSwitchingFunctionType();
999 <      toUpper(funcType);
1000 <      if (funcType == "CUBIC") {
1001 <        ft = CUBIC;
1002 <      } else {
1003 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1004 <          ft = FIFTH_ORDER_POLY;
1005 <        } else {
1006 <          // throw error        
1007 <          sprintf( painCave.errMsg,
1008 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1009 <          painCave.isFatal = 1;
1010 <          simError();
1011 <        }          
1012 <      }
1013 <    }
1014 <
1015 <    // send switching function notification to switcheroo
1016 <    setFunctionType(&ft);
1017 <
876 >    topologyDone_ = true;
877    }
878  
1020  void SimInfo::setupAccumulateBoxDipole() {    
1021
1022    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023    if ( simParams_->haveAccumulateBoxDipole() )
1024      if ( simParams_->getAccumulateBoxDipole() ) {
1025        calcBoxDipole_ = true;
1026      }
1027
1028  }
1029
879    void SimInfo::addProperty(GenericData* genData) {
880      properties_.addProperty(genData);  
881    }
# Line 1061 | Line 910 | namespace OpenMD {
910      Molecule* mol;
911      RigidBody* rb;
912      Atom* atom;
913 +    CutoffGroup* cg;
914      SimInfo::MoleculeIterator mi;
915      Molecule::RigidBodyIterator rbIter;
916 <    Molecule::AtomIterator atomIter;;
916 >    Molecule::AtomIterator atomIter;
917 >    Molecule::CutoffGroupIterator cgIter;
918  
919      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
920          
# Line 1074 | Line 925 | namespace OpenMD {
925        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
926          rb->setSnapshotManager(sman_);
927        }
928 +
929 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
930 +        cg->setSnapshotManager(sman_);
931 +      }
932      }    
933      
934    }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines