1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "UseTheForce/fCutoffPolicy.h" |
57 |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
58 |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
59 |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
60 |
#include "UseTheForce/doForces_interface.h" |
61 |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
62 |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
63 |
#include "utils/MemoryUtils.hpp" |
64 |
#include "utils/simError.h" |
65 |
#include "selection/SelectionManager.hpp" |
66 |
#include "io/ForceFieldOptions.hpp" |
67 |
#include "UseTheForce/ForceField.hpp" |
68 |
|
69 |
#ifdef IS_MPI |
70 |
#include "UseTheForce/mpiComponentPlan.h" |
71 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
72 |
#endif |
73 |
|
74 |
namespace oopse { |
75 |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
76 |
std::map<int, std::set<int> >::iterator i = container.find(index); |
77 |
std::set<int> result; |
78 |
if (i != container.end()) { |
79 |
result = i->second; |
80 |
} |
81 |
|
82 |
return result; |
83 |
} |
84 |
|
85 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
86 |
forceField_(ff), simParams_(simParams), |
87 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
88 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
89 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
90 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
91 |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
92 |
sman_(NULL), fortranInitialized_(false) { |
93 |
|
94 |
MoleculeStamp* molStamp; |
95 |
int nMolWithSameStamp; |
96 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
97 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
98 |
CutoffGroupStamp* cgStamp; |
99 |
RigidBodyStamp* rbStamp; |
100 |
int nRigidAtoms = 0; |
101 |
std::vector<Component*> components = simParams->getComponents(); |
102 |
|
103 |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
104 |
molStamp = (*i)->getMoleculeStamp(); |
105 |
nMolWithSameStamp = (*i)->getNMol(); |
106 |
|
107 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
108 |
|
109 |
//calculate atoms in molecules |
110 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
111 |
|
112 |
//calculate atoms in cutoff groups |
113 |
int nAtomsInGroups = 0; |
114 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
115 |
|
116 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
117 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
118 |
nAtomsInGroups += cgStamp->getNMembers(); |
119 |
} |
120 |
|
121 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
122 |
|
123 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
124 |
|
125 |
//calculate atoms in rigid bodies |
126 |
int nAtomsInRigidBodies = 0; |
127 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
128 |
|
129 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
130 |
rbStamp = molStamp->getRigidBodyStamp(j); |
131 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
132 |
} |
133 |
|
134 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
135 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
136 |
|
137 |
} |
138 |
|
139 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
140 |
//group therefore the total number of cutoff groups in the system is |
141 |
//equal to the total number of atoms minus number of atoms belong to |
142 |
//cutoff group defined in meta-data file plus the number of cutoff |
143 |
//groups defined in meta-data file |
144 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
145 |
|
146 |
//every free atom (atom does not belong to rigid bodies) is an |
147 |
//integrable object therefore the total number of integrable objects |
148 |
//in the system is equal to the total number of atoms minus number of |
149 |
//atoms belong to rigid body defined in meta-data file plus the number |
150 |
//of rigid bodies defined in meta-data file |
151 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
152 |
+ nGlobalRigidBodies_; |
153 |
|
154 |
nGlobalMols_ = molStampIds_.size(); |
155 |
|
156 |
#ifdef IS_MPI |
157 |
molToProcMap_.resize(nGlobalMols_); |
158 |
#endif |
159 |
|
160 |
} |
161 |
|
162 |
SimInfo::~SimInfo() { |
163 |
std::map<int, Molecule*>::iterator i; |
164 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
165 |
delete i->second; |
166 |
} |
167 |
molecules_.clear(); |
168 |
|
169 |
delete sman_; |
170 |
delete simParams_; |
171 |
delete forceField_; |
172 |
} |
173 |
|
174 |
int SimInfo::getNGlobalConstraints() { |
175 |
int nGlobalConstraints; |
176 |
#ifdef IS_MPI |
177 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
178 |
MPI_COMM_WORLD); |
179 |
#else |
180 |
nGlobalConstraints = nConstraints_; |
181 |
#endif |
182 |
return nGlobalConstraints; |
183 |
} |
184 |
|
185 |
bool SimInfo::addMolecule(Molecule* mol) { |
186 |
MoleculeIterator i; |
187 |
|
188 |
i = molecules_.find(mol->getGlobalIndex()); |
189 |
if (i == molecules_.end() ) { |
190 |
|
191 |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
192 |
|
193 |
nAtoms_ += mol->getNAtoms(); |
194 |
nBonds_ += mol->getNBonds(); |
195 |
nBends_ += mol->getNBends(); |
196 |
nTorsions_ += mol->getNTorsions(); |
197 |
nRigidBodies_ += mol->getNRigidBodies(); |
198 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
199 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
200 |
nConstraints_ += mol->getNConstraintPairs(); |
201 |
|
202 |
addExcludePairs(mol); |
203 |
|
204 |
return true; |
205 |
} else { |
206 |
return false; |
207 |
} |
208 |
} |
209 |
|
210 |
bool SimInfo::removeMolecule(Molecule* mol) { |
211 |
MoleculeIterator i; |
212 |
i = molecules_.find(mol->getGlobalIndex()); |
213 |
|
214 |
if (i != molecules_.end() ) { |
215 |
|
216 |
assert(mol == i->second); |
217 |
|
218 |
nAtoms_ -= mol->getNAtoms(); |
219 |
nBonds_ -= mol->getNBonds(); |
220 |
nBends_ -= mol->getNBends(); |
221 |
nTorsions_ -= mol->getNTorsions(); |
222 |
nRigidBodies_ -= mol->getNRigidBodies(); |
223 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
224 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
225 |
nConstraints_ -= mol->getNConstraintPairs(); |
226 |
|
227 |
removeExcludePairs(mol); |
228 |
molecules_.erase(mol->getGlobalIndex()); |
229 |
|
230 |
delete mol; |
231 |
|
232 |
return true; |
233 |
} else { |
234 |
return false; |
235 |
} |
236 |
|
237 |
|
238 |
} |
239 |
|
240 |
|
241 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
242 |
i = molecules_.begin(); |
243 |
return i == molecules_.end() ? NULL : i->second; |
244 |
} |
245 |
|
246 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
247 |
++i; |
248 |
return i == molecules_.end() ? NULL : i->second; |
249 |
} |
250 |
|
251 |
|
252 |
void SimInfo::calcNdf() { |
253 |
int ndf_local; |
254 |
MoleculeIterator i; |
255 |
std::vector<StuntDouble*>::iterator j; |
256 |
Molecule* mol; |
257 |
StuntDouble* integrableObject; |
258 |
|
259 |
ndf_local = 0; |
260 |
|
261 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
262 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
263 |
integrableObject = mol->nextIntegrableObject(j)) { |
264 |
|
265 |
ndf_local += 3; |
266 |
|
267 |
if (integrableObject->isDirectional()) { |
268 |
if (integrableObject->isLinear()) { |
269 |
ndf_local += 2; |
270 |
} else { |
271 |
ndf_local += 3; |
272 |
} |
273 |
} |
274 |
|
275 |
} |
276 |
} |
277 |
|
278 |
// n_constraints is local, so subtract them on each processor |
279 |
ndf_local -= nConstraints_; |
280 |
|
281 |
#ifdef IS_MPI |
282 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
283 |
#else |
284 |
ndf_ = ndf_local; |
285 |
#endif |
286 |
|
287 |
// nZconstraints_ is global, as are the 3 COM translations for the |
288 |
// entire system: |
289 |
ndf_ = ndf_ - 3 - nZconstraint_; |
290 |
|
291 |
} |
292 |
|
293 |
int SimInfo::getFdf() { |
294 |
#ifdef IS_MPI |
295 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
296 |
#else |
297 |
fdf_ = fdf_local; |
298 |
#endif |
299 |
return fdf_; |
300 |
} |
301 |
|
302 |
void SimInfo::calcNdfRaw() { |
303 |
int ndfRaw_local; |
304 |
|
305 |
MoleculeIterator i; |
306 |
std::vector<StuntDouble*>::iterator j; |
307 |
Molecule* mol; |
308 |
StuntDouble* integrableObject; |
309 |
|
310 |
// Raw degrees of freedom that we have to set |
311 |
ndfRaw_local = 0; |
312 |
|
313 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
314 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
315 |
integrableObject = mol->nextIntegrableObject(j)) { |
316 |
|
317 |
ndfRaw_local += 3; |
318 |
|
319 |
if (integrableObject->isDirectional()) { |
320 |
if (integrableObject->isLinear()) { |
321 |
ndfRaw_local += 2; |
322 |
} else { |
323 |
ndfRaw_local += 3; |
324 |
} |
325 |
} |
326 |
|
327 |
} |
328 |
} |
329 |
|
330 |
#ifdef IS_MPI |
331 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
332 |
#else |
333 |
ndfRaw_ = ndfRaw_local; |
334 |
#endif |
335 |
} |
336 |
|
337 |
void SimInfo::calcNdfTrans() { |
338 |
int ndfTrans_local; |
339 |
|
340 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
341 |
|
342 |
|
343 |
#ifdef IS_MPI |
344 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
345 |
#else |
346 |
ndfTrans_ = ndfTrans_local; |
347 |
#endif |
348 |
|
349 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
350 |
|
351 |
} |
352 |
|
353 |
void SimInfo::addExcludePairs(Molecule* mol) { |
354 |
std::vector<Bond*>::iterator bondIter; |
355 |
std::vector<Bend*>::iterator bendIter; |
356 |
std::vector<Torsion*>::iterator torsionIter; |
357 |
Bond* bond; |
358 |
Bend* bend; |
359 |
Torsion* torsion; |
360 |
int a; |
361 |
int b; |
362 |
int c; |
363 |
int d; |
364 |
|
365 |
std::map<int, std::set<int> > atomGroups; |
366 |
|
367 |
Molecule::RigidBodyIterator rbIter; |
368 |
RigidBody* rb; |
369 |
Molecule::IntegrableObjectIterator ii; |
370 |
StuntDouble* integrableObject; |
371 |
|
372 |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
373 |
integrableObject = mol->nextIntegrableObject(ii)) { |
374 |
|
375 |
if (integrableObject->isRigidBody()) { |
376 |
rb = static_cast<RigidBody*>(integrableObject); |
377 |
std::vector<Atom*> atoms = rb->getAtoms(); |
378 |
std::set<int> rigidAtoms; |
379 |
for (int i = 0; i < atoms.size(); ++i) { |
380 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
381 |
} |
382 |
for (int i = 0; i < atoms.size(); ++i) { |
383 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
384 |
} |
385 |
} else { |
386 |
std::set<int> oneAtomSet; |
387 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
388 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
389 |
} |
390 |
} |
391 |
|
392 |
|
393 |
|
394 |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
395 |
a = bond->getAtomA()->getGlobalIndex(); |
396 |
b = bond->getAtomB()->getGlobalIndex(); |
397 |
exclude_.addPair(a, b); |
398 |
} |
399 |
|
400 |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
401 |
a = bend->getAtomA()->getGlobalIndex(); |
402 |
b = bend->getAtomB()->getGlobalIndex(); |
403 |
c = bend->getAtomC()->getGlobalIndex(); |
404 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
405 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
406 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
407 |
|
408 |
exclude_.addPairs(rigidSetA, rigidSetB); |
409 |
exclude_.addPairs(rigidSetA, rigidSetC); |
410 |
exclude_.addPairs(rigidSetB, rigidSetC); |
411 |
|
412 |
//exclude_.addPair(a, b); |
413 |
//exclude_.addPair(a, c); |
414 |
//exclude_.addPair(b, c); |
415 |
} |
416 |
|
417 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
418 |
a = torsion->getAtomA()->getGlobalIndex(); |
419 |
b = torsion->getAtomB()->getGlobalIndex(); |
420 |
c = torsion->getAtomC()->getGlobalIndex(); |
421 |
d = torsion->getAtomD()->getGlobalIndex(); |
422 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
423 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
424 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
425 |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
426 |
|
427 |
exclude_.addPairs(rigidSetA, rigidSetB); |
428 |
exclude_.addPairs(rigidSetA, rigidSetC); |
429 |
exclude_.addPairs(rigidSetA, rigidSetD); |
430 |
exclude_.addPairs(rigidSetB, rigidSetC); |
431 |
exclude_.addPairs(rigidSetB, rigidSetD); |
432 |
exclude_.addPairs(rigidSetC, rigidSetD); |
433 |
|
434 |
/* |
435 |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
436 |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
437 |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
438 |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
439 |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
440 |
exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
441 |
|
442 |
|
443 |
exclude_.addPair(a, b); |
444 |
exclude_.addPair(a, c); |
445 |
exclude_.addPair(a, d); |
446 |
exclude_.addPair(b, c); |
447 |
exclude_.addPair(b, d); |
448 |
exclude_.addPair(c, d); |
449 |
*/ |
450 |
} |
451 |
|
452 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
453 |
std::vector<Atom*> atoms = rb->getAtoms(); |
454 |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
455 |
for (int j = i + 1; j < atoms.size(); ++j) { |
456 |
a = atoms[i]->getGlobalIndex(); |
457 |
b = atoms[j]->getGlobalIndex(); |
458 |
exclude_.addPair(a, b); |
459 |
} |
460 |
} |
461 |
} |
462 |
|
463 |
} |
464 |
|
465 |
void SimInfo::removeExcludePairs(Molecule* mol) { |
466 |
std::vector<Bond*>::iterator bondIter; |
467 |
std::vector<Bend*>::iterator bendIter; |
468 |
std::vector<Torsion*>::iterator torsionIter; |
469 |
Bond* bond; |
470 |
Bend* bend; |
471 |
Torsion* torsion; |
472 |
int a; |
473 |
int b; |
474 |
int c; |
475 |
int d; |
476 |
|
477 |
std::map<int, std::set<int> > atomGroups; |
478 |
|
479 |
Molecule::RigidBodyIterator rbIter; |
480 |
RigidBody* rb; |
481 |
Molecule::IntegrableObjectIterator ii; |
482 |
StuntDouble* integrableObject; |
483 |
|
484 |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
485 |
integrableObject = mol->nextIntegrableObject(ii)) { |
486 |
|
487 |
if (integrableObject->isRigidBody()) { |
488 |
rb = static_cast<RigidBody*>(integrableObject); |
489 |
std::vector<Atom*> atoms = rb->getAtoms(); |
490 |
std::set<int> rigidAtoms; |
491 |
for (int i = 0; i < atoms.size(); ++i) { |
492 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
493 |
} |
494 |
for (int i = 0; i < atoms.size(); ++i) { |
495 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
496 |
} |
497 |
} else { |
498 |
std::set<int> oneAtomSet; |
499 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
500 |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
501 |
} |
502 |
} |
503 |
|
504 |
|
505 |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
506 |
a = bond->getAtomA()->getGlobalIndex(); |
507 |
b = bond->getAtomB()->getGlobalIndex(); |
508 |
exclude_.removePair(a, b); |
509 |
} |
510 |
|
511 |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
512 |
a = bend->getAtomA()->getGlobalIndex(); |
513 |
b = bend->getAtomB()->getGlobalIndex(); |
514 |
c = bend->getAtomC()->getGlobalIndex(); |
515 |
|
516 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
517 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
518 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
519 |
|
520 |
exclude_.removePairs(rigidSetA, rigidSetB); |
521 |
exclude_.removePairs(rigidSetA, rigidSetC); |
522 |
exclude_.removePairs(rigidSetB, rigidSetC); |
523 |
|
524 |
//exclude_.removePair(a, b); |
525 |
//exclude_.removePair(a, c); |
526 |
//exclude_.removePair(b, c); |
527 |
} |
528 |
|
529 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
530 |
a = torsion->getAtomA()->getGlobalIndex(); |
531 |
b = torsion->getAtomB()->getGlobalIndex(); |
532 |
c = torsion->getAtomC()->getGlobalIndex(); |
533 |
d = torsion->getAtomD()->getGlobalIndex(); |
534 |
|
535 |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
536 |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
537 |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
538 |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
539 |
|
540 |
exclude_.removePairs(rigidSetA, rigidSetB); |
541 |
exclude_.removePairs(rigidSetA, rigidSetC); |
542 |
exclude_.removePairs(rigidSetA, rigidSetD); |
543 |
exclude_.removePairs(rigidSetB, rigidSetC); |
544 |
exclude_.removePairs(rigidSetB, rigidSetD); |
545 |
exclude_.removePairs(rigidSetC, rigidSetD); |
546 |
|
547 |
/* |
548 |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
549 |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
550 |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
551 |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
552 |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
553 |
exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
554 |
|
555 |
|
556 |
exclude_.removePair(a, b); |
557 |
exclude_.removePair(a, c); |
558 |
exclude_.removePair(a, d); |
559 |
exclude_.removePair(b, c); |
560 |
exclude_.removePair(b, d); |
561 |
exclude_.removePair(c, d); |
562 |
*/ |
563 |
} |
564 |
|
565 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
566 |
std::vector<Atom*> atoms = rb->getAtoms(); |
567 |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
568 |
for (int j = i + 1; j < atoms.size(); ++j) { |
569 |
a = atoms[i]->getGlobalIndex(); |
570 |
b = atoms[j]->getGlobalIndex(); |
571 |
exclude_.removePair(a, b); |
572 |
} |
573 |
} |
574 |
} |
575 |
|
576 |
} |
577 |
|
578 |
|
579 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
580 |
int curStampId; |
581 |
|
582 |
//index from 0 |
583 |
curStampId = moleculeStamps_.size(); |
584 |
|
585 |
moleculeStamps_.push_back(molStamp); |
586 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
587 |
} |
588 |
|
589 |
void SimInfo::update() { |
590 |
|
591 |
setupSimType(); |
592 |
|
593 |
#ifdef IS_MPI |
594 |
setupFortranParallel(); |
595 |
#endif |
596 |
|
597 |
setupFortranSim(); |
598 |
|
599 |
//setup fortran force field |
600 |
/** @deprecate */ |
601 |
int isError = 0; |
602 |
|
603 |
setupElectrostaticSummationMethod( isError ); |
604 |
setupSwitchingFunction(); |
605 |
|
606 |
if(isError){ |
607 |
sprintf( painCave.errMsg, |
608 |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
609 |
painCave.isFatal = 1; |
610 |
simError(); |
611 |
} |
612 |
|
613 |
|
614 |
setupCutoff(); |
615 |
|
616 |
calcNdf(); |
617 |
calcNdfRaw(); |
618 |
calcNdfTrans(); |
619 |
|
620 |
fortranInitialized_ = true; |
621 |
} |
622 |
|
623 |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
624 |
SimInfo::MoleculeIterator mi; |
625 |
Molecule* mol; |
626 |
Molecule::AtomIterator ai; |
627 |
Atom* atom; |
628 |
std::set<AtomType*> atomTypes; |
629 |
|
630 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
631 |
|
632 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
633 |
atomTypes.insert(atom->getAtomType()); |
634 |
} |
635 |
|
636 |
} |
637 |
|
638 |
return atomTypes; |
639 |
} |
640 |
|
641 |
void SimInfo::setupSimType() { |
642 |
std::set<AtomType*>::iterator i; |
643 |
std::set<AtomType*> atomTypes; |
644 |
atomTypes = getUniqueAtomTypes(); |
645 |
|
646 |
int useLennardJones = 0; |
647 |
int useElectrostatic = 0; |
648 |
int useEAM = 0; |
649 |
int useSC = 0; |
650 |
int useCharge = 0; |
651 |
int useDirectional = 0; |
652 |
int useDipole = 0; |
653 |
int useGayBerne = 0; |
654 |
int useSticky = 0; |
655 |
int useStickyPower = 0; |
656 |
int useShape = 0; |
657 |
int useFLARB = 0; //it is not in AtomType yet |
658 |
int useDirectionalAtom = 0; |
659 |
int useElectrostatics = 0; |
660 |
//usePBC and useRF are from simParams |
661 |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
662 |
int useRF; |
663 |
int useSF; |
664 |
std::string myMethod; |
665 |
|
666 |
// set the useRF logical |
667 |
useRF = 0; |
668 |
useSF = 0; |
669 |
|
670 |
|
671 |
if (simParams_->haveElectrostaticSummationMethod()) { |
672 |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
673 |
toUpper(myMethod); |
674 |
if (myMethod == "REACTION_FIELD") { |
675 |
useRF=1; |
676 |
} else { |
677 |
if (myMethod == "SHIFTED_FORCE") { |
678 |
useSF = 1; |
679 |
} |
680 |
} |
681 |
} |
682 |
|
683 |
//loop over all of the atom types |
684 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
685 |
useLennardJones |= (*i)->isLennardJones(); |
686 |
useElectrostatic |= (*i)->isElectrostatic(); |
687 |
useEAM |= (*i)->isEAM(); |
688 |
useSC |= (*i)->isSC(); |
689 |
useCharge |= (*i)->isCharge(); |
690 |
useDirectional |= (*i)->isDirectional(); |
691 |
useDipole |= (*i)->isDipole(); |
692 |
useGayBerne |= (*i)->isGayBerne(); |
693 |
useSticky |= (*i)->isSticky(); |
694 |
useStickyPower |= (*i)->isStickyPower(); |
695 |
useShape |= (*i)->isShape(); |
696 |
} |
697 |
|
698 |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
699 |
useDirectionalAtom = 1; |
700 |
} |
701 |
|
702 |
if (useCharge || useDipole) { |
703 |
useElectrostatics = 1; |
704 |
} |
705 |
|
706 |
#ifdef IS_MPI |
707 |
int temp; |
708 |
|
709 |
temp = usePBC; |
710 |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
711 |
|
712 |
temp = useDirectionalAtom; |
713 |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
714 |
|
715 |
temp = useLennardJones; |
716 |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
717 |
|
718 |
temp = useElectrostatics; |
719 |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
720 |
|
721 |
temp = useCharge; |
722 |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
723 |
|
724 |
temp = useDipole; |
725 |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
726 |
|
727 |
temp = useSticky; |
728 |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
729 |
|
730 |
temp = useStickyPower; |
731 |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
732 |
|
733 |
temp = useGayBerne; |
734 |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
735 |
|
736 |
temp = useEAM; |
737 |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
738 |
|
739 |
temp = useSC; |
740 |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
741 |
|
742 |
temp = useShape; |
743 |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
744 |
|
745 |
temp = useFLARB; |
746 |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
747 |
|
748 |
temp = useRF; |
749 |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
750 |
|
751 |
temp = useSF; |
752 |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
753 |
|
754 |
#endif |
755 |
|
756 |
fInfo_.SIM_uses_PBC = usePBC; |
757 |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
758 |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
759 |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
760 |
fInfo_.SIM_uses_Charges = useCharge; |
761 |
fInfo_.SIM_uses_Dipoles = useDipole; |
762 |
fInfo_.SIM_uses_Sticky = useSticky; |
763 |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
764 |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
765 |
fInfo_.SIM_uses_EAM = useEAM; |
766 |
fInfo_.SIM_uses_SC = useSC; |
767 |
fInfo_.SIM_uses_Shapes = useShape; |
768 |
fInfo_.SIM_uses_FLARB = useFLARB; |
769 |
fInfo_.SIM_uses_RF = useRF; |
770 |
fInfo_.SIM_uses_SF = useSF; |
771 |
|
772 |
if( myMethod == "REACTION_FIELD") { |
773 |
|
774 |
if (simParams_->haveDielectric()) { |
775 |
fInfo_.dielect = simParams_->getDielectric(); |
776 |
} else { |
777 |
sprintf(painCave.errMsg, |
778 |
"SimSetup Error: No Dielectric constant was set.\n" |
779 |
"\tYou are trying to use Reaction Field without" |
780 |
"\tsetting a dielectric constant!\n"); |
781 |
painCave.isFatal = 1; |
782 |
simError(); |
783 |
} |
784 |
} |
785 |
|
786 |
} |
787 |
|
788 |
void SimInfo::setupFortranSim() { |
789 |
int isError; |
790 |
int nExclude; |
791 |
std::vector<int> fortranGlobalGroupMembership; |
792 |
|
793 |
nExclude = exclude_.getSize(); |
794 |
isError = 0; |
795 |
|
796 |
//globalGroupMembership_ is filled by SimCreator |
797 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
798 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
799 |
} |
800 |
|
801 |
//calculate mass ratio of cutoff group |
802 |
std::vector<double> mfact; |
803 |
SimInfo::MoleculeIterator mi; |
804 |
Molecule* mol; |
805 |
Molecule::CutoffGroupIterator ci; |
806 |
CutoffGroup* cg; |
807 |
Molecule::AtomIterator ai; |
808 |
Atom* atom; |
809 |
double totalMass; |
810 |
|
811 |
//to avoid memory reallocation, reserve enough space for mfact |
812 |
mfact.reserve(getNCutoffGroups()); |
813 |
|
814 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
815 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
816 |
|
817 |
totalMass = cg->getMass(); |
818 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
819 |
// Check for massless groups - set mfact to 1 if true |
820 |
if (totalMass != 0) |
821 |
mfact.push_back(atom->getMass()/totalMass); |
822 |
else |
823 |
mfact.push_back( 1.0 ); |
824 |
} |
825 |
|
826 |
} |
827 |
} |
828 |
|
829 |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
830 |
std::vector<int> identArray; |
831 |
|
832 |
//to avoid memory reallocation, reserve enough space identArray |
833 |
identArray.reserve(getNAtoms()); |
834 |
|
835 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
836 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
837 |
identArray.push_back(atom->getIdent()); |
838 |
} |
839 |
} |
840 |
|
841 |
//fill molMembershipArray |
842 |
//molMembershipArray is filled by SimCreator |
843 |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
844 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
845 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
846 |
} |
847 |
|
848 |
//setup fortran simulation |
849 |
int nGlobalExcludes = 0; |
850 |
int* globalExcludes = NULL; |
851 |
int* excludeList = exclude_.getExcludeList(); |
852 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
853 |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
854 |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
855 |
|
856 |
if( isError ){ |
857 |
|
858 |
sprintf( painCave.errMsg, |
859 |
"There was an error setting the simulation information in fortran.\n" ); |
860 |
painCave.isFatal = 1; |
861 |
painCave.severity = OOPSE_ERROR; |
862 |
simError(); |
863 |
} |
864 |
|
865 |
#ifdef IS_MPI |
866 |
sprintf( checkPointMsg, |
867 |
"succesfully sent the simulation information to fortran.\n"); |
868 |
MPIcheckPoint(); |
869 |
#endif // is_mpi |
870 |
} |
871 |
|
872 |
|
873 |
#ifdef IS_MPI |
874 |
void SimInfo::setupFortranParallel() { |
875 |
|
876 |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
877 |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
878 |
std::vector<int> localToGlobalCutoffGroupIndex; |
879 |
SimInfo::MoleculeIterator mi; |
880 |
Molecule::AtomIterator ai; |
881 |
Molecule::CutoffGroupIterator ci; |
882 |
Molecule* mol; |
883 |
Atom* atom; |
884 |
CutoffGroup* cg; |
885 |
mpiSimData parallelData; |
886 |
int isError; |
887 |
|
888 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
889 |
|
890 |
//local index(index in DataStorge) of atom is important |
891 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
892 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
893 |
} |
894 |
|
895 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
896 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
897 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
898 |
} |
899 |
|
900 |
} |
901 |
|
902 |
//fill up mpiSimData struct |
903 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
904 |
parallelData.nMolLocal = getNMolecules(); |
905 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
906 |
parallelData.nAtomsLocal = getNAtoms(); |
907 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
908 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
909 |
parallelData.myNode = worldRank; |
910 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
911 |
|
912 |
//pass mpiSimData struct and index arrays to fortran |
913 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
914 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
915 |
&localToGlobalCutoffGroupIndex[0], &isError); |
916 |
|
917 |
if (isError) { |
918 |
sprintf(painCave.errMsg, |
919 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
920 |
painCave.isFatal = 1; |
921 |
simError(); |
922 |
} |
923 |
|
924 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
925 |
MPIcheckPoint(); |
926 |
|
927 |
|
928 |
} |
929 |
|
930 |
#endif |
931 |
|
932 |
void SimInfo::setupCutoff() { |
933 |
|
934 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
935 |
|
936 |
// Check the cutoff policy |
937 |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
938 |
|
939 |
std::string myPolicy; |
940 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
941 |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
942 |
}else if (simParams_->haveCutoffPolicy()) { |
943 |
myPolicy = simParams_->getCutoffPolicy(); |
944 |
} |
945 |
|
946 |
if (!myPolicy.empty()){ |
947 |
toUpper(myPolicy); |
948 |
if (myPolicy == "MIX") { |
949 |
cp = MIX_CUTOFF_POLICY; |
950 |
} else { |
951 |
if (myPolicy == "MAX") { |
952 |
cp = MAX_CUTOFF_POLICY; |
953 |
} else { |
954 |
if (myPolicy == "TRADITIONAL") { |
955 |
cp = TRADITIONAL_CUTOFF_POLICY; |
956 |
} else { |
957 |
// throw error |
958 |
sprintf( painCave.errMsg, |
959 |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
960 |
painCave.isFatal = 1; |
961 |
simError(); |
962 |
} |
963 |
} |
964 |
} |
965 |
} |
966 |
notifyFortranCutoffPolicy(&cp); |
967 |
|
968 |
// Check the Skin Thickness for neighborlists |
969 |
double skin; |
970 |
if (simParams_->haveSkinThickness()) { |
971 |
skin = simParams_->getSkinThickness(); |
972 |
notifyFortranSkinThickness(&skin); |
973 |
} |
974 |
|
975 |
// Check if the cutoff was set explicitly: |
976 |
if (simParams_->haveCutoffRadius()) { |
977 |
rcut_ = simParams_->getCutoffRadius(); |
978 |
if (simParams_->haveSwitchingRadius()) { |
979 |
rsw_ = simParams_->getSwitchingRadius(); |
980 |
} else { |
981 |
if (fInfo_.SIM_uses_Charges | |
982 |
fInfo_.SIM_uses_Dipoles | |
983 |
fInfo_.SIM_uses_RF) { |
984 |
|
985 |
rsw_ = 0.85 * rcut_; |
986 |
sprintf(painCave.errMsg, |
987 |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
988 |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
989 |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
990 |
painCave.isFatal = 0; |
991 |
simError(); |
992 |
} else { |
993 |
rsw_ = rcut_; |
994 |
sprintf(painCave.errMsg, |
995 |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
996 |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
997 |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
998 |
painCave.isFatal = 0; |
999 |
simError(); |
1000 |
} |
1001 |
} |
1002 |
|
1003 |
notifyFortranCutoffs(&rcut_, &rsw_); |
1004 |
|
1005 |
} else { |
1006 |
|
1007 |
// For electrostatic atoms, we'll assume a large safe value: |
1008 |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1009 |
sprintf(painCave.errMsg, |
1010 |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1011 |
"\tOOPSE will use a default value of 15.0 angstroms" |
1012 |
"\tfor the cutoffRadius.\n"); |
1013 |
painCave.isFatal = 0; |
1014 |
simError(); |
1015 |
rcut_ = 15.0; |
1016 |
|
1017 |
if (simParams_->haveElectrostaticSummationMethod()) { |
1018 |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1019 |
toUpper(myMethod); |
1020 |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1021 |
if (simParams_->haveSwitchingRadius()){ |
1022 |
sprintf(painCave.errMsg, |
1023 |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1024 |
"\teven though the electrostaticSummationMethod was\n" |
1025 |
"\tset to %s\n", myMethod.c_str()); |
1026 |
painCave.isFatal = 1; |
1027 |
simError(); |
1028 |
} |
1029 |
} |
1030 |
} |
1031 |
|
1032 |
if (simParams_->haveSwitchingRadius()){ |
1033 |
rsw_ = simParams_->getSwitchingRadius(); |
1034 |
} else { |
1035 |
sprintf(painCave.errMsg, |
1036 |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1037 |
"\tOOPSE will use a default value of\n" |
1038 |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1039 |
painCave.isFatal = 0; |
1040 |
simError(); |
1041 |
rsw_ = 0.85 * rcut_; |
1042 |
} |
1043 |
notifyFortranCutoffs(&rcut_, &rsw_); |
1044 |
} else { |
1045 |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1046 |
// We'll punt and let fortran figure out the cutoffs later. |
1047 |
|
1048 |
notifyFortranYouAreOnYourOwn(); |
1049 |
|
1050 |
} |
1051 |
} |
1052 |
} |
1053 |
|
1054 |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1055 |
|
1056 |
int errorOut; |
1057 |
int esm = NONE; |
1058 |
int sm = UNDAMPED; |
1059 |
double alphaVal; |
1060 |
double dielectric; |
1061 |
|
1062 |
errorOut = isError; |
1063 |
alphaVal = simParams_->getDampingAlpha(); |
1064 |
dielectric = simParams_->getDielectric(); |
1065 |
|
1066 |
if (simParams_->haveElectrostaticSummationMethod()) { |
1067 |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1068 |
toUpper(myMethod); |
1069 |
if (myMethod == "NONE") { |
1070 |
esm = NONE; |
1071 |
} else { |
1072 |
if (myMethod == "SWITCHING_FUNCTION") { |
1073 |
esm = SWITCHING_FUNCTION; |
1074 |
} else { |
1075 |
if (myMethod == "SHIFTED_POTENTIAL") { |
1076 |
esm = SHIFTED_POTENTIAL; |
1077 |
} else { |
1078 |
if (myMethod == "SHIFTED_FORCE") { |
1079 |
esm = SHIFTED_FORCE; |
1080 |
} else { |
1081 |
if (myMethod == "REACTION_FIELD") { |
1082 |
esm = REACTION_FIELD; |
1083 |
} else { |
1084 |
// throw error |
1085 |
sprintf( painCave.errMsg, |
1086 |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1087 |
"\t(Input file specified %s .)\n" |
1088 |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1089 |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1090 |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1091 |
painCave.isFatal = 1; |
1092 |
simError(); |
1093 |
} |
1094 |
} |
1095 |
} |
1096 |
} |
1097 |
} |
1098 |
} |
1099 |
|
1100 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1101 |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1102 |
toUpper(myScreen); |
1103 |
if (myScreen == "UNDAMPED") { |
1104 |
sm = UNDAMPED; |
1105 |
} else { |
1106 |
if (myScreen == "DAMPED") { |
1107 |
sm = DAMPED; |
1108 |
if (!simParams_->haveDampingAlpha()) { |
1109 |
//throw error |
1110 |
sprintf( painCave.errMsg, |
1111 |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1112 |
"\tA default value of %f (1/ang) will be used.\n", alphaVal); |
1113 |
painCave.isFatal = 0; |
1114 |
simError(); |
1115 |
} |
1116 |
} else { |
1117 |
// throw error |
1118 |
sprintf( painCave.errMsg, |
1119 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1120 |
"\t(Input file specified %s .)\n" |
1121 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1122 |
"or \"damped\".\n", myScreen.c_str() ); |
1123 |
painCave.isFatal = 1; |
1124 |
simError(); |
1125 |
} |
1126 |
} |
1127 |
} |
1128 |
|
1129 |
// let's pass some summation method variables to fortran |
1130 |
setElectrostaticSummationMethod( &esm ); |
1131 |
setFortranElectrostaticMethod( &esm ); |
1132 |
setScreeningMethod( &sm ); |
1133 |
setDampingAlpha( &alphaVal ); |
1134 |
setReactionFieldDielectric( &dielectric ); |
1135 |
initFortranFF( &errorOut ); |
1136 |
} |
1137 |
|
1138 |
void SimInfo::setupSwitchingFunction() { |
1139 |
int ft = CUBIC; |
1140 |
|
1141 |
if (simParams_->haveSwitchingFunctionType()) { |
1142 |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1143 |
toUpper(funcType); |
1144 |
if (funcType == "CUBIC") { |
1145 |
ft = CUBIC; |
1146 |
} else { |
1147 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1148 |
ft = FIFTH_ORDER_POLY; |
1149 |
} else { |
1150 |
// throw error |
1151 |
sprintf( painCave.errMsg, |
1152 |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1153 |
painCave.isFatal = 1; |
1154 |
simError(); |
1155 |
} |
1156 |
} |
1157 |
} |
1158 |
|
1159 |
// send switching function notification to switcheroo |
1160 |
setFunctionType(&ft); |
1161 |
|
1162 |
} |
1163 |
|
1164 |
void SimInfo::addProperty(GenericData* genData) { |
1165 |
properties_.addProperty(genData); |
1166 |
} |
1167 |
|
1168 |
void SimInfo::removeProperty(const std::string& propName) { |
1169 |
properties_.removeProperty(propName); |
1170 |
} |
1171 |
|
1172 |
void SimInfo::clearProperties() { |
1173 |
properties_.clearProperties(); |
1174 |
} |
1175 |
|
1176 |
std::vector<std::string> SimInfo::getPropertyNames() { |
1177 |
return properties_.getPropertyNames(); |
1178 |
} |
1179 |
|
1180 |
std::vector<GenericData*> SimInfo::getProperties() { |
1181 |
return properties_.getProperties(); |
1182 |
} |
1183 |
|
1184 |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
1185 |
return properties_.getPropertyByName(propName); |
1186 |
} |
1187 |
|
1188 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1189 |
if (sman_ == sman) { |
1190 |
return; |
1191 |
} |
1192 |
delete sman_; |
1193 |
sman_ = sman; |
1194 |
|
1195 |
Molecule* mol; |
1196 |
RigidBody* rb; |
1197 |
Atom* atom; |
1198 |
SimInfo::MoleculeIterator mi; |
1199 |
Molecule::RigidBodyIterator rbIter; |
1200 |
Molecule::AtomIterator atomIter;; |
1201 |
|
1202 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1203 |
|
1204 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1205 |
atom->setSnapshotManager(sman_); |
1206 |
} |
1207 |
|
1208 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1209 |
rb->setSnapshotManager(sman_); |
1210 |
} |
1211 |
} |
1212 |
|
1213 |
} |
1214 |
|
1215 |
Vector3d SimInfo::getComVel(){ |
1216 |
SimInfo::MoleculeIterator i; |
1217 |
Molecule* mol; |
1218 |
|
1219 |
Vector3d comVel(0.0); |
1220 |
double totalMass = 0.0; |
1221 |
|
1222 |
|
1223 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1224 |
double mass = mol->getMass(); |
1225 |
totalMass += mass; |
1226 |
comVel += mass * mol->getComVel(); |
1227 |
} |
1228 |
|
1229 |
#ifdef IS_MPI |
1230 |
double tmpMass = totalMass; |
1231 |
Vector3d tmpComVel(comVel); |
1232 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1233 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1234 |
#endif |
1235 |
|
1236 |
comVel /= totalMass; |
1237 |
|
1238 |
return comVel; |
1239 |
} |
1240 |
|
1241 |
Vector3d SimInfo::getCom(){ |
1242 |
SimInfo::MoleculeIterator i; |
1243 |
Molecule* mol; |
1244 |
|
1245 |
Vector3d com(0.0); |
1246 |
double totalMass = 0.0; |
1247 |
|
1248 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1249 |
double mass = mol->getMass(); |
1250 |
totalMass += mass; |
1251 |
com += mass * mol->getCom(); |
1252 |
} |
1253 |
|
1254 |
#ifdef IS_MPI |
1255 |
double tmpMass = totalMass; |
1256 |
Vector3d tmpCom(com); |
1257 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1258 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1259 |
#endif |
1260 |
|
1261 |
com /= totalMass; |
1262 |
|
1263 |
return com; |
1264 |
|
1265 |
} |
1266 |
|
1267 |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1268 |
|
1269 |
return o; |
1270 |
} |
1271 |
|
1272 |
|
1273 |
/* |
1274 |
Returns center of mass and center of mass velocity in one function call. |
1275 |
*/ |
1276 |
|
1277 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1278 |
SimInfo::MoleculeIterator i; |
1279 |
Molecule* mol; |
1280 |
|
1281 |
|
1282 |
double totalMass = 0.0; |
1283 |
|
1284 |
|
1285 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1286 |
double mass = mol->getMass(); |
1287 |
totalMass += mass; |
1288 |
com += mass * mol->getCom(); |
1289 |
comVel += mass * mol->getComVel(); |
1290 |
} |
1291 |
|
1292 |
#ifdef IS_MPI |
1293 |
double tmpMass = totalMass; |
1294 |
Vector3d tmpCom(com); |
1295 |
Vector3d tmpComVel(comVel); |
1296 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1297 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1298 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1299 |
#endif |
1300 |
|
1301 |
com /= totalMass; |
1302 |
comVel /= totalMass; |
1303 |
} |
1304 |
|
1305 |
/* |
1306 |
Return intertia tensor for entire system and angular momentum Vector. |
1307 |
|
1308 |
|
1309 |
[ Ixx -Ixy -Ixz ] |
1310 |
J =| -Iyx Iyy -Iyz | |
1311 |
[ -Izx -Iyz Izz ] |
1312 |
*/ |
1313 |
|
1314 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1315 |
|
1316 |
|
1317 |
double xx = 0.0; |
1318 |
double yy = 0.0; |
1319 |
double zz = 0.0; |
1320 |
double xy = 0.0; |
1321 |
double xz = 0.0; |
1322 |
double yz = 0.0; |
1323 |
Vector3d com(0.0); |
1324 |
Vector3d comVel(0.0); |
1325 |
|
1326 |
getComAll(com, comVel); |
1327 |
|
1328 |
SimInfo::MoleculeIterator i; |
1329 |
Molecule* mol; |
1330 |
|
1331 |
Vector3d thisq(0.0); |
1332 |
Vector3d thisv(0.0); |
1333 |
|
1334 |
double thisMass = 0.0; |
1335 |
|
1336 |
|
1337 |
|
1338 |
|
1339 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1340 |
|
1341 |
thisq = mol->getCom()-com; |
1342 |
thisv = mol->getComVel()-comVel; |
1343 |
thisMass = mol->getMass(); |
1344 |
// Compute moment of intertia coefficients. |
1345 |
xx += thisq[0]*thisq[0]*thisMass; |
1346 |
yy += thisq[1]*thisq[1]*thisMass; |
1347 |
zz += thisq[2]*thisq[2]*thisMass; |
1348 |
|
1349 |
// compute products of intertia |
1350 |
xy += thisq[0]*thisq[1]*thisMass; |
1351 |
xz += thisq[0]*thisq[2]*thisMass; |
1352 |
yz += thisq[1]*thisq[2]*thisMass; |
1353 |
|
1354 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1355 |
|
1356 |
} |
1357 |
|
1358 |
|
1359 |
inertiaTensor(0,0) = yy + zz; |
1360 |
inertiaTensor(0,1) = -xy; |
1361 |
inertiaTensor(0,2) = -xz; |
1362 |
inertiaTensor(1,0) = -xy; |
1363 |
inertiaTensor(1,1) = xx + zz; |
1364 |
inertiaTensor(1,2) = -yz; |
1365 |
inertiaTensor(2,0) = -xz; |
1366 |
inertiaTensor(2,1) = -yz; |
1367 |
inertiaTensor(2,2) = xx + yy; |
1368 |
|
1369 |
#ifdef IS_MPI |
1370 |
Mat3x3d tmpI(inertiaTensor); |
1371 |
Vector3d tmpAngMom; |
1372 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1373 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1374 |
#endif |
1375 |
|
1376 |
return; |
1377 |
} |
1378 |
|
1379 |
//Returns the angular momentum of the system |
1380 |
Vector3d SimInfo::getAngularMomentum(){ |
1381 |
|
1382 |
Vector3d com(0.0); |
1383 |
Vector3d comVel(0.0); |
1384 |
Vector3d angularMomentum(0.0); |
1385 |
|
1386 |
getComAll(com,comVel); |
1387 |
|
1388 |
SimInfo::MoleculeIterator i; |
1389 |
Molecule* mol; |
1390 |
|
1391 |
Vector3d thisr(0.0); |
1392 |
Vector3d thisp(0.0); |
1393 |
|
1394 |
double thisMass; |
1395 |
|
1396 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1397 |
thisMass = mol->getMass(); |
1398 |
thisr = mol->getCom()-com; |
1399 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1400 |
|
1401 |
angularMomentum += cross( thisr, thisp ); |
1402 |
|
1403 |
} |
1404 |
|
1405 |
#ifdef IS_MPI |
1406 |
Vector3d tmpAngMom; |
1407 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1408 |
#endif |
1409 |
|
1410 |
return angularMomentum; |
1411 |
} |
1412 |
|
1413 |
|
1414 |
}//end namespace oopse |
1415 |
|