ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "UseTheForce/fCutoffPolicy.h"
57 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 > #include "UseTheForce/doForces_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63 > #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65 < #include "UseTheForce/DarkSide/simulation_interface.h"
66 < #include "UseTheForce/notifyCutoffs_interface.h"
65 > #include "selection/SelectionManager.hpp"
66 > #include "io/ForceFieldOptions.hpp"
67 > #include "UseTheForce/ForceField.hpp"
68  
15 //#include "UseTheForce/fortranWrappers.hpp"
16
17 #include "math/MatVec3.h"
18
69   #ifdef IS_MPI
70 < #include "brains/mpiSimulation.hpp"
71 < #endif
70 > #include "UseTheForce/mpiComponentPlan.h"
71 > #include "UseTheForce/DarkSide/simParallel_interface.h"
72 > #endif
73  
74 < inline double roundMe( double x ){
75 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
76 < }
77 <          
78 < inline double min( double a, double b ){
79 <  return (a < b ) ? a : b;
80 < }
74 > namespace oopse {
75 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 >    std::map<int, std::set<int> >::iterator i = container.find(index);
77 >    std::set<int> result;
78 >    if (i != container.end()) {
79 >        result = i->second;
80 >    }
81  
82 < SimInfo* currentInfo;
83 <
33 < SimInfo::SimInfo(){
34 <
35 <  n_constraints = 0;
36 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
48 <
49 <  haveRcut = 0;
50 <  haveRsw = 0;
51 <  boxIsInit = 0;
82 >    return result;
83 >  }
84    
85 <  resetTime = 1e99;
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
93  
94 <  orthoRhombic = 0;
95 <  orthoTolerance = 1E-6;
96 <  useInitXSstate = true;
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106 >        
107 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109 <  usePBC = 0;
110 <  useDirectionalAtoms = 0;
61 <  useLennardJones = 0;
62 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
109 >        //calculate atoms in molecules
110 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
112 <  useSolidThermInt = 0;
113 <  useLiquidThermInt = 0;
112 >        //calculate atoms in cutoff groups
113 >        int nAtomsInGroups = 0;
114 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 >        
116 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119 >        }
120  
121 <  haveCutoffGroups = false;
121 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122  
123 <  excludes = Exclude::Instance();
123 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125 <  myConfiguration = new SimState();
125 >        //calculate atoms in rigid bodies
126 >        int nAtomsInRigidBodies = 0;
127 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 >        
129 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132 >        }
133  
134 <  has_minimizer = false;
135 <  the_minimizer =NULL;
134 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 >        
137 >      }
138  
139 <  ngroup = 0;
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 < }
147 <
148 <
149 < SimInfo::~SimInfo(){
150 <
151 <  delete myConfiguration;
152 <
92 <  map<string, GenericData*>::iterator i;
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153    
154 <  for(i = properties.begin(); i != properties.end(); i++)
95 <    delete (*i).second;
154 >      nGlobalMols_ = molStampIds_.size();
155  
156 < }
156 > #ifdef IS_MPI    
157 >      molToProcMap_.resize(nGlobalMols_);
158 > #endif
159  
160 < void SimInfo::setBox(double newBox[3]) {
100 <  
101 <  int i, j;
102 <  double tempMat[3][3];
160 >    }
161  
162 <  for(i=0; i<3; i++)
163 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169 >    delete sman_;
170 >    delete simParams_;
171 >    delete forceField_;
172 >  }
173  
174 <  tempMat[0][0] = newBox[0];
175 <  tempMat[1][1] = newBox[1];
176 <  tempMat[2][2] = newBox[2];
174 >  int SimInfo::getNGlobalConstraints() {
175 >    int nGlobalConstraints;
176 > #ifdef IS_MPI
177 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 >                  MPI_COMM_WORLD);    
179 > #else
180 >    nGlobalConstraints =  nConstraints_;
181 > #endif
182 >    return nGlobalConstraints;
183 >  }
184  
185 <  setBoxM( tempMat );
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186 >    MoleculeIterator i;
187  
188 < }
188 >    i = molecules_.find(mol->getGlobalIndex());
189 >    if (i == molecules_.end() ) {
190  
191 < void SimInfo::setBoxM( double theBox[3][3] ){
192 <  
193 <  int i, j;
194 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
195 <                         // ordering in the array is as follows:
196 <                         // [ 0 3 6 ]
197 <                         // [ 1 4 7 ]
198 <                         // [ 2 5 8 ]
199 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
200 <
201 <  if( !boxIsInit ) boxIsInit = 1;
202 <
203 <  for(i=0; i < 3; i++)
204 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
205 <  
206 <  calcBoxL();
131 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 >        
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201 >
202 >      addExcludePairs(mol);
203 >        
204 >      return true;
205 >    } else {
206 >      return false;
207      }
208    }
209  
210 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
211 <
212 < }
143 <
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211 >    MoleculeIterator i;
212 >    i = molecules_.find(mol->getGlobalIndex());
213  
214 < void SimInfo::getBoxM (double theBox[3][3]) {
214 >    if (i != molecules_.end() ) {
215  
216 <  int i, j;
217 <  for(i=0; i<3; i++)
218 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
219 < }
216 >      assert(mol == i->second);
217 >        
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 +      removeExcludePairs(mol);
228 +      molecules_.erase(mol->getGlobalIndex());
229  
230 < void SimInfo::scaleBox(double scale) {
231 <  double theBox[3][3];
232 <  int i, j;
230 >      delete mol;
231 >        
232 >      return true;
233 >    } else {
234 >      return false;
235 >    }
236  
157  // cerr << "Scaling box by " << scale << "\n";
237  
238 <  for(i=0; i<3; i++)
160 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
238 >  }    
239  
240 <  setBoxM(theBox);
240 >        
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >    i = molecules_.begin();
243 >    return i == molecules_.end() ? NULL : i->second;
244 >  }    
245  
246 < }
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 >    ++i;
248 >    return i == molecules_.end() ? NULL : i->second;    
249 >  }
250  
166 void SimInfo::calcHmatInv( void ) {
167  
168  int oldOrtho;
169  int i,j;
170  double smallDiag;
171  double tol;
172  double sanity[3][3];
251  
252 <  invertMat3( Hmat, HmatInv );
252 >  void SimInfo::calcNdf() {
253 >    int ndf_local;
254 >    MoleculeIterator i;
255 >    std::vector<StuntDouble*>::iterator j;
256 >    Molecule* mol;
257 >    StuntDouble* integrableObject;
258  
259 <  // check to see if Hmat is orthorhombic
260 <  
261 <  oldOrtho = orthoRhombic;
259 >    ndf_local = 0;
260 >    
261 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <  smallDiag = fabs(Hmat[0][0]);
181 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
182 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
183 <  tol = smallDiag * orthoTolerance;
265 >        ndf_local += 3;
266  
267 <  orthoRhombic = 1;
268 <  
269 <  for (i = 0; i < 3; i++ ) {
270 <    for (j = 0 ; j < 3; j++) {
271 <      if (i != j) {
272 <        if (orthoRhombic) {
273 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
274 <        }        
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274 >            
275        }
276      }
195  }
196
197  if( oldOrtho != orthoRhombic ){
277      
278 <    if( orthoRhombic ) {
279 <      sprintf( painCave.errMsg,
201 <               "OOPSE is switching from the default Non-Orthorhombic\n"
202 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
203 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
209 <    }
210 <    else {
211 <      sprintf( painCave.errMsg,
212 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
213 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214 <               "\tThis is usually because the box has deformed under\n"
215 <               "\tNPTf integration. If you wan't to live on the edge with\n"
216 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217 <               "\tvariable ( currently set to %G ) larger.\n",
218 <               orthoTolerance);
219 <      painCave.severity = OOPSE_WARNING;
220 <      simError();
221 <    }
222 <  }
223 < }
278 >    // n_constraints is local, so subtract them on each processor
279 >    ndf_local -= nConstraints_;
280  
281 < void SimInfo::calcBoxL( void ){
281 > #ifdef IS_MPI
282 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 > #else
284 >    ndf_ = ndf_local;
285 > #endif
286  
287 <  double dx, dy, dz, dsq;
287 >    // nZconstraints_ is global, as are the 3 COM translations for the
288 >    // entire system:
289 >    ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 <  // boxVol = Determinant of Hmat
291 >  }
292  
293 <  boxVol = matDet3( Hmat );
293 >  int SimInfo::getFdf() {
294 > #ifdef IS_MPI
295 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 > #else
297 >    fdf_ = fdf_local;
298 > #endif
299 >    return fdf_;
300 >  }
301 >    
302 >  void SimInfo::calcNdfRaw() {
303 >    int ndfRaw_local;
304  
305 <  // boxLx
306 <  
307 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
308 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
305 >    MoleculeIterator i;
306 >    std::vector<StuntDouble*>::iterator j;
307 >    Molecule* mol;
308 >    StuntDouble* integrableObject;
309  
310 <  // boxLy
311 <  
242 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
243 <  dsq = dx*dx + dy*dy + dz*dz;
244 <  boxL[1] = sqrt( dsq );
245 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
246 <
247 <
248 <  // boxLz
249 <  
250 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
251 <  dsq = dx*dx + dy*dy + dz*dz;
252 <  boxL[2] = sqrt( dsq );
253 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
254 <
255 <  //calculate the max cutoff
256 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
259 <
260 < }
261 <
262 <
263 < double SimInfo::calcMaxCutOff(){
264 <
265 <  double ri[3], rj[3], rk[3];
266 <  double rij[3], rjk[3], rki[3];
267 <  double minDist;
268 <
269 <  ri[0] = Hmat[0][0];
270 <  ri[1] = Hmat[1][0];
271 <  ri[2] = Hmat[2][0];
272 <
273 <  rj[0] = Hmat[0][1];
274 <  rj[1] = Hmat[1][1];
275 <  rj[2] = Hmat[2][1];
276 <
277 <  rk[0] = Hmat[0][2];
278 <  rk[1] = Hmat[1][2];
279 <  rk[2] = Hmat[2][2];
310 >    // Raw degrees of freedom that we have to set
311 >    ndfRaw_local = 0;
312      
313 <  crossProduct3(ri, rj, rij);
314 <  distXY = dotProduct3(rk,rij) / norm3(rij);
313 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(j)) {
316  
317 <  crossProduct3(rj,rk, rjk);
285 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
317 >        ndfRaw_local += 3;
318  
319 <  crossProduct3(rk,ri, rki);
320 <  distZX = dotProduct3(rj,rki) / norm3(rki);
321 <
322 <  minDist = min(min(distXY, distYZ), distZX);
323 <  return minDist/2;
324 <  
325 < }
326 <
327 < void SimInfo::wrapVector( double thePos[3] ){
328 <
297 <  int i;
298 <  double scaled[3];
299 <
300 <  if( !orthoRhombic ){
301 <    // calc the scaled coordinates.
302 <  
303 <
304 <    matVecMul3(HmatInv, thePos, scaled);
319 >        if (integrableObject->isDirectional()) {
320 >          if (integrableObject->isLinear()) {
321 >            ndfRaw_local += 2;
322 >          } else {
323 >            ndfRaw_local += 3;
324 >          }
325 >        }
326 >            
327 >      }
328 >    }
329      
330 <    for(i=0; i<3; i++)
331 <      scaled[i] -= roundMe(scaled[i]);
332 <    
333 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
334 <    
311 <    matVecMul3(Hmat, scaled, thePos);
312 <
330 > #ifdef IS_MPI
331 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332 > #else
333 >    ndfRaw_ = ndfRaw_local;
334 > #endif
335    }
314  else{
315    // calc the scaled coordinates.
316    
317    for(i=0; i<3; i++)
318      scaled[i] = thePos[i]*HmatInv[i][i];
319    
320    // wrap the scaled coordinates
321    
322    for(i=0; i<3; i++)
323      scaled[i] -= roundMe(scaled[i]);
324    
325    // calc the wrapped real coordinates from the wrapped scaled coordinates
326    
327    for(i=0; i<3; i++)
328      thePos[i] = scaled[i]*Hmat[i][i];
329  }
330    
331 }
336  
337 +  void SimInfo::calcNdfTrans() {
338 +    int ndfTrans_local;
339  
340 < int SimInfo::getNDF(){
335 <  int ndf_local;
340 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341  
337  ndf_local = 0;
338  
339  for(int i = 0; i < integrableObjects.size(); i++){
340    ndf_local += 3;
341    if (integrableObjects[i]->isDirectional()) {
342      if (integrableObjects[i]->isLinear())
343        ndf_local += 2;
344      else
345        ndf_local += 3;
346    }
347  }
342  
349  // n_constraints is local, so subtract them on each processor:
350
351  ndf_local -= n_constraints;
352
343   #ifdef IS_MPI
344 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
344 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345   #else
346 <  ndf = ndf_local;
346 >    ndfTrans_ = ndfTrans_local;
347   #endif
348  
349 <  // nZconstraints is global, as are the 3 COM translations for the
350 <  // entire system:
349 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350 >
351 >  }
352  
353 <  ndf = ndf - 3 - nZconstraints;
353 >  void SimInfo::addExcludePairs(Molecule* mol) {
354 >    std::vector<Bond*>::iterator bondIter;
355 >    std::vector<Bend*>::iterator bendIter;
356 >    std::vector<Torsion*>::iterator torsionIter;
357 >    Bond* bond;
358 >    Bend* bend;
359 >    Torsion* torsion;
360 >    int a;
361 >    int b;
362 >    int c;
363 >    int d;
364  
365 <  return ndf;
365 < }
365 >    std::map<int, std::set<int> > atomGroups;
366  
367 < int SimInfo::getNDFraw() {
368 <  int ndfRaw_local;
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 >           integrableObject = mol->nextIntegrableObject(ii)) {
374  
375 <  // Raw degrees of freedom that we have to set
376 <  ndfRaw_local = 0;
375 >      if (integrableObject->isRigidBody()) {
376 >          rb = static_cast<RigidBody*>(integrableObject);
377 >          std::vector<Atom*> atoms = rb->getAtoms();
378 >          std::set<int> rigidAtoms;
379 >          for (int i = 0; i < atoms.size(); ++i) {
380 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 >          }
382 >          for (int i = 0; i < atoms.size(); ++i) {
383 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 >          }      
385 >      } else {
386 >        std::set<int> oneAtomSet;
387 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 >      }
390 >    }  
391  
373  for(int i = 0; i < integrableObjects.size(); i++){
374    ndfRaw_local += 3;
375    if (integrableObjects[i]->isDirectional()) {
376       if (integrableObjects[i]->isLinear())
377        ndfRaw_local += 2;
378      else
379        ndfRaw_local += 3;
380    }
381  }
392      
393 < #ifdef IS_MPI
394 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 < #else
396 <  ndfRaw = ndfRaw_local;
397 < #endif
393 >    
394 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 >      a = bond->getAtomA()->getGlobalIndex();
396 >      b = bond->getAtomB()->getGlobalIndex();        
397 >      exclude_.addPair(a, b);
398 >    }
399  
400 <  return ndfRaw;
401 < }
400 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 >      a = bend->getAtomA()->getGlobalIndex();
402 >      b = bend->getAtomB()->getGlobalIndex();        
403 >      c = bend->getAtomC()->getGlobalIndex();
404 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 < int SimInfo::getNDFtranslational() {
409 <  int ndfTrans_local;
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415 >    }
416  
417 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
417 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();        
422 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 +      exclude_.addPairs(rigidSetA, rigidSetB);
428 +      exclude_.addPairs(rigidSetA, rigidSetC);
429 +      exclude_.addPairs(rigidSetA, rigidSetD);
430 +      exclude_.addPairs(rigidSetB, rigidSetC);
431 +      exclude_.addPairs(rigidSetB, rigidSetD);
432 +      exclude_.addPairs(rigidSetC, rigidSetD);
433  
434 < #ifdef IS_MPI
435 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
436 < #else
437 <  ndfTrans = ndfTrans_local;
438 < #endif
434 >      /*
435 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 >        
442 >      
443 >      exclude_.addPair(a, b);
444 >      exclude_.addPair(a, c);
445 >      exclude_.addPair(a, d);
446 >      exclude_.addPair(b, c);
447 >      exclude_.addPair(b, d);
448 >      exclude_.addPair(c, d);        
449 >      */
450 >    }
451  
452 <  ndfTrans = ndfTrans - 3 - nZconstraints;
452 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 >      std::vector<Atom*> atoms = rb->getAtoms();
454 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 >        for (int j = i + 1; j < atoms.size(); ++j) {
456 >          a = atoms[i]->getGlobalIndex();
457 >          b = atoms[j]->getGlobalIndex();
458 >          exclude_.addPair(a, b);
459 >        }
460 >      }
461 >    }        
462  
463 <  return ndfTrans;
407 < }
463 >  }
464  
465 < int SimInfo::getTotIntegrableObjects() {
466 <  int nObjs_local;
467 <  int nObjs;
465 >  void SimInfo::removeExcludePairs(Molecule* mol) {
466 >    std::vector<Bond*>::iterator bondIter;
467 >    std::vector<Bend*>::iterator bendIter;
468 >    std::vector<Torsion*>::iterator torsionIter;
469 >    Bond* bond;
470 >    Bend* bend;
471 >    Torsion* torsion;
472 >    int a;
473 >    int b;
474 >    int c;
475 >    int d;
476  
477 <  nObjs_local =  integrableObjects.size();
477 >    std::map<int, std::set<int> > atomGroups;
478  
479 +    Molecule::RigidBodyIterator rbIter;
480 +    RigidBody* rb;
481 +    Molecule::IntegrableObjectIterator ii;
482 +    StuntDouble* integrableObject;
483 +    
484 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 +           integrableObject = mol->nextIntegrableObject(ii)) {
486  
487 < #ifdef IS_MPI
488 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
489 < #else
490 <  nObjs = nObjs_local;
491 < #endif
487 >      if (integrableObject->isRigidBody()) {
488 >          rb = static_cast<RigidBody*>(integrableObject);
489 >          std::vector<Atom*> atoms = rb->getAtoms();
490 >          std::set<int> rigidAtoms;
491 >          for (int i = 0; i < atoms.size(); ++i) {
492 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 >          }
494 >          for (int i = 0; i < atoms.size(); ++i) {
495 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 >          }      
497 >      } else {
498 >        std::set<int> oneAtomSet;
499 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 >      }
502 >    }  
503  
504 +    
505 +    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 +      a = bond->getAtomA()->getGlobalIndex();
507 +      b = bond->getAtomB()->getGlobalIndex();        
508 +      exclude_.removePair(a, b);
509 +    }
510  
511 <  return nObjs;
512 < }
511 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 >      a = bend->getAtomA()->getGlobalIndex();
513 >      b = bend->getAtomB()->getGlobalIndex();        
514 >      c = bend->getAtomC()->getGlobalIndex();
515  
516 < void SimInfo::refreshSim(){
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519  
520 <  simtype fInfo;
521 <  int isError;
522 <  int n_global;
523 <  int* excl;
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527 >    }
528  
529 <  fInfo.dielect = 0.0;
529 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 >      a = torsion->getAtomA()->getGlobalIndex();
531 >      b = torsion->getAtomB()->getGlobalIndex();        
532 >      c = torsion->getAtomC()->getGlobalIndex();        
533 >      d = torsion->getAtomD()->getGlobalIndex();        
534  
535 <  if( useDipoles ){
536 <    if( useReactionField )fInfo.dielect = dielectric;
537 <  }
535 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539  
540 <  fInfo.SIM_uses_PBC = usePBC;
540 >      exclude_.removePairs(rigidSetA, rigidSetB);
541 >      exclude_.removePairs(rigidSetA, rigidSetC);
542 >      exclude_.removePairs(rigidSetA, rigidSetD);
543 >      exclude_.removePairs(rigidSetB, rigidSetC);
544 >      exclude_.removePairs(rigidSetB, rigidSetD);
545 >      exclude_.removePairs(rigidSetC, rigidSetD);
546  
547 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
548 <    useDirectionalAtoms = 1;
549 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
547 >      /*
548 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 >
555 >      
556 >      exclude_.removePair(a, b);
557 >      exclude_.removePair(a, c);
558 >      exclude_.removePair(a, d);
559 >      exclude_.removePair(b, c);
560 >      exclude_.removePair(b, d);
561 >      exclude_.removePair(c, d);        
562 >      */
563 >    }
564 >
565 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 >      std::vector<Atom*> atoms = rb->getAtoms();
567 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
568 >        for (int j = i + 1; j < atoms.size(); ++j) {
569 >          a = atoms[i]->getGlobalIndex();
570 >          b = atoms[j]->getGlobalIndex();
571 >          exclude_.removePair(a, b);
572 >        }
573 >      }
574 >    }        
575 >
576    }
577  
446  fInfo.SIM_uses_LennardJones = useLennardJones;
578  
579 <  if (useCharges || useDipoles) {
580 <    useElectrostatics = 1;
581 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
579 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 >    int curStampId;
581 >
582 >    //index from 0
583 >    curStampId = moleculeStamps_.size();
584 >
585 >    moleculeStamps_.push_back(molStamp);
586 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587    }
588  
589 <  fInfo.SIM_uses_Charges = useCharges;
454 <  fInfo.SIM_uses_Dipoles = useDipoles;
455 <  fInfo.SIM_uses_Sticky = useSticky;
456 <  fInfo.SIM_uses_GayBerne = useGayBerne;
457 <  fInfo.SIM_uses_EAM = useEAM;
458 <  fInfo.SIM_uses_Shapes = useShapes;
459 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
589 >  void SimInfo::update() {
590  
591 <  n_exclude = excludes->getSize();
592 <  excl = excludes->getFortranArray();
464 <  
591 >    setupSimType();
592 >
593   #ifdef IS_MPI
594 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
594 >    setupFortranParallel();
595   #endif
470  
471  isError = 0;
472  
473  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474  //it may not be a good idea to pass the address of first element in vector
475  //since c++ standard does not require vector to be stored continuously in meomory
476  //Most of the compilers will organize the memory of vector continuously
477  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
596  
597 <  if( isError ){
597 >    setupFortranSim();
598 >
599 >    //setup fortran force field
600 >    /** @deprecate */    
601 >    int isError = 0;
602      
603 <    sprintf( painCave.errMsg,
604 <             "There was an error setting the simulation information in fortran.\n" );
605 <    painCave.isFatal = 1;
486 <    painCave.severity = OOPSE_ERROR;
487 <    simError();
488 <  }
489 <  
490 < #ifdef IS_MPI
491 <  sprintf( checkPointMsg,
492 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
603 >    setupElectrostaticSummationMethod( isError );
604 >    setupSwitchingFunction();
605 >    setupAccumulateBoxDipole();
606  
607 < void SimInfo::setDefaultRcut( double theRcut ){
607 >    if(isError){
608 >      sprintf( painCave.errMsg,
609 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
610 >      painCave.isFatal = 1;
611 >      simError();
612 >    }
613    
614 <  haveRcut = 1;
615 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
614 >    
615 >    setupCutoff();
616  
617 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
617 >    calcNdf();
618 >    calcNdfRaw();
619 >    calcNdfTrans();
620  
621 <  rSw = theRsw;
622 <  setDefaultRcut( theRcut );
514 < }
621 >    fortranInitialized_ = true;
622 >  }
623  
624 <
625 < void SimInfo::checkCutOffs( void ){
626 <  
627 <  if( boxIsInit ){
624 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625 >    SimInfo::MoleculeIterator mi;
626 >    Molecule* mol;
627 >    Molecule::AtomIterator ai;
628 >    Atom* atom;
629 >    std::set<AtomType*> atomTypes;
630 >
631 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632 >
633 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 >        atomTypes.insert(atom->getAtomType());
635 >      }
636 >        
637 >    }
638 >
639 >    return atomTypes;        
640 >  }
641 >
642 >  void SimInfo::setupSimType() {
643 >    std::set<AtomType*>::iterator i;
644 >    std::set<AtomType*> atomTypes;
645 >    atomTypes = getUniqueAtomTypes();
646      
647 <    //we need to check cutOffs against the box
647 >    int useLennardJones = 0;
648 >    int useElectrostatic = 0;
649 >    int useEAM = 0;
650 >    int useSC = 0;
651 >    int useCharge = 0;
652 >    int useDirectional = 0;
653 >    int useDipole = 0;
654 >    int useGayBerne = 0;
655 >    int useSticky = 0;
656 >    int useStickyPower = 0;
657 >    int useShape = 0;
658 >    int useFLARB = 0; //it is not in AtomType yet
659 >    int useDirectionalAtom = 0;    
660 >    int useElectrostatics = 0;
661 >    //usePBC and useRF are from simParams
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668 >
669 >    // set the useRF logical
670 >    useRF = 0;
671 >    useSF = 0;
672 >
673 >
674 >    if (simParams_->haveElectrostaticSummationMethod()) {
675 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 >      toUpper(myMethod);
677 >      if (myMethod == "REACTION_FIELD"){
678 >        useRF=1;
679 >      } else if (myMethod == "SHIFTED_FORCE"){
680 >        useSF = 1;
681 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 >        useSP = 1;
683 >      }
684 >    }
685      
686 <    if( rCut > maxCutoff ){
687 <      sprintf( painCave.errMsg,
688 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
538 <      painCave.isFatal = 1;
539 <      simError();
540 <    }    
541 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
549 <  }
550 <  
551 < }
686 >    if (simParams_->haveAccumulateBoxDipole())
687 >      if (simParams_->getAccumulateBoxDipole())
688 >        useBoxDipole = 1;
689  
690 < void SimInfo::addProperty(GenericData* prop){
690 >    //loop over all of the atom types
691 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 >      useLennardJones |= (*i)->isLennardJones();
693 >      useElectrostatic |= (*i)->isElectrostatic();
694 >      useEAM |= (*i)->isEAM();
695 >      useSC |= (*i)->isSC();
696 >      useCharge |= (*i)->isCharge();
697 >      useDirectional |= (*i)->isDirectional();
698 >      useDipole |= (*i)->isDipole();
699 >      useGayBerne |= (*i)->isGayBerne();
700 >      useSticky |= (*i)->isSticky();
701 >      useStickyPower |= (*i)->isStickyPower();
702 >      useShape |= (*i)->isShape();
703 >    }
704  
705 <  map<string, GenericData*>::iterator result;
706 <  result = properties.find(prop->getID());
707 <  
708 <  //we can't simply use  properties[prop->getID()] = prop,
709 <  //it will cause memory leak if we already contain a propery which has the same name of prop
710 <  
711 <  if(result != properties.end()){
705 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 >      useDirectionalAtom = 1;
707 >    }
708 >
709 >    if (useCharge || useDipole) {
710 >      useElectrostatics = 1;
711 >    }
712 >
713 > #ifdef IS_MPI    
714 >    int temp;
715 >
716 >    temp = usePBC;
717 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 >
719 >    temp = useDirectionalAtom;
720 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 >
722 >    temp = useLennardJones;
723 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >
725 >    temp = useElectrostatics;
726 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 >
728 >    temp = useCharge;
729 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 >
731 >    temp = useDipole;
732 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 >
734 >    temp = useSticky;
735 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >
737 >    temp = useStickyPower;
738 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739      
740 <    delete (*result).second;
741 <    (*result).second = prop;
740 >    temp = useGayBerne;
741 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >
743 >    temp = useEAM;
744 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 >
746 >    temp = useSC;
747 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 >    
749 >    temp = useShape;
750 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751 >
752 >    temp = useFLARB;
753 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
754 >
755 >    temp = useRF;
756 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 >
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 >
761 >    temp = useSP;
762 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 >
764 >    temp = useBoxDipole;
765 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 > #endif
768 >
769 >    fInfo_.SIM_uses_PBC = usePBC;    
770 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
772 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
773 >    fInfo_.SIM_uses_Charges = useCharge;
774 >    fInfo_.SIM_uses_Dipoles = useDipole;
775 >    fInfo_.SIM_uses_Sticky = useSticky;
776 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 >    fInfo_.SIM_uses_EAM = useEAM;
779 >    fInfo_.SIM_uses_SC = useSC;
780 >    fInfo_.SIM_uses_Shapes = useShape;
781 >    fInfo_.SIM_uses_FLARB = useFLARB;
782 >    fInfo_.SIM_uses_RF = useRF;
783 >    fInfo_.SIM_uses_SF = useSF;
784 >    fInfo_.SIM_uses_SP = useSP;
785 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786 >
787 >    if( myMethod == "REACTION_FIELD") {
788        
789 +      if (simParams_->haveDielectric()) {
790 +        fInfo_.dielect = simParams_->getDielectric();
791 +      } else {
792 +        sprintf(painCave.errMsg,
793 +                "SimSetup Error: No Dielectric constant was set.\n"
794 +                "\tYou are trying to use Reaction Field without"
795 +                "\tsetting a dielectric constant!\n");
796 +        painCave.isFatal = 1;
797 +        simError();
798 +      }      
799 +    }
800 +
801    }
567  else{
802  
803 <    properties[prop->getID()] = prop;
803 >  void SimInfo::setupFortranSim() {
804 >    int isError;
805 >    int nExclude;
806 >    std::vector<int> fortranGlobalGroupMembership;
807 >    
808 >    nExclude = exclude_.getSize();
809 >    isError = 0;
810  
811 <  }
811 >    //globalGroupMembership_ is filled by SimCreator    
812 >    for (int i = 0; i < nGlobalAtoms_; i++) {
813 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814 >    }
815 >
816 >    //calculate mass ratio of cutoff group
817 >    std::vector<RealType> mfact;
818 >    SimInfo::MoleculeIterator mi;
819 >    Molecule* mol;
820 >    Molecule::CutoffGroupIterator ci;
821 >    CutoffGroup* cg;
822 >    Molecule::AtomIterator ai;
823 >    Atom* atom;
824 >    RealType totalMass;
825 >
826 >    //to avoid memory reallocation, reserve enough space for mfact
827 >    mfact.reserve(getNCutoffGroups());
828      
829 < }
829 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
830 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
831  
832 < GenericData* SimInfo::getProperty(const string& propName){
833 <
834 <  map<string, GenericData*>::iterator result;
835 <  
836 <  //string lowerCaseName = ();
837 <  
838 <  result = properties.find(propName);
839 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
832 >        totalMass = cg->getMass();
833 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 >          // Check for massless groups - set mfact to 1 if true
835 >          if (totalMass != 0)
836 >            mfact.push_back(atom->getMass()/totalMass);
837 >          else
838 >            mfact.push_back( 1.0 );
839 >        }
840  
841 +      }      
842 +    }
843  
844 < void SimInfo::getFortranGroupArrays(SimInfo* info,
845 <                                    vector<int>& FglobalGroupMembership,
592 <                                    vector<double>& mfact){
593 <  
594 <  Molecule* myMols;
595 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
844 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
845 >    std::vector<int> identArray;
846  
847 <  // Fix the silly fortran indexing problem
847 >    //to avoid memory reallocation, reserve enough space identArray
848 >    identArray.reserve(getNAtoms());
849 >    
850 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 >        identArray.push_back(atom->getIdent());
853 >      }
854 >    }    
855 >
856 >    //fill molMembershipArray
857 >    //molMembershipArray is filled by SimCreator    
858 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
859 >    for (int i = 0; i < nGlobalAtoms_; i++) {
860 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
861 >    }
862 >    
863 >    //setup fortran simulation
864 >    int nGlobalExcludes = 0;
865 >    int* globalExcludes = NULL;
866 >    int* excludeList = exclude_.getExcludeList();
867 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870 >
871 >    if( isError ){
872 >
873 >      sprintf( painCave.errMsg,
874 >               "There was an error setting the simulation information in fortran.\n" );
875 >      painCave.isFatal = 1;
876 >      painCave.severity = OOPSE_ERROR;
877 >      simError();
878 >    }
879 >
880   #ifdef IS_MPI
881 <  numAtom = mpiSim->getNAtomsGlobal();
882 < #else
883 <  numAtom = n_atoms;
881 >    sprintf( checkPointMsg,
882 >             "succesfully sent the simulation information to fortran.\n");
883 >    MPIcheckPoint();
884 > #endif // is_mpi
885 >  }
886 >
887 >
888 > #ifdef IS_MPI
889 >  void SimInfo::setupFortranParallel() {
890 >    
891 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 >    std::vector<int> localToGlobalCutoffGroupIndex;
894 >    SimInfo::MoleculeIterator mi;
895 >    Molecule::AtomIterator ai;
896 >    Molecule::CutoffGroupIterator ci;
897 >    Molecule* mol;
898 >    Atom* atom;
899 >    CutoffGroup* cg;
900 >    mpiSimData parallelData;
901 >    int isError;
902 >
903 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904 >
905 >      //local index(index in DataStorge) of atom is important
906 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 >      }
909 >
910 >      //local index of cutoff group is trivial, it only depends on the order of travesing
911 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 >      }        
914 >        
915 >    }
916 >
917 >    //fill up mpiSimData struct
918 >    parallelData.nMolGlobal = getNGlobalMolecules();
919 >    parallelData.nMolLocal = getNMolecules();
920 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
921 >    parallelData.nAtomsLocal = getNAtoms();
922 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 >    parallelData.nGroupsLocal = getNCutoffGroups();
924 >    parallelData.myNode = worldRank;
925 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926 >
927 >    //pass mpiSimData struct and index arrays to fortran
928 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 >                    &localToGlobalCutoffGroupIndex[0], &isError);
931 >
932 >    if (isError) {
933 >      sprintf(painCave.errMsg,
934 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 >      painCave.isFatal = 1;
936 >      simError();
937 >    }
938 >
939 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 >    MPIcheckPoint();
941 >
942 >
943 >  }
944 >
945   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
946  
947 <  myMols = info->molecules;
948 <  numMol = info->n_mol;
949 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
947 >  void SimInfo::setupCutoff() {          
948 >    
949 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950  
951 <      totalMass = myCutoffGroup->getMass();
952 <      
953 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
954 <          cutoffAtom != NULL;
955 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
956 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
957 <      }  
951 >    // Check the cutoff policy
952 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953 >
954 >    std::string myPolicy;
955 >    if (forceFieldOptions_.haveCutoffPolicy()){
956 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 >    }else if (simParams_->haveCutoffPolicy()) {
958 >      myPolicy = simParams_->getCutoffPolicy();
959 >    }
960 >
961 >    if (!myPolicy.empty()){
962 >      toUpper(myPolicy);
963 >      if (myPolicy == "MIX") {
964 >        cp = MIX_CUTOFF_POLICY;
965 >      } else {
966 >        if (myPolicy == "MAX") {
967 >          cp = MAX_CUTOFF_POLICY;
968 >        } else {
969 >          if (myPolicy == "TRADITIONAL") {            
970 >            cp = TRADITIONAL_CUTOFF_POLICY;
971 >          } else {
972 >            // throw error        
973 >            sprintf( painCave.errMsg,
974 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 >            painCave.isFatal = 1;
976 >            simError();
977 >          }    
978 >        }          
979 >      }
980 >    }          
981 >    notifyFortranCutoffPolicy(&cp);
982 >
983 >    // Check the Skin Thickness for neighborlists
984 >    RealType skin;
985 >    if (simParams_->haveSkinThickness()) {
986 >      skin = simParams_->getSkinThickness();
987 >      notifyFortranSkinThickness(&skin);
988 >    }            
989 >        
990 >    // Check if the cutoff was set explicitly:
991 >    if (simParams_->haveCutoffRadius()) {
992 >      rcut_ = simParams_->getCutoffRadius();
993 >      if (simParams_->haveSwitchingRadius()) {
994 >        rsw_  = simParams_->getSwitchingRadius();
995 >      } else {
996 >        if (fInfo_.SIM_uses_Charges |
997 >            fInfo_.SIM_uses_Dipoles |
998 >            fInfo_.SIM_uses_RF) {
999 >          
1000 >          rsw_ = 0.85 * rcut_;
1001 >          sprintf(painCave.errMsg,
1002 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 >        painCave.isFatal = 0;
1006 >        simError();
1007 >        } else {
1008 >          rsw_ = rcut_;
1009 >          sprintf(painCave.errMsg,
1010 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 >          painCave.isFatal = 0;
1014 >          simError();
1015 >        }
1016 >      }
1017 >      
1018 >      notifyFortranCutoffs(&rcut_, &rsw_);
1019 >      
1020 >    } else {
1021 >      
1022 >      // For electrostatic atoms, we'll assume a large safe value:
1023 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 >        sprintf(painCave.errMsg,
1025 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 >                "\tOOPSE will use a default value of 15.0 angstroms"
1027 >                "\tfor the cutoffRadius.\n");
1028 >        painCave.isFatal = 0;
1029 >        simError();
1030 >        rcut_ = 15.0;
1031 >      
1032 >        if (simParams_->haveElectrostaticSummationMethod()) {
1033 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 >          toUpper(myMethod);
1035 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 >            if (simParams_->haveSwitchingRadius()){
1037 >              sprintf(painCave.errMsg,
1038 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 >                      "\teven though the electrostaticSummationMethod was\n"
1040 >                      "\tset to %s\n", myMethod.c_str());
1041 >              painCave.isFatal = 1;
1042 >              simError();            
1043 >            }
1044 >          }
1045 >        }
1046 >      
1047 >        if (simParams_->haveSwitchingRadius()){
1048 >          rsw_ = simParams_->getSwitchingRadius();
1049 >        } else {        
1050 >          sprintf(painCave.errMsg,
1051 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 >                  "\tOOPSE will use a default value of\n"
1053 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 >          painCave.isFatal = 0;
1055 >          simError();
1056 >          rsw_ = 0.85 * rcut_;
1057 >        }
1058 >        notifyFortranCutoffs(&rcut_, &rsw_);
1059 >      } else {
1060 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 >        // We'll punt and let fortran figure out the cutoffs later.
1062 >        
1063 >        notifyFortranYouAreOnYourOwn();
1064 >
1065 >      }
1066      }
1067    }
1068  
1069 < }
1069 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070 >    
1071 >    int errorOut;
1072 >    int esm =  NONE;
1073 >    int sm = UNDAMPED;
1074 >    RealType alphaVal;
1075 >    RealType dielectric;
1076 >
1077 >    errorOut = isError;
1078 >    alphaVal = simParams_->getDampingAlpha();
1079 >    dielectric = simParams_->getDielectric();
1080 >
1081 >    if (simParams_->haveElectrostaticSummationMethod()) {
1082 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1083 >      toUpper(myMethod);
1084 >      if (myMethod == "NONE") {
1085 >        esm = NONE;
1086 >      } else {
1087 >        if (myMethod == "SWITCHING_FUNCTION") {
1088 >          esm = SWITCHING_FUNCTION;
1089 >        } else {
1090 >          if (myMethod == "SHIFTED_POTENTIAL") {
1091 >            esm = SHIFTED_POTENTIAL;
1092 >          } else {
1093 >            if (myMethod == "SHIFTED_FORCE") {            
1094 >              esm = SHIFTED_FORCE;
1095 >            } else {
1096 >              if (myMethod == "REACTION_FIELD") {            
1097 >                esm = REACTION_FIELD;
1098 >              } else {
1099 >                // throw error        
1100 >                sprintf( painCave.errMsg,
1101 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1102 >                         "\t(Input file specified %s .)\n"
1103 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1104 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1105 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1106 >                painCave.isFatal = 1;
1107 >                simError();
1108 >              }    
1109 >            }          
1110 >          }
1111 >        }
1112 >      }
1113 >    }
1114 >    
1115 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1116 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1117 >      toUpper(myScreen);
1118 >      if (myScreen == "UNDAMPED") {
1119 >        sm = UNDAMPED;
1120 >      } else {
1121 >        if (myScreen == "DAMPED") {
1122 >          sm = DAMPED;
1123 >          if (!simParams_->haveDampingAlpha()) {
1124 >            //throw error
1125 >            sprintf( painCave.errMsg,
1126 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1127 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1128 >            painCave.isFatal = 0;
1129 >            simError();
1130 >          }
1131 >        } else {
1132 >          // throw error        
1133 >          sprintf( painCave.errMsg,
1134 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1135 >                   "\t(Input file specified %s .)\n"
1136 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1137 >                   "or \"damped\".\n", myScreen.c_str() );
1138 >          painCave.isFatal = 1;
1139 >          simError();
1140 >        }
1141 >      }
1142 >    }
1143 >    
1144 >    // let's pass some summation method variables to fortran
1145 >    setElectrostaticSummationMethod( &esm );
1146 >    setFortranElectrostaticMethod( &esm );
1147 >    setScreeningMethod( &sm );
1148 >    setDampingAlpha( &alphaVal );
1149 >    setReactionFieldDielectric( &dielectric );
1150 >    initFortranFF( &errorOut );
1151 >  }
1152 >
1153 >  void SimInfo::setupSwitchingFunction() {    
1154 >    int ft = CUBIC;
1155 >
1156 >    if (simParams_->haveSwitchingFunctionType()) {
1157 >      std::string funcType = simParams_->getSwitchingFunctionType();
1158 >      toUpper(funcType);
1159 >      if (funcType == "CUBIC") {
1160 >        ft = CUBIC;
1161 >      } else {
1162 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1163 >          ft = FIFTH_ORDER_POLY;
1164 >        } else {
1165 >          // throw error        
1166 >          sprintf( painCave.errMsg,
1167 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1168 >          painCave.isFatal = 1;
1169 >          simError();
1170 >        }          
1171 >      }
1172 >    }
1173 >
1174 >    // send switching function notification to switcheroo
1175 >    setFunctionType(&ft);
1176 >
1177 >  }
1178 >
1179 >  void SimInfo::setupAccumulateBoxDipole() {    
1180 >
1181 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1182 >    if ( simParams_->haveAccumulateBoxDipole() )
1183 >      if ( simParams_->getAccumulateBoxDipole() ) {
1184 >        setAccumulateBoxDipole();
1185 >        calcBoxDipole_ = true;
1186 >      }
1187 >
1188 >  }
1189 >
1190 >  void SimInfo::addProperty(GenericData* genData) {
1191 >    properties_.addProperty(genData);  
1192 >  }
1193 >
1194 >  void SimInfo::removeProperty(const std::string& propName) {
1195 >    properties_.removeProperty(propName);  
1196 >  }
1197 >
1198 >  void SimInfo::clearProperties() {
1199 >    properties_.clearProperties();
1200 >  }
1201 >
1202 >  std::vector<std::string> SimInfo::getPropertyNames() {
1203 >    return properties_.getPropertyNames();  
1204 >  }
1205 >      
1206 >  std::vector<GenericData*> SimInfo::getProperties() {
1207 >    return properties_.getProperties();
1208 >  }
1209 >
1210 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1211 >    return properties_.getPropertyByName(propName);
1212 >  }
1213 >
1214 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1215 >    if (sman_ == sman) {
1216 >      return;
1217 >    }    
1218 >    delete sman_;
1219 >    sman_ = sman;
1220 >
1221 >    Molecule* mol;
1222 >    RigidBody* rb;
1223 >    Atom* atom;
1224 >    SimInfo::MoleculeIterator mi;
1225 >    Molecule::RigidBodyIterator rbIter;
1226 >    Molecule::AtomIterator atomIter;;
1227 >
1228 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1229 >        
1230 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1231 >        atom->setSnapshotManager(sman_);
1232 >      }
1233 >        
1234 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1235 >        rb->setSnapshotManager(sman_);
1236 >      }
1237 >    }    
1238 >    
1239 >  }
1240 >
1241 >  Vector3d SimInfo::getComVel(){
1242 >    SimInfo::MoleculeIterator i;
1243 >    Molecule* mol;
1244 >
1245 >    Vector3d comVel(0.0);
1246 >    RealType totalMass = 0.0;
1247 >    
1248 >
1249 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 >      RealType mass = mol->getMass();
1251 >      totalMass += mass;
1252 >      comVel += mass * mol->getComVel();
1253 >    }  
1254 >
1255 > #ifdef IS_MPI
1256 >    RealType tmpMass = totalMass;
1257 >    Vector3d tmpComVel(comVel);    
1258 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260 > #endif
1261 >
1262 >    comVel /= totalMass;
1263 >
1264 >    return comVel;
1265 >  }
1266 >
1267 >  Vector3d SimInfo::getCom(){
1268 >    SimInfo::MoleculeIterator i;
1269 >    Molecule* mol;
1270 >
1271 >    Vector3d com(0.0);
1272 >    RealType totalMass = 0.0;
1273 >    
1274 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1275 >      RealType mass = mol->getMass();
1276 >      totalMass += mass;
1277 >      com += mass * mol->getCom();
1278 >    }  
1279 >
1280 > #ifdef IS_MPI
1281 >    RealType tmpMass = totalMass;
1282 >    Vector3d tmpCom(com);    
1283 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1284 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285 > #endif
1286 >
1287 >    com /= totalMass;
1288 >
1289 >    return com;
1290 >
1291 >  }        
1292 >
1293 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1294 >
1295 >    return o;
1296 >  }
1297 >  
1298 >  
1299 >   /*
1300 >   Returns center of mass and center of mass velocity in one function call.
1301 >   */
1302 >  
1303 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1304 >      SimInfo::MoleculeIterator i;
1305 >      Molecule* mol;
1306 >      
1307 >    
1308 >      RealType totalMass = 0.0;
1309 >    
1310 >
1311 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1312 >         RealType mass = mol->getMass();
1313 >         totalMass += mass;
1314 >         com += mass * mol->getCom();
1315 >         comVel += mass * mol->getComVel();          
1316 >      }  
1317 >      
1318 > #ifdef IS_MPI
1319 >      RealType tmpMass = totalMass;
1320 >      Vector3d tmpCom(com);  
1321 >      Vector3d tmpComVel(comVel);
1322 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325 > #endif
1326 >      
1327 >      com /= totalMass;
1328 >      comVel /= totalMass;
1329 >   }        
1330 >  
1331 >   /*
1332 >   Return intertia tensor for entire system and angular momentum Vector.
1333 >
1334 >
1335 >       [  Ixx -Ixy  -Ixz ]
1336 >  J =| -Iyx  Iyy  -Iyz |
1337 >       [ -Izx -Iyz   Izz ]
1338 >    */
1339 >
1340 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1341 >      
1342 >
1343 >      RealType xx = 0.0;
1344 >      RealType yy = 0.0;
1345 >      RealType zz = 0.0;
1346 >      RealType xy = 0.0;
1347 >      RealType xz = 0.0;
1348 >      RealType yz = 0.0;
1349 >      Vector3d com(0.0);
1350 >      Vector3d comVel(0.0);
1351 >      
1352 >      getComAll(com, comVel);
1353 >      
1354 >      SimInfo::MoleculeIterator i;
1355 >      Molecule* mol;
1356 >      
1357 >      Vector3d thisq(0.0);
1358 >      Vector3d thisv(0.0);
1359 >
1360 >      RealType thisMass = 0.0;
1361 >    
1362 >      
1363 >      
1364 >  
1365 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1366 >        
1367 >         thisq = mol->getCom()-com;
1368 >         thisv = mol->getComVel()-comVel;
1369 >         thisMass = mol->getMass();
1370 >         // Compute moment of intertia coefficients.
1371 >         xx += thisq[0]*thisq[0]*thisMass;
1372 >         yy += thisq[1]*thisq[1]*thisMass;
1373 >         zz += thisq[2]*thisq[2]*thisMass;
1374 >        
1375 >         // compute products of intertia
1376 >         xy += thisq[0]*thisq[1]*thisMass;
1377 >         xz += thisq[0]*thisq[2]*thisMass;
1378 >         yz += thisq[1]*thisq[2]*thisMass;
1379 >            
1380 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1381 >            
1382 >      }  
1383 >      
1384 >      
1385 >      inertiaTensor(0,0) = yy + zz;
1386 >      inertiaTensor(0,1) = -xy;
1387 >      inertiaTensor(0,2) = -xz;
1388 >      inertiaTensor(1,0) = -xy;
1389 >      inertiaTensor(1,1) = xx + zz;
1390 >      inertiaTensor(1,2) = -yz;
1391 >      inertiaTensor(2,0) = -xz;
1392 >      inertiaTensor(2,1) = -yz;
1393 >      inertiaTensor(2,2) = xx + yy;
1394 >      
1395 > #ifdef IS_MPI
1396 >      Mat3x3d tmpI(inertiaTensor);
1397 >      Vector3d tmpAngMom;
1398 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 > #endif
1401 >              
1402 >      return;
1403 >   }
1404 >
1405 >   //Returns the angular momentum of the system
1406 >   Vector3d SimInfo::getAngularMomentum(){
1407 >      
1408 >      Vector3d com(0.0);
1409 >      Vector3d comVel(0.0);
1410 >      Vector3d angularMomentum(0.0);
1411 >      
1412 >      getComAll(com,comVel);
1413 >      
1414 >      SimInfo::MoleculeIterator i;
1415 >      Molecule* mol;
1416 >      
1417 >      Vector3d thisr(0.0);
1418 >      Vector3d thisp(0.0);
1419 >      
1420 >      RealType thisMass;
1421 >      
1422 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1423 >        thisMass = mol->getMass();
1424 >        thisr = mol->getCom()-com;
1425 >        thisp = (mol->getComVel()-comVel)*thisMass;
1426 >        
1427 >        angularMomentum += cross( thisr, thisp );
1428 >        
1429 >      }  
1430 >      
1431 > #ifdef IS_MPI
1432 >      Vector3d tmpAngMom;
1433 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434 > #endif
1435 >      
1436 >      return angularMomentum;
1437 >   }
1438 >  
1439 >  
1440 > }//end namespace oopse
1441 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines