ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 645 by chrisfen, Tue Oct 4 19:34:03 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
58 #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                   ForceField* ff, Globals* simParams) :
75 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
76 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false) {
82 <
81 <            
82 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83      
84 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
85 <        molStamp = i->first;
86 <        nMolWithSameStamp = i->second;
87 <        
88 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
89 <
90 <        //calculate atoms in molecules
91 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
92 <
93 <
94 <        //calculate atoms in cutoff groups
95 <        int nAtomsInGroups = 0;
96 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
97 <        
98 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
99 <          cgStamp = molStamp->getCutoffGroup(j);
100 <          nAtomsInGroups += cgStamp->getNMembers();
101 <        }
102 <
103 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
104 <
105 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
106 <
107 <        //calculate atoms in rigid bodies
108 <        int nAtomsInRigidBodies = 0;
109 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <          rbStamp = molStamp->getRigidBody(j);
120 <          nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
113 <      //group therefore the total number of cutoff groups in the system is
114 <      //equal to the total number of atoms minus number of atoms belong to
115 <      //cutoff group defined in meta-data file plus the number of cutoff
116 <      //groups defined in meta-data file
117 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
118 <
119 <      //every free atom (atom does not belong to rigid bodies) is an
120 <      //integrable object therefore the total number of integrable objects
121 <      //in the system is equal to the total number of atoms minus number of
122 <      //atoms belong to rigid body defined in meta-data file plus the number
123 <      //of rigid bodies defined in meta-data file
124 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
125 <                                                + nGlobalRigidBodies_;
126 <  
127 <      nGlobalMols_ = molStampIds_.size();
144 <
145 < #ifdef IS_MPI    
146 <      molToProcMap_.resize(nGlobalMols_);
147 < #endif
148 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
139 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 +
141 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
160      molecules_.clear();
161        
158    delete stamps_;
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165    }
166  
164  int SimInfo::getNGlobalConstraints() {
165    int nGlobalConstraints;
166 #ifdef IS_MPI
167    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168                  MPI_COMM_WORLD);    
169 #else
170    nGlobalConstraints =  nConstraints_;
171 #endif
172    return nGlobalConstraints;
173  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 209 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 223 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
226
227
221    }    
222  
223          
# Line 242 | Line 235 | namespace oopse {
235    void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
# Line 262 | Line 255 | namespace oopse {
255            }
256          }
257              
258 <      }//end for (integrableObject)
259 <    }// end for (mol)
258 >      }
259 >    }
260      
261      // n_constraints is local, so subtract them on each processor
262      ndf_local -= nConstraints_;
# Line 280 | Line 273 | namespace oopse {
273  
274    }
275  
276 +  int SimInfo::getFdf() {
277 + #ifdef IS_MPI
278 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 + #else
280 +    fdf_ = fdf_local;
281 + #endif
282 +    return fdf_;
283 +  }
284 +    
285    void SimInfo::calcNdfRaw() {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 331 | Line 333 | namespace oopse {
333  
334    }
335  
336 <  void SimInfo::addExcludePairs(Molecule* mol) {
337 <    std::vector<Bond*>::iterator bondIter;
338 <    std::vector<Bend*>::iterator bendIter;
339 <    std::vector<Torsion*>::iterator torsionIter;
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
345 +    Inversion* inversion;
346      int a;
347      int b;
348      int c;
349      int d;
350 +
351 +    // atomGroups can be used to add special interaction maps between
352 +    // groups of atoms that are in two separate rigid bodies.
353 +    // However, most site-site interactions between two rigid bodies
354 +    // are probably not special, just the ones between the physically
355 +    // bonded atoms.  Interactions *within* a single rigid body should
356 +    // always be excluded.  These are done at the bottom of this
357 +    // function.
358 +
359 +    map<int, set<int> > atomGroups;
360 +    Molecule::RigidBodyIterator rbIter;
361 +    RigidBody* rb;
362 +    Molecule::IntegrableObjectIterator ii;
363 +    StuntDouble* integrableObject;
364      
365 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369 >      if (integrableObject->isRigidBody()) {
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379 >      } else {
380 >        set<int> oneAtomSet;
381 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 >      }
384 >    }  
385 >          
386 >    for (bond= mol->beginBond(bondIter); bond != NULL;
387 >         bond = mol->nextBond(bondIter)) {
388 >
389        a = bond->getAtomA()->getGlobalIndex();
390 <      b = bond->getAtomB()->getGlobalIndex();        
391 <      exclude_.addPair(a, b);
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397      }
398  
399 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401 >
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
405 +      
406 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 +        oneTwoInteractions_.addPair(a, b);      
408 +        oneTwoInteractions_.addPair(b, c);
409 +      } else {
410 +        excludedInteractions_.addPair(a, b);
411 +        excludedInteractions_.addPair(b, c);
412 +      }
413  
414 <      exclude_.addPair(a, b);
415 <      exclude_.addPair(a, c);
416 <      exclude_.addPair(b, c);        
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419      }
420  
421 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423 >
424        a = torsion->getAtomA()->getGlobalIndex();
425        b = torsion->getAtomB()->getGlobalIndex();        
426        c = torsion->getAtomC()->getGlobalIndex();        
427 <      d = torsion->getAtomD()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428  
429 <      exclude_.addPair(a, b);
430 <      exclude_.addPair(a, c);
431 <      exclude_.addPair(a, d);
432 <      exclude_.addPair(b, c);
433 <      exclude_.addPair(b, d);
434 <      exclude_.addPair(c, d);        
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438 >
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446 >
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452      }
453  
454 <    Molecule::RigidBodyIterator rbIter;
455 <    RigidBody* rb;
456 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 <      std::vector<Atom*> atoms = rb->getAtoms();
458 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
459 <        for (int j = i + 1; j < atoms.size(); ++j) {
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456 >
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461 >
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471 >
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482 >
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488            a = atoms[i]->getGlobalIndex();
489            b = atoms[j]->getGlobalIndex();
490 <          exclude_.addPair(a, b);
490 >          excludedInteractions_.addPair(a, b);
491          }
492        }
493      }        
494  
495    }
496  
497 <  void SimInfo::removeExcludePairs(Molecule* mol) {
498 <    std::vector<Bond*>::iterator bondIter;
499 <    std::vector<Bend*>::iterator bendIter;
500 <    std::vector<Torsion*>::iterator torsionIter;
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
506 +    Inversion* inversion;
507      int a;
508      int b;
509      int c;
510      int d;
511 +
512 +    map<int, set<int> > atomGroups;
513 +    Molecule::RigidBodyIterator rbIter;
514 +    RigidBody* rb;
515 +    Molecule::IntegrableObjectIterator ii;
516 +    StuntDouble* integrableObject;
517      
518 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522 >      if (integrableObject->isRigidBody()) {
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532 >      } else {
533 >        set<int> oneAtomSet;
534 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536 >      }
537 >    }  
538 >
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542        a = bond->getAtomA()->getGlobalIndex();
543 <      b = bond->getAtomB()->getGlobalIndex();        
544 <      exclude_.removePair(a, b);
543 >      b = bond->getAtomB()->getGlobalIndex();  
544 >    
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550      }
551  
552 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
552 >    for (bend= mol->beginBend(bendIter); bend != NULL;
553 >         bend = mol->nextBend(bendIter)) {
554 >
555        a = bend->getAtomA()->getGlobalIndex();
556        b = bend->getAtomB()->getGlobalIndex();        
557        c = bend->getAtomC()->getGlobalIndex();
558 +      
559 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 +        oneTwoInteractions_.removePair(a, b);      
561 +        oneTwoInteractions_.removePair(b, c);
562 +      } else {
563 +        excludedInteractions_.removePair(a, b);
564 +        excludedInteractions_.removePair(b, c);
565 +      }
566  
567 <      exclude_.removePair(a, b);
568 <      exclude_.removePair(a, c);
569 <      exclude_.removePair(b, c);        
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
573  
574 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576 >
577        a = torsion->getAtomA()->getGlobalIndex();
578        b = torsion->getAtomB()->getGlobalIndex();        
579        c = torsion->getAtomC()->getGlobalIndex();        
580 <      d = torsion->getAtomD()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591  
592 <      exclude_.removePair(a, b);
593 <      exclude_.removePair(a, c);
594 <      exclude_.removePair(a, d);
595 <      exclude_.removePair(b, c);
596 <      exclude_.removePair(b, d);
597 <      exclude_.removePair(c, d);        
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599 >
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605      }
606  
607 <    Molecule::RigidBodyIterator rbIter;
608 <    RigidBody* rb;
609 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
610 <      std::vector<Atom*> atoms = rb->getAtoms();
611 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
612 <        for (int j = i + 1; j < atoms.size(); ++j) {
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609 >
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614 >
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624 >
625 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 >        oneThreeInteractions_.removePair(b, c);    
627 >        oneThreeInteractions_.removePair(b, d);    
628 >        oneThreeInteractions_.removePair(c, d);      
629 >      } else {
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(b, d);
632 >        excludedInteractions_.removePair(c, d);
633 >      }
634 >    }
635 >
636 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 >         rb = mol->nextRigidBody(rbIter)) {
638 >      vector<Atom*> atoms = rb->getAtoms();
639 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641            a = atoms[i]->getGlobalIndex();
642            b = atoms[j]->getGlobalIndex();
643 <          exclude_.removePair(a, b);
643 >          excludedInteractions_.removePair(a, b);
644          }
645        }
646      }        
647 <
647 >    
648    }
649 <
650 <
649 >  
650 >  
651    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652      int curStampId;
653 <
653 >    
654      //index from 0
655      curStampId = moleculeStamps_.size();
656  
# Line 456 | Line 658 | namespace oopse {
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659    }
660  
459  void SimInfo::update() {
661  
662 <    setupSimType();
663 <
664 < #ifdef IS_MPI
665 <    setupFortranParallel();
666 < #endif
667 <
668 <    setupFortranSim();
669 <
670 <    //setup fortran force field
470 <    /** @deprecate */    
471 <    int isError = 0;
472 <    
473 <    setupElectrostaticSummationMethod( isError );
474 <
475 <    if(isError){
476 <      sprintf( painCave.errMsg,
477 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 <      painCave.isFatal = 1;
479 <      simError();
480 <    }
481 <  
482 <    
483 <    setupCutoff();
484 <
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
488
489    fortranInitialized_ = true;
674    }
675 <
676 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
689 <
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
500 <
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692          atomTypes.insert(atom->getAtomType());
693 <      }
694 <        
505 <    }
693 >      }      
694 >    }    
695  
696 <    return atomTypes;        
508 <  }
696 > #ifdef IS_MPI
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
512 <    std::set<AtomType*> atomTypes;
513 <    atomTypes = getUniqueAtomTypes();
514 <    
515 <    int useLennardJones = 0;
516 <    int useElectrostatic = 0;
517 <    int useEAM = 0;
518 <    int useCharge = 0;
519 <    int useDirectional = 0;
520 <    int useDipole = 0;
521 <    int useGayBerne = 0;
522 <    int useSticky = 0;
523 <    int useStickyPower = 0;
524 <    int useShape = 0;
525 <    int useFLARB = 0; //it is not in AtomType yet
526 <    int useDirectionalAtom = 0;    
527 <    int useElectrostatics = 0;
528 <    //usePBC and useRF are from simParams
529 <    int usePBC = simParams_->getPBC();
530 <    int useRF;
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <    // set the useRF logical
702 <    std::string myMethod = simParams_->getElectrostaticSummationMethod();
703 <    if (myMethod == "REACTION_FIELD")
704 <      useRF = 1;
536 <    else
537 <      useRF = 0;
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 <    //loop over all of the atom types
707 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
541 <      useLennardJones |= (*i)->isLennardJones();
542 <      useElectrostatic |= (*i)->isElectrostatic();
543 <      useEAM |= (*i)->isEAM();
544 <      useCharge |= (*i)->isCharge();
545 <      useDirectional |= (*i)->isDirectional();
546 <      useDipole |= (*i)->isDipole();
547 <      useGayBerne |= (*i)->isGayBerne();
548 <      useSticky |= (*i)->isSticky();
549 <      useStickyPower |= (*i)->isStickyPower();
550 <      useShape |= (*i)->isShape();
551 <    }
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
710 <      useDirectionalAtom = 1;
711 <    }
709 >    // count holds the total number of found types on all processors
710 >    // (some will be redundant with the ones found locally):
711 >    int count;
712 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 <    if (useCharge || useDipole) {
715 <      useElectrostatics = 1;
716 <    }
714 >    // create a vector to hold the globally found types, and resize it:
715 >    vector<int> ftGlobal;
716 >    ftGlobal.resize(count);
717 >    vector<int> counts;
718  
719 < #ifdef IS_MPI    
720 <    int temp;
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723  
724 <    temp = usePBC;
725 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >    // now spray out the foundTypes to all the other processors:
725 >    
726 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 <    temp = useDirectionalAtom;
730 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useLennardJones;
733 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
734 <
573 <    temp = useElectrostatics;
574 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
575 <
576 <    temp = useCharge;
577 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578 <
579 <    temp = useDipole;
580 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
581 <
582 <    temp = useSticky;
583 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
584 <
585 <    temp = useStickyPower;
586 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
729 >    // foundIdents is a stl set, so inserting an already found ident
730 >    // will have no effect.
731 >    set<int> foundIdents;
732 >    vector<int>::iterator j;
733 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 >      foundIdents.insert((*j));
735      
736 <    temp = useGayBerne;
737 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >    // now iterate over the foundIdents and get the actual atom types
737 >    // that correspond to these:
738 >    set<int>::iterator it;
739 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 >      atomTypes.insert( forceField_->getAtomType((*it)) );
741 >
742 > #endif
743 >    
744 >    return atomTypes;        
745 >  }
746  
747 <    temp = useEAM;
748 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
747 >  void SimInfo::setupSimVariables() {
748 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 >    calcBoxDipole_ = false;
751 >    if ( simParams_->haveAccumulateBoxDipole() )
752 >      if ( simParams_->getAccumulateBoxDipole() ) {
753 >        calcBoxDipole_ = true;      
754 >      }
755  
756 <    temp = useShape;
757 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
756 >    set<AtomType*>::iterator i;
757 >    set<AtomType*> atomTypes;
758 >    atomTypes = getSimulatedAtomTypes();    
759 >    int usesElectrostatic = 0;
760 >    int usesMetallic = 0;
761 >    int usesDirectional = 0;
762 >    //loop over all of the atom types
763 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767 >    }
768  
769 <    temp = useFLARB;
770 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769 > #ifdef IS_MPI    
770 >    int temp;
771 >    temp = usesDirectional;
772 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <    temp = useRF;
775 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776  
777 +    temp = usesElectrostatic;
778 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779   #endif
780 <
781 <    fInfo_.SIM_uses_PBC = usePBC;    
782 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
783 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
784 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
785 <    fInfo_.SIM_uses_Charges = useCharge;
610 <    fInfo_.SIM_uses_Dipoles = useDipole;
611 <    fInfo_.SIM_uses_Sticky = useSticky;
612 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
613 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
614 <    fInfo_.SIM_uses_EAM = useEAM;
615 <    fInfo_.SIM_uses_Shapes = useShape;
616 <    fInfo_.SIM_uses_FLARB = useFLARB;
617 <    fInfo_.SIM_uses_RF = useRF;
618 <
619 <    if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") {
620 <
621 <      if (simParams_->haveDielectric()) {
622 <        fInfo_.dielect = simParams_->getDielectric();
623 <      } else {
624 <        sprintf(painCave.errMsg,
625 <                "SimSetup Error: No Dielectric constant was set.\n"
626 <                "\tYou are trying to use Reaction Field without"
627 <                "\tsetting a dielectric constant!\n");
628 <        painCave.isFatal = 1;
629 <        simError();
630 <      }
631 <        
632 <    } else {
633 <      fInfo_.dielect = 0.0;
634 <    }
635 <
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786    }
787  
788 <  void SimInfo::setupFortranSim() {
788 >  void SimInfo::setupFortran() {
789      int isError;
790 <    int nExclude;
791 <    std::vector<int> fortranGlobalGroupMembership;
790 >    int nExclude, nOneTwo, nOneThree, nOneFour;
791 >    vector<int> fortranGlobalGroupMembership;
792      
643    nExclude = exclude_.getSize();
793      isError = 0;
794  
795      //globalGroupMembership_ is filled by SimCreator    
# Line 649 | Line 798 | namespace oopse {
798      }
799  
800      //calculate mass ratio of cutoff group
801 <    std::vector<double> mfact;
801 >    vector<RealType> mfact;
802      SimInfo::MoleculeIterator mi;
803      Molecule* mol;
804      Molecule::CutoffGroupIterator ci;
805      CutoffGroup* cg;
806      Molecule::AtomIterator ai;
807      Atom* atom;
808 <    double totalMass;
808 >    RealType totalMass;
809  
810      //to avoid memory reallocation, reserve enough space for mfact
811      mfact.reserve(getNCutoffGroups());
# Line 672 | Line 821 | namespace oopse {
821            else
822              mfact.push_back( 1.0 );
823          }
675
824        }      
825      }
826  
827 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
680 <    std::vector<int> identArray;
827 >    // Build the identArray_
828  
829 <    //to avoid memory reallocation, reserve enough space identArray
830 <    identArray.reserve(getNAtoms());
684 <    
829 >    identArray_.clear();
830 >    identArray_.reserve(getNAtoms());    
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
833 <        identArray.push_back(atom->getIdent());
833 >        identArray_.push_back(atom->getIdent());
834        }
835      }    
836  
837      //fill molMembershipArray
838      //molMembershipArray is filled by SimCreator    
839 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
839 >    vector<int> molMembershipArray(nGlobalAtoms_);
840      for (int i = 0; i < nGlobalAtoms_; i++) {
841        molMembershipArray[i] = globalMolMembership_[i] + 1;
842      }
843      
844      //setup fortran simulation
699    int nGlobalExcludes = 0;
700    int* globalExcludes = NULL;
701    int* excludeList = exclude_.getExcludeList();
702    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
703                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
704                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
845  
846 <    if( isError ){
846 >    nExclude = excludedInteractions_.getSize();
847 >    nOneTwo = oneTwoInteractions_.getSize();
848 >    nOneThree = oneThreeInteractions_.getSize();
849 >    nOneFour = oneFourInteractions_.getSize();
850  
851 +    int* excludeList = excludedInteractions_.getPairList();
852 +    int* oneTwoList = oneTwoInteractions_.getPairList();
853 +    int* oneThreeList = oneThreeInteractions_.getPairList();
854 +    int* oneFourList = oneFourInteractions_.getPairList();
855 +
856 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
857 +                   &nExclude, excludeList,
858 +                   &nOneTwo, oneTwoList,
859 +                   &nOneThree, oneThreeList,
860 +                   &nOneFour, oneFourList,
861 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 +                   &fortranGlobalGroupMembership[0], &isError);
863 +    
864 +    if( isError ){
865 +      
866        sprintf( painCave.errMsg,
867                 "There was an error setting the simulation information in fortran.\n" );
868        painCave.isFatal = 1;
869 <      painCave.severity = OOPSE_ERROR;
869 >      painCave.severity = OPENMD_ERROR;
870        simError();
871      }
872 <
873 < #ifdef IS_MPI
872 >    
873 >    
874      sprintf( checkPointMsg,
875               "succesfully sent the simulation information to fortran.\n");
718    MPIcheckPoint();
719 #endif // is_mpi
720  }
721
722
723 #ifdef IS_MPI
724  void SimInfo::setupFortranParallel() {
876      
877 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
878 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
879 <    std::vector<int> localToGlobalCutoffGroupIndex;
880 <    SimInfo::MoleculeIterator mi;
881 <    Molecule::AtomIterator ai;
882 <    Molecule::CutoffGroupIterator ci;
883 <    Molecule* mol;
884 <    Atom* atom;
885 <    CutoffGroup* cg;
877 >    errorCheckPoint();
878 >    
879 >    // Setup number of neighbors in neighbor list if present
880 >    if (simParams_->haveNeighborListNeighbors()) {
881 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 >      setNeighbors(&nlistNeighbors);
883 >    }
884 >  
885 > #ifdef IS_MPI    
886 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
887 >    //localToGlobalGroupIndex
888 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 >    vector<int> localToGlobalCutoffGroupIndex;
890      mpiSimData parallelData;
736    int isError;
891  
892      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893  
# Line 772 | Line 926 | namespace oopse {
926      }
927  
928      sprintf(checkPointMsg, " mpiRefresh successful.\n");
929 <    MPIcheckPoint();
776 <
777 <
778 <  }
779 <
929 >    errorCheckPoint();
930   #endif
931  
932 <  double SimInfo::calcMaxCutoffRadius() {
933 <
934 <
935 <    std::set<AtomType*> atomTypes;
936 <    std::set<AtomType*>::iterator i;
937 <    std::vector<double> cutoffRadius;
788 <
789 <    //get the unique atom types
790 <    atomTypes = getUniqueAtomTypes();
791 <
792 <    //query the max cutoff radius among these atom types
793 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
794 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
932 >    initFortranFF(&isError);
933 >    if (isError) {
934 >      sprintf(painCave.errMsg,
935 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
936 >      painCave.isFatal = 1;
937 >      simError();
938      }
939 <
797 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
798 < #ifdef IS_MPI
799 <    //pick the max cutoff radius among the processors
800 < #endif
801 <
802 <    return maxCutoffRadius;
939 >    fortranInitialized_ = true;
940    }
941  
805  void SimInfo::getCutoff(double& rcut, double& rsw) {
806    
807    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
808        
809      if (!simParams_->haveRcut()){
810        sprintf(painCave.errMsg,
811                "SimCreator Warning: No value was set for the cutoffRadius.\n"
812                "\tOOPSE will use a default value of 15.0 angstroms"
813                "\tfor the cutoffRadius.\n");
814        painCave.isFatal = 0;
815        simError();
816        rcut = 15.0;
817      } else{
818        rcut = simParams_->getRcut();
819      }
820
821      if (!simParams_->haveRsw()){
822        sprintf(painCave.errMsg,
823                "SimCreator Warning: No value was set for switchingRadius.\n"
824                "\tOOPSE will use a default value of\n"
825                "\t0.95 * cutoffRadius for the switchingRadius\n");
826        painCave.isFatal = 0;
827        simError();
828        rsw = 0.95 * rcut;
829      } else{
830        rsw = simParams_->getRsw();
831      }
832
833    } else {
834      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
835      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
836        
837      if (simParams_->haveRcut()) {
838        rcut = simParams_->getRcut();
839      } else {
840        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
841        rcut = calcMaxCutoffRadius();
842      }
843
844      if (simParams_->haveRsw()) {
845        rsw  = simParams_->getRsw();
846      } else {
847        rsw = rcut;
848      }
849    
850    }
851  }
852
853  void SimInfo::setupCutoff() {    
854    getCutoff(rcut_, rsw_);    
855    double rnblist = rcut_ + 1; // skin of neighbor list
856
857    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
858    
859    int cp =  TRADITIONAL_CUTOFF_POLICY;
860    if (simParams_->haveCutoffPolicy()) {
861      std::string myPolicy = simParams_->getCutoffPolicy();
862      if (myPolicy == "MIX") {
863        cp = MIX_CUTOFF_POLICY;
864      } else {
865        if (myPolicy == "MAX") {
866          cp = MAX_CUTOFF_POLICY;
867        } else {
868          if (myPolicy == "TRADITIONAL") {            
869            cp = TRADITIONAL_CUTOFF_POLICY;
870          } else {
871            // throw error        
872            sprintf( painCave.errMsg,
873                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
874            painCave.isFatal = 1;
875            simError();
876          }    
877        }          
878      }
879    }
880
881
882    if (simParams_->haveSkinThickness()) {
883      double skinThickness = simParams_->getSkinThickness();
884    }
885
886    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
887    // also send cutoff notification to electrostatics
888    setElectrostaticCutoffRadius(&rcut_);
889  }
890
891  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
892    
893    int errorOut;
894    int esm =  NONE;
895    double alphaVal;
896    double dielectric;
897
898    errorOut = isError;
899    alphaVal = simParams_->getDampingAlpha();
900    dielectric = simParams_->getDielectric();
901
902    if (simParams_->haveElectrostaticSummationMethod()) {
903      std::string myMethod = simParams_->getElectrostaticSummationMethod();
904      if (myMethod == "NONE") {
905        esm = NONE;
906      } else {
907        if (myMethod == "UNDAMPED_WOLF") {
908          esm = UNDAMPED_WOLF;
909        } else {
910          if (myMethod == "DAMPED_WOLF") {            
911            esm = DAMPED_WOLF;
912            if (!simParams_->haveDampingAlpha()) {
913              //throw error
914              sprintf( painCave.errMsg,
915                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
916              painCave.isFatal = 0;
917              simError();
918            }
919          } else {
920            if (myMethod == "REACTION_FIELD") {
921              esm = REACTION_FIELD;
922            } else {
923              // throw error        
924              sprintf( painCave.errMsg,
925                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
926              painCave.isFatal = 1;
927              simError();
928            }    
929          }          
930        }
931      }
932    }
933    // let's pass some summation method variables to fortran
934    setElectrostaticSummationMethod( &esm );
935    setDampedWolfAlpha( &alphaVal );
936    setReactionFieldDielectric( &dielectric );
937    initFortranFF( &esm, &errorOut );
938  }
939
942    void SimInfo::addProperty(GenericData* genData) {
943      properties_.addProperty(genData);  
944    }
945  
946 <  void SimInfo::removeProperty(const std::string& propName) {
946 >  void SimInfo::removeProperty(const string& propName) {
947      properties_.removeProperty(propName);  
948    }
949  
# Line 949 | Line 951 | namespace oopse {
951      properties_.clearProperties();
952    }
953  
954 <  std::vector<std::string> SimInfo::getPropertyNames() {
954 >  vector<string> SimInfo::getPropertyNames() {
955      return properties_.getPropertyNames();  
956    }
957        
958 <  std::vector<GenericData*> SimInfo::getProperties() {
958 >  vector<GenericData*> SimInfo::getProperties() {
959      return properties_.getProperties();
960    }
961  
962 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963      return properties_.getPropertyByName(propName);
964    }
965  
# Line 971 | Line 973 | namespace oopse {
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
# Line 984 | Line 988 | namespace oopse {
988        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989          rb->setSnapshotManager(sman_);
990        }
991 +
992 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
993 +        cg->setSnapshotManager(sman_);
994 +      }
995      }    
996      
997    }
# Line 993 | Line 1001 | namespace oopse {
1001      Molecule* mol;
1002  
1003      Vector3d comVel(0.0);
1004 <    double totalMass = 0.0;
1004 >    RealType totalMass = 0.0;
1005      
1006  
1007      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1008 <      double mass = mol->getMass();
1008 >      RealType mass = mol->getMass();
1009        totalMass += mass;
1010        comVel += mass * mol->getComVel();
1011      }  
1012  
1013   #ifdef IS_MPI
1014 <    double tmpMass = totalMass;
1014 >    RealType tmpMass = totalMass;
1015      Vector3d tmpComVel(comVel);    
1016 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1017 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1016 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1017 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018   #endif
1019  
1020      comVel /= totalMass;
# Line 1019 | Line 1027 | namespace oopse {
1027      Molecule* mol;
1028  
1029      Vector3d com(0.0);
1030 <    double totalMass = 0.0;
1030 >    RealType totalMass = 0.0;
1031      
1032      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1033 <      double mass = mol->getMass();
1033 >      RealType mass = mol->getMass();
1034        totalMass += mass;
1035        com += mass * mol->getCom();
1036      }  
1037  
1038   #ifdef IS_MPI
1039 <    double tmpMass = totalMass;
1039 >    RealType tmpMass = totalMass;
1040      Vector3d tmpCom(com);    
1041 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1042 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1041 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1042 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1043   #endif
1044  
1045      com /= totalMass;
# Line 1040 | Line 1048 | namespace oopse {
1048  
1049    }        
1050  
1051 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1051 >  ostream& operator <<(ostream& o, SimInfo& info) {
1052  
1053      return o;
1054    }
# Line 1055 | Line 1063 | namespace oopse {
1063        Molecule* mol;
1064        
1065      
1066 <      double totalMass = 0.0;
1066 >      RealType totalMass = 0.0;
1067      
1068  
1069        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1070 <         double mass = mol->getMass();
1070 >         RealType mass = mol->getMass();
1071           totalMass += mass;
1072           com += mass * mol->getCom();
1073           comVel += mass * mol->getComVel();          
1074        }  
1075        
1076   #ifdef IS_MPI
1077 <      double tmpMass = totalMass;
1077 >      RealType tmpMass = totalMass;
1078        Vector3d tmpCom(com);  
1079        Vector3d tmpComVel(comVel);
1080 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1081 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1082 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1080 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1081 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1082 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1083   #endif
1084        
1085        com /= totalMass;
# Line 1083 | Line 1091 | namespace oopse {
1091  
1092  
1093         [  Ixx -Ixy  -Ixz ]
1094 <  J =| -Iyx  Iyy  -Iyz |
1094 >    J =| -Iyx  Iyy  -Iyz |
1095         [ -Izx -Iyz   Izz ]
1096      */
1097  
1098     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1099        
1100  
1101 <      double xx = 0.0;
1102 <      double yy = 0.0;
1103 <      double zz = 0.0;
1104 <      double xy = 0.0;
1105 <      double xz = 0.0;
1106 <      double yz = 0.0;
1101 >      RealType xx = 0.0;
1102 >      RealType yy = 0.0;
1103 >      RealType zz = 0.0;
1104 >      RealType xy = 0.0;
1105 >      RealType xz = 0.0;
1106 >      RealType yz = 0.0;
1107        Vector3d com(0.0);
1108        Vector3d comVel(0.0);
1109        
# Line 1107 | Line 1115 | namespace oopse {
1115        Vector3d thisq(0.0);
1116        Vector3d thisv(0.0);
1117  
1118 <      double thisMass = 0.0;
1118 >      RealType thisMass = 0.0;
1119      
1120        
1121        
# Line 1145 | Line 1153 | namespace oopse {
1153   #ifdef IS_MPI
1154        Mat3x3d tmpI(inertiaTensor);
1155        Vector3d tmpAngMom;
1156 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1157 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1156 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1157 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1158   #endif
1159                
1160        return;
# Line 1167 | Line 1175 | namespace oopse {
1175        Vector3d thisr(0.0);
1176        Vector3d thisp(0.0);
1177        
1178 <      double thisMass;
1178 >      RealType thisMass;
1179        
1180        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1181          thisMass = mol->getMass();
# Line 1180 | Line 1188 | namespace oopse {
1188        
1189   #ifdef IS_MPI
1190        Vector3d tmpAngMom;
1191 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1191 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1192   #endif
1193        
1194        return angularMomentum;
1195     }
1196    
1197 <  
1198 < }//end namespace oopse
1197 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1198 >    return IOIndexToIntegrableObject.at(index);
1199 >  }
1200 >  
1201 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1202 >    IOIndexToIntegrableObject= v;
1203 >  }
1204  
1205 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1206 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1207 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1208 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1209 +  */
1210 +  void SimInfo::getGyrationalVolume(RealType &volume){
1211 +    Mat3x3d intTensor;
1212 +    RealType det;
1213 +    Vector3d dummyAngMom;
1214 +    RealType sysconstants;
1215 +    RealType geomCnst;
1216 +
1217 +    geomCnst = 3.0/2.0;
1218 +    /* Get the inertial tensor and angular momentum for free*/
1219 +    getInertiaTensor(intTensor,dummyAngMom);
1220 +    
1221 +    det = intTensor.determinant();
1222 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1223 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1224 +    return;
1225 +  }
1226 +
1227 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1228 +    Mat3x3d intTensor;
1229 +    Vector3d dummyAngMom;
1230 +    RealType sysconstants;
1231 +    RealType geomCnst;
1232 +
1233 +    geomCnst = 3.0/2.0;
1234 +    /* Get the inertial tensor and angular momentum for free*/
1235 +    getInertiaTensor(intTensor,dummyAngMom);
1236 +    
1237 +    detI = intTensor.determinant();
1238 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1239 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1240 +    return;
1241 +  }
1242 + /*
1243 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1244 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1245 +      sdByGlobalIndex_ = v;
1246 +    }
1247 +
1248 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1249 +      //assert(index < nAtoms_ + nRigidBodies_);
1250 +      return sdByGlobalIndex_.at(index);
1251 +    }  
1252 + */  
1253 +  int SimInfo::getNGlobalConstraints() {
1254 +    int nGlobalConstraints;
1255 + #ifdef IS_MPI
1256 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1257 +                  MPI_COMM_WORLD);    
1258 + #else
1259 +    nGlobalConstraints =  nConstraints_;
1260 + #endif
1261 +    return nGlobalConstraints;
1262 +  }
1263 +
1264 + }//end namespace OpenMD
1265 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 645 by chrisfen, Tue Oct 4 19:34:03 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines