1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
#include "UseTheForce/doForces_interface.h" |
59 |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
60 |
#include "utils/MemoryUtils.hpp" |
61 |
#include "utils/simError.h" |
62 |
#include "selection/SelectionManager.hpp" |
63 |
#include "io/ForceFieldOptions.hpp" |
64 |
#include "UseTheForce/ForceField.hpp" |
65 |
#include "nonbonded/SwitchingFunction.hpp" |
66 |
|
67 |
|
68 |
#ifdef IS_MPI |
69 |
#include "UseTheForce/mpiComponentPlan.h" |
70 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
71 |
#endif |
72 |
|
73 |
using namespace std; |
74 |
namespace OpenMD { |
75 |
|
76 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
77 |
forceField_(ff), simParams_(simParams), |
78 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
79 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
80 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
81 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
82 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
83 |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
84 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
85 |
|
86 |
MoleculeStamp* molStamp; |
87 |
int nMolWithSameStamp; |
88 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
89 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
90 |
CutoffGroupStamp* cgStamp; |
91 |
RigidBodyStamp* rbStamp; |
92 |
int nRigidAtoms = 0; |
93 |
|
94 |
vector<Component*> components = simParams->getComponents(); |
95 |
|
96 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
97 |
molStamp = (*i)->getMoleculeStamp(); |
98 |
nMolWithSameStamp = (*i)->getNMol(); |
99 |
|
100 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
101 |
|
102 |
//calculate atoms in molecules |
103 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
104 |
|
105 |
//calculate atoms in cutoff groups |
106 |
int nAtomsInGroups = 0; |
107 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
108 |
|
109 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
110 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
111 |
nAtomsInGroups += cgStamp->getNMembers(); |
112 |
} |
113 |
|
114 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
115 |
|
116 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
117 |
|
118 |
//calculate atoms in rigid bodies |
119 |
int nAtomsInRigidBodies = 0; |
120 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
121 |
|
122 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
123 |
rbStamp = molStamp->getRigidBodyStamp(j); |
124 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
125 |
} |
126 |
|
127 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
128 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
129 |
|
130 |
} |
131 |
|
132 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
133 |
//group therefore the total number of cutoff groups in the system is |
134 |
//equal to the total number of atoms minus number of atoms belong to |
135 |
//cutoff group defined in meta-data file plus the number of cutoff |
136 |
//groups defined in meta-data file |
137 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
138 |
|
139 |
//every free atom (atom does not belong to rigid bodies) is an |
140 |
//integrable object therefore the total number of integrable objects |
141 |
//in the system is equal to the total number of atoms minus number of |
142 |
//atoms belong to rigid body defined in meta-data file plus the number |
143 |
//of rigid bodies defined in meta-data file |
144 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
145 |
+ nGlobalRigidBodies_; |
146 |
|
147 |
nGlobalMols_ = molStampIds_.size(); |
148 |
molToProcMap_.resize(nGlobalMols_); |
149 |
} |
150 |
|
151 |
SimInfo::~SimInfo() { |
152 |
map<int, Molecule*>::iterator i; |
153 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
154 |
delete i->second; |
155 |
} |
156 |
molecules_.clear(); |
157 |
|
158 |
delete sman_; |
159 |
delete simParams_; |
160 |
delete forceField_; |
161 |
} |
162 |
|
163 |
|
164 |
bool SimInfo::addMolecule(Molecule* mol) { |
165 |
MoleculeIterator i; |
166 |
|
167 |
i = molecules_.find(mol->getGlobalIndex()); |
168 |
if (i == molecules_.end() ) { |
169 |
|
170 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
171 |
|
172 |
nAtoms_ += mol->getNAtoms(); |
173 |
nBonds_ += mol->getNBonds(); |
174 |
nBends_ += mol->getNBends(); |
175 |
nTorsions_ += mol->getNTorsions(); |
176 |
nInversions_ += mol->getNInversions(); |
177 |
nRigidBodies_ += mol->getNRigidBodies(); |
178 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
179 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
180 |
nConstraints_ += mol->getNConstraintPairs(); |
181 |
|
182 |
addInteractionPairs(mol); |
183 |
|
184 |
return true; |
185 |
} else { |
186 |
return false; |
187 |
} |
188 |
} |
189 |
|
190 |
bool SimInfo::removeMolecule(Molecule* mol) { |
191 |
MoleculeIterator i; |
192 |
i = molecules_.find(mol->getGlobalIndex()); |
193 |
|
194 |
if (i != molecules_.end() ) { |
195 |
|
196 |
assert(mol == i->second); |
197 |
|
198 |
nAtoms_ -= mol->getNAtoms(); |
199 |
nBonds_ -= mol->getNBonds(); |
200 |
nBends_ -= mol->getNBends(); |
201 |
nTorsions_ -= mol->getNTorsions(); |
202 |
nInversions_ -= mol->getNInversions(); |
203 |
nRigidBodies_ -= mol->getNRigidBodies(); |
204 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
205 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
206 |
nConstraints_ -= mol->getNConstraintPairs(); |
207 |
|
208 |
removeInteractionPairs(mol); |
209 |
molecules_.erase(mol->getGlobalIndex()); |
210 |
|
211 |
delete mol; |
212 |
|
213 |
return true; |
214 |
} else { |
215 |
return false; |
216 |
} |
217 |
} |
218 |
|
219 |
|
220 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
221 |
i = molecules_.begin(); |
222 |
return i == molecules_.end() ? NULL : i->second; |
223 |
} |
224 |
|
225 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
226 |
++i; |
227 |
return i == molecules_.end() ? NULL : i->second; |
228 |
} |
229 |
|
230 |
|
231 |
void SimInfo::calcNdf() { |
232 |
int ndf_local; |
233 |
MoleculeIterator i; |
234 |
vector<StuntDouble*>::iterator j; |
235 |
Molecule* mol; |
236 |
StuntDouble* integrableObject; |
237 |
|
238 |
ndf_local = 0; |
239 |
|
240 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
242 |
integrableObject = mol->nextIntegrableObject(j)) { |
243 |
|
244 |
ndf_local += 3; |
245 |
|
246 |
if (integrableObject->isDirectional()) { |
247 |
if (integrableObject->isLinear()) { |
248 |
ndf_local += 2; |
249 |
} else { |
250 |
ndf_local += 3; |
251 |
} |
252 |
} |
253 |
|
254 |
} |
255 |
} |
256 |
|
257 |
// n_constraints is local, so subtract them on each processor |
258 |
ndf_local -= nConstraints_; |
259 |
|
260 |
#ifdef IS_MPI |
261 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
262 |
#else |
263 |
ndf_ = ndf_local; |
264 |
#endif |
265 |
|
266 |
// nZconstraints_ is global, as are the 3 COM translations for the |
267 |
// entire system: |
268 |
ndf_ = ndf_ - 3 - nZconstraint_; |
269 |
|
270 |
} |
271 |
|
272 |
int SimInfo::getFdf() { |
273 |
#ifdef IS_MPI |
274 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
275 |
#else |
276 |
fdf_ = fdf_local; |
277 |
#endif |
278 |
return fdf_; |
279 |
} |
280 |
|
281 |
void SimInfo::calcNdfRaw() { |
282 |
int ndfRaw_local; |
283 |
|
284 |
MoleculeIterator i; |
285 |
vector<StuntDouble*>::iterator j; |
286 |
Molecule* mol; |
287 |
StuntDouble* integrableObject; |
288 |
|
289 |
// Raw degrees of freedom that we have to set |
290 |
ndfRaw_local = 0; |
291 |
|
292 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
293 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
294 |
integrableObject = mol->nextIntegrableObject(j)) { |
295 |
|
296 |
ndfRaw_local += 3; |
297 |
|
298 |
if (integrableObject->isDirectional()) { |
299 |
if (integrableObject->isLinear()) { |
300 |
ndfRaw_local += 2; |
301 |
} else { |
302 |
ndfRaw_local += 3; |
303 |
} |
304 |
} |
305 |
|
306 |
} |
307 |
} |
308 |
|
309 |
#ifdef IS_MPI |
310 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
311 |
#else |
312 |
ndfRaw_ = ndfRaw_local; |
313 |
#endif |
314 |
} |
315 |
|
316 |
void SimInfo::calcNdfTrans() { |
317 |
int ndfTrans_local; |
318 |
|
319 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
320 |
|
321 |
|
322 |
#ifdef IS_MPI |
323 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
324 |
#else |
325 |
ndfTrans_ = ndfTrans_local; |
326 |
#endif |
327 |
|
328 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
329 |
|
330 |
} |
331 |
|
332 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
333 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
334 |
vector<Bond*>::iterator bondIter; |
335 |
vector<Bend*>::iterator bendIter; |
336 |
vector<Torsion*>::iterator torsionIter; |
337 |
vector<Inversion*>::iterator inversionIter; |
338 |
Bond* bond; |
339 |
Bend* bend; |
340 |
Torsion* torsion; |
341 |
Inversion* inversion; |
342 |
int a; |
343 |
int b; |
344 |
int c; |
345 |
int d; |
346 |
|
347 |
// atomGroups can be used to add special interaction maps between |
348 |
// groups of atoms that are in two separate rigid bodies. |
349 |
// However, most site-site interactions between two rigid bodies |
350 |
// are probably not special, just the ones between the physically |
351 |
// bonded atoms. Interactions *within* a single rigid body should |
352 |
// always be excluded. These are done at the bottom of this |
353 |
// function. |
354 |
|
355 |
map<int, set<int> > atomGroups; |
356 |
Molecule::RigidBodyIterator rbIter; |
357 |
RigidBody* rb; |
358 |
Molecule::IntegrableObjectIterator ii; |
359 |
StuntDouble* integrableObject; |
360 |
|
361 |
for (integrableObject = mol->beginIntegrableObject(ii); |
362 |
integrableObject != NULL; |
363 |
integrableObject = mol->nextIntegrableObject(ii)) { |
364 |
|
365 |
if (integrableObject->isRigidBody()) { |
366 |
rb = static_cast<RigidBody*>(integrableObject); |
367 |
vector<Atom*> atoms = rb->getAtoms(); |
368 |
set<int> rigidAtoms; |
369 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
370 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
371 |
} |
372 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
373 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
374 |
} |
375 |
} else { |
376 |
set<int> oneAtomSet; |
377 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
378 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
379 |
} |
380 |
} |
381 |
|
382 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
383 |
bond = mol->nextBond(bondIter)) { |
384 |
|
385 |
a = bond->getAtomA()->getGlobalIndex(); |
386 |
b = bond->getAtomB()->getGlobalIndex(); |
387 |
|
388 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
389 |
oneTwoInteractions_.addPair(a, b); |
390 |
} else { |
391 |
excludedInteractions_.addPair(a, b); |
392 |
} |
393 |
} |
394 |
|
395 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
396 |
bend = mol->nextBend(bendIter)) { |
397 |
|
398 |
a = bend->getAtomA()->getGlobalIndex(); |
399 |
b = bend->getAtomB()->getGlobalIndex(); |
400 |
c = bend->getAtomC()->getGlobalIndex(); |
401 |
|
402 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
403 |
oneTwoInteractions_.addPair(a, b); |
404 |
oneTwoInteractions_.addPair(b, c); |
405 |
} else { |
406 |
excludedInteractions_.addPair(a, b); |
407 |
excludedInteractions_.addPair(b, c); |
408 |
} |
409 |
|
410 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
411 |
oneThreeInteractions_.addPair(a, c); |
412 |
} else { |
413 |
excludedInteractions_.addPair(a, c); |
414 |
} |
415 |
} |
416 |
|
417 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
418 |
torsion = mol->nextTorsion(torsionIter)) { |
419 |
|
420 |
a = torsion->getAtomA()->getGlobalIndex(); |
421 |
b = torsion->getAtomB()->getGlobalIndex(); |
422 |
c = torsion->getAtomC()->getGlobalIndex(); |
423 |
d = torsion->getAtomD()->getGlobalIndex(); |
424 |
|
425 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
426 |
oneTwoInteractions_.addPair(a, b); |
427 |
oneTwoInteractions_.addPair(b, c); |
428 |
oneTwoInteractions_.addPair(c, d); |
429 |
} else { |
430 |
excludedInteractions_.addPair(a, b); |
431 |
excludedInteractions_.addPair(b, c); |
432 |
excludedInteractions_.addPair(c, d); |
433 |
} |
434 |
|
435 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
436 |
oneThreeInteractions_.addPair(a, c); |
437 |
oneThreeInteractions_.addPair(b, d); |
438 |
} else { |
439 |
excludedInteractions_.addPair(a, c); |
440 |
excludedInteractions_.addPair(b, d); |
441 |
} |
442 |
|
443 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
444 |
oneFourInteractions_.addPair(a, d); |
445 |
} else { |
446 |
excludedInteractions_.addPair(a, d); |
447 |
} |
448 |
} |
449 |
|
450 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
451 |
inversion = mol->nextInversion(inversionIter)) { |
452 |
|
453 |
a = inversion->getAtomA()->getGlobalIndex(); |
454 |
b = inversion->getAtomB()->getGlobalIndex(); |
455 |
c = inversion->getAtomC()->getGlobalIndex(); |
456 |
d = inversion->getAtomD()->getGlobalIndex(); |
457 |
|
458 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
459 |
oneTwoInteractions_.addPair(a, b); |
460 |
oneTwoInteractions_.addPair(a, c); |
461 |
oneTwoInteractions_.addPair(a, d); |
462 |
} else { |
463 |
excludedInteractions_.addPair(a, b); |
464 |
excludedInteractions_.addPair(a, c); |
465 |
excludedInteractions_.addPair(a, d); |
466 |
} |
467 |
|
468 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
469 |
oneThreeInteractions_.addPair(b, c); |
470 |
oneThreeInteractions_.addPair(b, d); |
471 |
oneThreeInteractions_.addPair(c, d); |
472 |
} else { |
473 |
excludedInteractions_.addPair(b, c); |
474 |
excludedInteractions_.addPair(b, d); |
475 |
excludedInteractions_.addPair(c, d); |
476 |
} |
477 |
} |
478 |
|
479 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
480 |
rb = mol->nextRigidBody(rbIter)) { |
481 |
vector<Atom*> atoms = rb->getAtoms(); |
482 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
483 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
484 |
a = atoms[i]->getGlobalIndex(); |
485 |
b = atoms[j]->getGlobalIndex(); |
486 |
excludedInteractions_.addPair(a, b); |
487 |
} |
488 |
} |
489 |
} |
490 |
|
491 |
} |
492 |
|
493 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
494 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
495 |
vector<Bond*>::iterator bondIter; |
496 |
vector<Bend*>::iterator bendIter; |
497 |
vector<Torsion*>::iterator torsionIter; |
498 |
vector<Inversion*>::iterator inversionIter; |
499 |
Bond* bond; |
500 |
Bend* bend; |
501 |
Torsion* torsion; |
502 |
Inversion* inversion; |
503 |
int a; |
504 |
int b; |
505 |
int c; |
506 |
int d; |
507 |
|
508 |
map<int, set<int> > atomGroups; |
509 |
Molecule::RigidBodyIterator rbIter; |
510 |
RigidBody* rb; |
511 |
Molecule::IntegrableObjectIterator ii; |
512 |
StuntDouble* integrableObject; |
513 |
|
514 |
for (integrableObject = mol->beginIntegrableObject(ii); |
515 |
integrableObject != NULL; |
516 |
integrableObject = mol->nextIntegrableObject(ii)) { |
517 |
|
518 |
if (integrableObject->isRigidBody()) { |
519 |
rb = static_cast<RigidBody*>(integrableObject); |
520 |
vector<Atom*> atoms = rb->getAtoms(); |
521 |
set<int> rigidAtoms; |
522 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
523 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
524 |
} |
525 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
526 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
527 |
} |
528 |
} else { |
529 |
set<int> oneAtomSet; |
530 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
531 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
532 |
} |
533 |
} |
534 |
|
535 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
536 |
bond = mol->nextBond(bondIter)) { |
537 |
|
538 |
a = bond->getAtomA()->getGlobalIndex(); |
539 |
b = bond->getAtomB()->getGlobalIndex(); |
540 |
|
541 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
542 |
oneTwoInteractions_.removePair(a, b); |
543 |
} else { |
544 |
excludedInteractions_.removePair(a, b); |
545 |
} |
546 |
} |
547 |
|
548 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
549 |
bend = mol->nextBend(bendIter)) { |
550 |
|
551 |
a = bend->getAtomA()->getGlobalIndex(); |
552 |
b = bend->getAtomB()->getGlobalIndex(); |
553 |
c = bend->getAtomC()->getGlobalIndex(); |
554 |
|
555 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
556 |
oneTwoInteractions_.removePair(a, b); |
557 |
oneTwoInteractions_.removePair(b, c); |
558 |
} else { |
559 |
excludedInteractions_.removePair(a, b); |
560 |
excludedInteractions_.removePair(b, c); |
561 |
} |
562 |
|
563 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
564 |
oneThreeInteractions_.removePair(a, c); |
565 |
} else { |
566 |
excludedInteractions_.removePair(a, c); |
567 |
} |
568 |
} |
569 |
|
570 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
571 |
torsion = mol->nextTorsion(torsionIter)) { |
572 |
|
573 |
a = torsion->getAtomA()->getGlobalIndex(); |
574 |
b = torsion->getAtomB()->getGlobalIndex(); |
575 |
c = torsion->getAtomC()->getGlobalIndex(); |
576 |
d = torsion->getAtomD()->getGlobalIndex(); |
577 |
|
578 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
579 |
oneTwoInteractions_.removePair(a, b); |
580 |
oneTwoInteractions_.removePair(b, c); |
581 |
oneTwoInteractions_.removePair(c, d); |
582 |
} else { |
583 |
excludedInteractions_.removePair(a, b); |
584 |
excludedInteractions_.removePair(b, c); |
585 |
excludedInteractions_.removePair(c, d); |
586 |
} |
587 |
|
588 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
589 |
oneThreeInteractions_.removePair(a, c); |
590 |
oneThreeInteractions_.removePair(b, d); |
591 |
} else { |
592 |
excludedInteractions_.removePair(a, c); |
593 |
excludedInteractions_.removePair(b, d); |
594 |
} |
595 |
|
596 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
597 |
oneFourInteractions_.removePair(a, d); |
598 |
} else { |
599 |
excludedInteractions_.removePair(a, d); |
600 |
} |
601 |
} |
602 |
|
603 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
604 |
inversion = mol->nextInversion(inversionIter)) { |
605 |
|
606 |
a = inversion->getAtomA()->getGlobalIndex(); |
607 |
b = inversion->getAtomB()->getGlobalIndex(); |
608 |
c = inversion->getAtomC()->getGlobalIndex(); |
609 |
d = inversion->getAtomD()->getGlobalIndex(); |
610 |
|
611 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
612 |
oneTwoInteractions_.removePair(a, b); |
613 |
oneTwoInteractions_.removePair(a, c); |
614 |
oneTwoInteractions_.removePair(a, d); |
615 |
} else { |
616 |
excludedInteractions_.removePair(a, b); |
617 |
excludedInteractions_.removePair(a, c); |
618 |
excludedInteractions_.removePair(a, d); |
619 |
} |
620 |
|
621 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
622 |
oneThreeInteractions_.removePair(b, c); |
623 |
oneThreeInteractions_.removePair(b, d); |
624 |
oneThreeInteractions_.removePair(c, d); |
625 |
} else { |
626 |
excludedInteractions_.removePair(b, c); |
627 |
excludedInteractions_.removePair(b, d); |
628 |
excludedInteractions_.removePair(c, d); |
629 |
} |
630 |
} |
631 |
|
632 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
633 |
rb = mol->nextRigidBody(rbIter)) { |
634 |
vector<Atom*> atoms = rb->getAtoms(); |
635 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
636 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
637 |
a = atoms[i]->getGlobalIndex(); |
638 |
b = atoms[j]->getGlobalIndex(); |
639 |
excludedInteractions_.removePair(a, b); |
640 |
} |
641 |
} |
642 |
} |
643 |
|
644 |
} |
645 |
|
646 |
|
647 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
648 |
int curStampId; |
649 |
|
650 |
//index from 0 |
651 |
curStampId = moleculeStamps_.size(); |
652 |
|
653 |
moleculeStamps_.push_back(molStamp); |
654 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
655 |
} |
656 |
|
657 |
|
658 |
/** |
659 |
* update |
660 |
* |
661 |
* Performs the global checks and variable settings after the objects have been |
662 |
* created. |
663 |
* |
664 |
*/ |
665 |
void SimInfo::update() { |
666 |
|
667 |
setupSimVariables(); |
668 |
setupCutoffs(); |
669 |
setupSwitching(); |
670 |
setupElectrostatics(); |
671 |
setupNeighborlists(); |
672 |
|
673 |
#ifdef IS_MPI |
674 |
setupFortranParallel(); |
675 |
#endif |
676 |
setupFortranSim(); |
677 |
fortranInitialized_ = true; |
678 |
|
679 |
calcNdf(); |
680 |
calcNdfRaw(); |
681 |
calcNdfTrans(); |
682 |
} |
683 |
|
684 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
685 |
SimInfo::MoleculeIterator mi; |
686 |
Molecule* mol; |
687 |
Molecule::AtomIterator ai; |
688 |
Atom* atom; |
689 |
set<AtomType*> atomTypes; |
690 |
|
691 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
692 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
693 |
atomTypes.insert(atom->getAtomType()); |
694 |
} |
695 |
} |
696 |
return atomTypes; |
697 |
} |
698 |
|
699 |
/** |
700 |
* setupCutoffs |
701 |
* |
702 |
* Sets the values of cutoffRadius and cutoffMethod |
703 |
* |
704 |
* cutoffRadius : realType |
705 |
* If the cutoffRadius was explicitly set, use that value. |
706 |
* If the cutoffRadius was not explicitly set: |
707 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
708 |
* No electrostatic atoms? Poll the atom types present in the |
709 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
710 |
* Use the maximum suggested value that was found. |
711 |
* |
712 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
713 |
* If cutoffMethod was explicitly set, use that choice. |
714 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
715 |
*/ |
716 |
void SimInfo::setupCutoffs() { |
717 |
|
718 |
if (simParams_->haveCutoffRadius()) { |
719 |
cutoffRadius_ = simParams_->getCutoffRadius(); |
720 |
} else { |
721 |
if (usesElectrostaticAtoms_) { |
722 |
sprintf(painCave.errMsg, |
723 |
"SimInfo: No value was set for the cutoffRadius.\n" |
724 |
"\tOpenMD will use a default value of 12.0 angstroms" |
725 |
"\tfor the cutoffRadius.\n"); |
726 |
painCave.isFatal = 0; |
727 |
painCave.severity = OPENMD_INFO; |
728 |
simError(); |
729 |
cutoffRadius_ = 12.0; |
730 |
} else { |
731 |
RealType thisCut; |
732 |
set<AtomType*>::iterator i; |
733 |
set<AtomType*> atomTypes; |
734 |
atomTypes = getSimulatedAtomTypes(); |
735 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
736 |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
737 |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
738 |
} |
739 |
sprintf(painCave.errMsg, |
740 |
"SimInfo: No value was set for the cutoffRadius.\n" |
741 |
"\tOpenMD will use %lf angstroms.\n", |
742 |
cutoffRadius_); |
743 |
painCave.isFatal = 0; |
744 |
painCave.severity = OPENMD_INFO; |
745 |
simError(); |
746 |
} |
747 |
} |
748 |
|
749 |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
750 |
|
751 |
map<string, CutoffMethod> stringToCutoffMethod; |
752 |
stringToCutoffMethod["HARD"] = HARD; |
753 |
stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; |
754 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
755 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
756 |
|
757 |
if (simParams_->haveCutoffMethod()) { |
758 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
759 |
map<string, CutoffMethod>::iterator i; |
760 |
i = stringToCutoffMethod.find(cutMeth); |
761 |
if (i == stringToCutoffMethod.end()) { |
762 |
sprintf(painCave.errMsg, |
763 |
"SimInfo: Could not find chosen cutoffMethod %s\n" |
764 |
"\tShould be one of: " |
765 |
"HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
766 |
cutMeth.c_str()); |
767 |
painCave.isFatal = 1; |
768 |
painCave.severity = OPENMD_ERROR; |
769 |
simError(); |
770 |
} else { |
771 |
cutoffMethod_ = i->second; |
772 |
} |
773 |
} else { |
774 |
sprintf(painCave.errMsg, |
775 |
"SimInfo: No value was set for the cutoffMethod.\n" |
776 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
777 |
painCave.isFatal = 0; |
778 |
painCave.severity = OPENMD_INFO; |
779 |
simError(); |
780 |
cutoffMethod_ = SHIFTED_FORCE; |
781 |
} |
782 |
|
783 |
InteractionManager::Instance()->setCutoffMethod(cutoffMethod_); |
784 |
} |
785 |
|
786 |
/** |
787 |
* setupSwitching |
788 |
* |
789 |
* Sets the values of switchingRadius and |
790 |
* If the switchingRadius was explicitly set, use that value (but check it) |
791 |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
792 |
*/ |
793 |
void SimInfo::setupSwitching() { |
794 |
|
795 |
if (simParams_->haveSwitchingRadius()) { |
796 |
switchingRadius_ = simParams_->getSwitchingRadius(); |
797 |
if (switchingRadius_ > cutoffRadius_) { |
798 |
sprintf(painCave.errMsg, |
799 |
"SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
800 |
switchingRadius_, cutoffRadius_); |
801 |
painCave.isFatal = 1; |
802 |
painCave.severity = OPENMD_ERROR; |
803 |
simError(); |
804 |
} |
805 |
} else { |
806 |
switchingRadius_ = 0.85 * cutoffRadius_; |
807 |
sprintf(painCave.errMsg, |
808 |
"SimInfo: No value was set for the switchingRadius.\n" |
809 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
810 |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
811 |
painCave.isFatal = 0; |
812 |
painCave.severity = OPENMD_WARNING; |
813 |
simError(); |
814 |
} |
815 |
|
816 |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
817 |
|
818 |
SwitchingFunctionType ft; |
819 |
|
820 |
if (simParams_->haveSwitchingFunctionType()) { |
821 |
string funcType = simParams_->getSwitchingFunctionType(); |
822 |
toUpper(funcType); |
823 |
if (funcType == "CUBIC") { |
824 |
ft = cubic; |
825 |
} else { |
826 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
827 |
ft = fifth_order_poly; |
828 |
} else { |
829 |
// throw error |
830 |
sprintf( painCave.errMsg, |
831 |
"SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" |
832 |
"\tswitchingFunctionType must be one of: " |
833 |
"\"cubic\" or \"fifth_order_polynomial\".", |
834 |
funcType.c_str() ); |
835 |
painCave.isFatal = 1; |
836 |
painCave.severity = OPENMD_ERROR; |
837 |
simError(); |
838 |
} |
839 |
} |
840 |
} |
841 |
|
842 |
InteractionManager::Instance()->setSwitchingFunctionType(ft); |
843 |
} |
844 |
|
845 |
/** |
846 |
* setupSkinThickness |
847 |
* |
848 |
* If the skinThickness was explicitly set, use that value (but check it) |
849 |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
850 |
*/ |
851 |
void SimInfo::setupSkinThickness() { |
852 |
if (simParams_->haveSkinThickness()) { |
853 |
skinThickness_ = simParams_->getSkinThickness(); |
854 |
} else { |
855 |
skinThickness_ = 1.0; |
856 |
sprintf(painCave.errMsg, |
857 |
"SimInfo Warning: No value was set for the skinThickness.\n" |
858 |
"\tOpenMD will use a default value of %f Angstroms\n" |
859 |
"\tfor this simulation\n", skinThickness_); |
860 |
painCave.isFatal = 0; |
861 |
simError(); |
862 |
} |
863 |
} |
864 |
|
865 |
void SimInfo::setupSimType() { |
866 |
set<AtomType*>::iterator i; |
867 |
set<AtomType*> atomTypes; |
868 |
atomTypes = getSimulatedAtomTypes(); |
869 |
|
870 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
871 |
|
872 |
int usesElectrostatic = 0; |
873 |
int usesMetallic = 0; |
874 |
int usesDirectional = 0; |
875 |
//loop over all of the atom types |
876 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
877 |
usesElectrostatic |= (*i)->isElectrostatic(); |
878 |
usesMetallic |= (*i)->isMetal(); |
879 |
usesDirectional |= (*i)->isDirectional(); |
880 |
} |
881 |
|
882 |
#ifdef IS_MPI |
883 |
int temp; |
884 |
temp = usesDirectional; |
885 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
886 |
|
887 |
temp = usesMetallic; |
888 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
889 |
|
890 |
temp = usesElectrostatic; |
891 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
892 |
#endif |
893 |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
894 |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
895 |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
896 |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
897 |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
898 |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
899 |
} |
900 |
|
901 |
void SimInfo::setupFortranSim() { |
902 |
int isError; |
903 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
904 |
vector<int> fortranGlobalGroupMembership; |
905 |
|
906 |
notifyFortranSkinThickness(&skinThickness_); |
907 |
|
908 |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
909 |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
910 |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
911 |
|
912 |
isError = 0; |
913 |
|
914 |
//globalGroupMembership_ is filled by SimCreator |
915 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
916 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
917 |
} |
918 |
|
919 |
//calculate mass ratio of cutoff group |
920 |
vector<RealType> mfact; |
921 |
SimInfo::MoleculeIterator mi; |
922 |
Molecule* mol; |
923 |
Molecule::CutoffGroupIterator ci; |
924 |
CutoffGroup* cg; |
925 |
Molecule::AtomIterator ai; |
926 |
Atom* atom; |
927 |
RealType totalMass; |
928 |
|
929 |
//to avoid memory reallocation, reserve enough space for mfact |
930 |
mfact.reserve(getNCutoffGroups()); |
931 |
|
932 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
933 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
934 |
|
935 |
totalMass = cg->getMass(); |
936 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
937 |
// Check for massless groups - set mfact to 1 if true |
938 |
if (totalMass != 0) |
939 |
mfact.push_back(atom->getMass()/totalMass); |
940 |
else |
941 |
mfact.push_back( 1.0 ); |
942 |
} |
943 |
} |
944 |
} |
945 |
|
946 |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
947 |
vector<int> identArray; |
948 |
|
949 |
//to avoid memory reallocation, reserve enough space identArray |
950 |
identArray.reserve(getNAtoms()); |
951 |
|
952 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
953 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
954 |
identArray.push_back(atom->getIdent()); |
955 |
} |
956 |
} |
957 |
|
958 |
//fill molMembershipArray |
959 |
//molMembershipArray is filled by SimCreator |
960 |
vector<int> molMembershipArray(nGlobalAtoms_); |
961 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
962 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
963 |
} |
964 |
|
965 |
//setup fortran simulation |
966 |
|
967 |
nExclude = excludedInteractions_.getSize(); |
968 |
nOneTwo = oneTwoInteractions_.getSize(); |
969 |
nOneThree = oneThreeInteractions_.getSize(); |
970 |
nOneFour = oneFourInteractions_.getSize(); |
971 |
|
972 |
int* excludeList = excludedInteractions_.getPairList(); |
973 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
974 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
975 |
int* oneFourList = oneFourInteractions_.getPairList(); |
976 |
|
977 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
978 |
&nExclude, excludeList, |
979 |
&nOneTwo, oneTwoList, |
980 |
&nOneThree, oneThreeList, |
981 |
&nOneFour, oneFourList, |
982 |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
983 |
&fortranGlobalGroupMembership[0], &isError); |
984 |
|
985 |
if( isError ){ |
986 |
|
987 |
sprintf( painCave.errMsg, |
988 |
"There was an error setting the simulation information in fortran.\n" ); |
989 |
painCave.isFatal = 1; |
990 |
painCave.severity = OPENMD_ERROR; |
991 |
simError(); |
992 |
} |
993 |
|
994 |
|
995 |
sprintf( checkPointMsg, |
996 |
"succesfully sent the simulation information to fortran.\n"); |
997 |
|
998 |
errorCheckPoint(); |
999 |
|
1000 |
// Setup number of neighbors in neighbor list if present |
1001 |
if (simParams_->haveNeighborListNeighbors()) { |
1002 |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
1003 |
setNeighbors(&nlistNeighbors); |
1004 |
} |
1005 |
|
1006 |
|
1007 |
} |
1008 |
|
1009 |
|
1010 |
void SimInfo::setupFortranParallel() { |
1011 |
#ifdef IS_MPI |
1012 |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
1013 |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1014 |
vector<int> localToGlobalCutoffGroupIndex; |
1015 |
SimInfo::MoleculeIterator mi; |
1016 |
Molecule::AtomIterator ai; |
1017 |
Molecule::CutoffGroupIterator ci; |
1018 |
Molecule* mol; |
1019 |
Atom* atom; |
1020 |
CutoffGroup* cg; |
1021 |
mpiSimData parallelData; |
1022 |
int isError; |
1023 |
|
1024 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1025 |
|
1026 |
//local index(index in DataStorge) of atom is important |
1027 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1028 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1029 |
} |
1030 |
|
1031 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1032 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1033 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1034 |
} |
1035 |
|
1036 |
} |
1037 |
|
1038 |
//fill up mpiSimData struct |
1039 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
1040 |
parallelData.nMolLocal = getNMolecules(); |
1041 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1042 |
parallelData.nAtomsLocal = getNAtoms(); |
1043 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1044 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
1045 |
parallelData.myNode = worldRank; |
1046 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1047 |
|
1048 |
//pass mpiSimData struct and index arrays to fortran |
1049 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1050 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1051 |
&localToGlobalCutoffGroupIndex[0], &isError); |
1052 |
|
1053 |
if (isError) { |
1054 |
sprintf(painCave.errMsg, |
1055 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1056 |
painCave.isFatal = 1; |
1057 |
simError(); |
1058 |
} |
1059 |
|
1060 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1061 |
errorCheckPoint(); |
1062 |
|
1063 |
#endif |
1064 |
} |
1065 |
|
1066 |
|
1067 |
void SimInfo::setupSwitchingFunction() { |
1068 |
|
1069 |
} |
1070 |
|
1071 |
void SimInfo::setupAccumulateBoxDipole() { |
1072 |
|
1073 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1074 |
if ( simParams_->haveAccumulateBoxDipole() ) |
1075 |
if ( simParams_->getAccumulateBoxDipole() ) { |
1076 |
calcBoxDipole_ = true; |
1077 |
} |
1078 |
|
1079 |
} |
1080 |
|
1081 |
void SimInfo::addProperty(GenericData* genData) { |
1082 |
properties_.addProperty(genData); |
1083 |
} |
1084 |
|
1085 |
void SimInfo::removeProperty(const string& propName) { |
1086 |
properties_.removeProperty(propName); |
1087 |
} |
1088 |
|
1089 |
void SimInfo::clearProperties() { |
1090 |
properties_.clearProperties(); |
1091 |
} |
1092 |
|
1093 |
vector<string> SimInfo::getPropertyNames() { |
1094 |
return properties_.getPropertyNames(); |
1095 |
} |
1096 |
|
1097 |
vector<GenericData*> SimInfo::getProperties() { |
1098 |
return properties_.getProperties(); |
1099 |
} |
1100 |
|
1101 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1102 |
return properties_.getPropertyByName(propName); |
1103 |
} |
1104 |
|
1105 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1106 |
if (sman_ == sman) { |
1107 |
return; |
1108 |
} |
1109 |
delete sman_; |
1110 |
sman_ = sman; |
1111 |
|
1112 |
Molecule* mol; |
1113 |
RigidBody* rb; |
1114 |
Atom* atom; |
1115 |
SimInfo::MoleculeIterator mi; |
1116 |
Molecule::RigidBodyIterator rbIter; |
1117 |
Molecule::AtomIterator atomIter;; |
1118 |
|
1119 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1120 |
|
1121 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1122 |
atom->setSnapshotManager(sman_); |
1123 |
} |
1124 |
|
1125 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1126 |
rb->setSnapshotManager(sman_); |
1127 |
} |
1128 |
} |
1129 |
|
1130 |
} |
1131 |
|
1132 |
Vector3d SimInfo::getComVel(){ |
1133 |
SimInfo::MoleculeIterator i; |
1134 |
Molecule* mol; |
1135 |
|
1136 |
Vector3d comVel(0.0); |
1137 |
RealType totalMass = 0.0; |
1138 |
|
1139 |
|
1140 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1141 |
RealType mass = mol->getMass(); |
1142 |
totalMass += mass; |
1143 |
comVel += mass * mol->getComVel(); |
1144 |
} |
1145 |
|
1146 |
#ifdef IS_MPI |
1147 |
RealType tmpMass = totalMass; |
1148 |
Vector3d tmpComVel(comVel); |
1149 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1150 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1151 |
#endif |
1152 |
|
1153 |
comVel /= totalMass; |
1154 |
|
1155 |
return comVel; |
1156 |
} |
1157 |
|
1158 |
Vector3d SimInfo::getCom(){ |
1159 |
SimInfo::MoleculeIterator i; |
1160 |
Molecule* mol; |
1161 |
|
1162 |
Vector3d com(0.0); |
1163 |
RealType totalMass = 0.0; |
1164 |
|
1165 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1166 |
RealType mass = mol->getMass(); |
1167 |
totalMass += mass; |
1168 |
com += mass * mol->getCom(); |
1169 |
} |
1170 |
|
1171 |
#ifdef IS_MPI |
1172 |
RealType tmpMass = totalMass; |
1173 |
Vector3d tmpCom(com); |
1174 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1175 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1176 |
#endif |
1177 |
|
1178 |
com /= totalMass; |
1179 |
|
1180 |
return com; |
1181 |
|
1182 |
} |
1183 |
|
1184 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1185 |
|
1186 |
return o; |
1187 |
} |
1188 |
|
1189 |
|
1190 |
/* |
1191 |
Returns center of mass and center of mass velocity in one function call. |
1192 |
*/ |
1193 |
|
1194 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1195 |
SimInfo::MoleculeIterator i; |
1196 |
Molecule* mol; |
1197 |
|
1198 |
|
1199 |
RealType totalMass = 0.0; |
1200 |
|
1201 |
|
1202 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1203 |
RealType mass = mol->getMass(); |
1204 |
totalMass += mass; |
1205 |
com += mass * mol->getCom(); |
1206 |
comVel += mass * mol->getComVel(); |
1207 |
} |
1208 |
|
1209 |
#ifdef IS_MPI |
1210 |
RealType tmpMass = totalMass; |
1211 |
Vector3d tmpCom(com); |
1212 |
Vector3d tmpComVel(comVel); |
1213 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1214 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1215 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1216 |
#endif |
1217 |
|
1218 |
com /= totalMass; |
1219 |
comVel /= totalMass; |
1220 |
} |
1221 |
|
1222 |
/* |
1223 |
Return intertia tensor for entire system and angular momentum Vector. |
1224 |
|
1225 |
|
1226 |
[ Ixx -Ixy -Ixz ] |
1227 |
J =| -Iyx Iyy -Iyz | |
1228 |
[ -Izx -Iyz Izz ] |
1229 |
*/ |
1230 |
|
1231 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1232 |
|
1233 |
|
1234 |
RealType xx = 0.0; |
1235 |
RealType yy = 0.0; |
1236 |
RealType zz = 0.0; |
1237 |
RealType xy = 0.0; |
1238 |
RealType xz = 0.0; |
1239 |
RealType yz = 0.0; |
1240 |
Vector3d com(0.0); |
1241 |
Vector3d comVel(0.0); |
1242 |
|
1243 |
getComAll(com, comVel); |
1244 |
|
1245 |
SimInfo::MoleculeIterator i; |
1246 |
Molecule* mol; |
1247 |
|
1248 |
Vector3d thisq(0.0); |
1249 |
Vector3d thisv(0.0); |
1250 |
|
1251 |
RealType thisMass = 0.0; |
1252 |
|
1253 |
|
1254 |
|
1255 |
|
1256 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1257 |
|
1258 |
thisq = mol->getCom()-com; |
1259 |
thisv = mol->getComVel()-comVel; |
1260 |
thisMass = mol->getMass(); |
1261 |
// Compute moment of intertia coefficients. |
1262 |
xx += thisq[0]*thisq[0]*thisMass; |
1263 |
yy += thisq[1]*thisq[1]*thisMass; |
1264 |
zz += thisq[2]*thisq[2]*thisMass; |
1265 |
|
1266 |
// compute products of intertia |
1267 |
xy += thisq[0]*thisq[1]*thisMass; |
1268 |
xz += thisq[0]*thisq[2]*thisMass; |
1269 |
yz += thisq[1]*thisq[2]*thisMass; |
1270 |
|
1271 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1272 |
|
1273 |
} |
1274 |
|
1275 |
|
1276 |
inertiaTensor(0,0) = yy + zz; |
1277 |
inertiaTensor(0,1) = -xy; |
1278 |
inertiaTensor(0,2) = -xz; |
1279 |
inertiaTensor(1,0) = -xy; |
1280 |
inertiaTensor(1,1) = xx + zz; |
1281 |
inertiaTensor(1,2) = -yz; |
1282 |
inertiaTensor(2,0) = -xz; |
1283 |
inertiaTensor(2,1) = -yz; |
1284 |
inertiaTensor(2,2) = xx + yy; |
1285 |
|
1286 |
#ifdef IS_MPI |
1287 |
Mat3x3d tmpI(inertiaTensor); |
1288 |
Vector3d tmpAngMom; |
1289 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1290 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1291 |
#endif |
1292 |
|
1293 |
return; |
1294 |
} |
1295 |
|
1296 |
//Returns the angular momentum of the system |
1297 |
Vector3d SimInfo::getAngularMomentum(){ |
1298 |
|
1299 |
Vector3d com(0.0); |
1300 |
Vector3d comVel(0.0); |
1301 |
Vector3d angularMomentum(0.0); |
1302 |
|
1303 |
getComAll(com,comVel); |
1304 |
|
1305 |
SimInfo::MoleculeIterator i; |
1306 |
Molecule* mol; |
1307 |
|
1308 |
Vector3d thisr(0.0); |
1309 |
Vector3d thisp(0.0); |
1310 |
|
1311 |
RealType thisMass; |
1312 |
|
1313 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1314 |
thisMass = mol->getMass(); |
1315 |
thisr = mol->getCom()-com; |
1316 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1317 |
|
1318 |
angularMomentum += cross( thisr, thisp ); |
1319 |
|
1320 |
} |
1321 |
|
1322 |
#ifdef IS_MPI |
1323 |
Vector3d tmpAngMom; |
1324 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1325 |
#endif |
1326 |
|
1327 |
return angularMomentum; |
1328 |
} |
1329 |
|
1330 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1331 |
return IOIndexToIntegrableObject.at(index); |
1332 |
} |
1333 |
|
1334 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1335 |
IOIndexToIntegrableObject= v; |
1336 |
} |
1337 |
|
1338 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1339 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1340 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1341 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1342 |
*/ |
1343 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1344 |
Mat3x3d intTensor; |
1345 |
RealType det; |
1346 |
Vector3d dummyAngMom; |
1347 |
RealType sysconstants; |
1348 |
RealType geomCnst; |
1349 |
|
1350 |
geomCnst = 3.0/2.0; |
1351 |
/* Get the inertial tensor and angular momentum for free*/ |
1352 |
getInertiaTensor(intTensor,dummyAngMom); |
1353 |
|
1354 |
det = intTensor.determinant(); |
1355 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1356 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1357 |
return; |
1358 |
} |
1359 |
|
1360 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1361 |
Mat3x3d intTensor; |
1362 |
Vector3d dummyAngMom; |
1363 |
RealType sysconstants; |
1364 |
RealType geomCnst; |
1365 |
|
1366 |
geomCnst = 3.0/2.0; |
1367 |
/* Get the inertial tensor and angular momentum for free*/ |
1368 |
getInertiaTensor(intTensor,dummyAngMom); |
1369 |
|
1370 |
detI = intTensor.determinant(); |
1371 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1372 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1373 |
return; |
1374 |
} |
1375 |
/* |
1376 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1377 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1378 |
sdByGlobalIndex_ = v; |
1379 |
} |
1380 |
|
1381 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1382 |
//assert(index < nAtoms_ + nRigidBodies_); |
1383 |
return sdByGlobalIndex_.at(index); |
1384 |
} |
1385 |
*/ |
1386 |
int SimInfo::getNGlobalConstraints() { |
1387 |
int nGlobalConstraints; |
1388 |
#ifdef IS_MPI |
1389 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1390 |
MPI_COMM_WORLD); |
1391 |
#else |
1392 |
nGlobalConstraints = nConstraints_; |
1393 |
#endif |
1394 |
return nGlobalConstraints; |
1395 |
} |
1396 |
|
1397 |
}//end namespace OpenMD |
1398 |
|