ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 555 by chuckv, Mon May 30 14:01:52 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "UseTheForce/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
78 <            
79 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
102 <
103 <        //calculate atoms in rigid bodies
104 <        int nAtomsInRigidBodies = 0;
105 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
106 <        
114 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 <          rbStamp = molStamp->getRigidBody(j);
116 <          nAtomsInRigidBodies += rbStamp->getNMembers();
117 <        }
118 <
119 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
110 <      //therefore the total number of cutoff groups in the system is equal to
111 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
112 <      //file plus the number of cutoff groups defined in meta-data file
113 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
114 <
115 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
116 <      //therefore the total number of  integrable objects in the system is equal to
117 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
118 <      //file plus the number of  rigid bodies defined in meta-data file
119 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
120 <
121 <      nGlobalMols_ = molStampIds_.size();
122 <
123 < #ifdef IS_MPI    
124 <      molToProcMap_.resize(nGlobalMols_);
140 < #endif
141 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
152      molecules_.clear();
153        
151    delete stamps_;
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157    }
158  
157  int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 202 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 216 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
219
220
213    }    
214  
215          
# Line 235 | Line 227 | namespace oopse {
227    void SimInfo::calcNdf() {
228      int ndf_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231      Molecule* mol;
232      StuntDouble* integrableObject;
233  
# Line 255 | Line 247 | namespace oopse {
247            }
248          }
249              
250 <      }//end for (integrableObject)
251 <    }// end for (mol)
250 >      }
251 >    }
252      
253      // n_constraints is local, so subtract them on each processor
254      ndf_local -= nConstraints_;
# Line 273 | Line 265 | namespace oopse {
265  
266    }
267  
268 +  int SimInfo::getFdf() {
269 + #ifdef IS_MPI
270 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
271 + #else
272 +    fdf_ = fdf_local;
273 + #endif
274 +    return fdf_;
275 +  }
276 +  
277 +  unsigned int SimInfo::getNLocalCutoffGroups(){
278 +    int nLocalCutoffAtoms = 0;
279 +    Molecule* mol;
280 +    MoleculeIterator mi;
281 +    CutoffGroup* cg;
282 +    Molecule::CutoffGroupIterator ci;
283 +    
284 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
285 +      
286 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
287 +           cg = mol->nextCutoffGroup(ci)) {
288 +        nLocalCutoffAtoms += cg->getNumAtom();
289 +        
290 +      }        
291 +    }
292 +    
293 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
294 +  }
295 +    
296    void SimInfo::calcNdfRaw() {
297      int ndfRaw_local;
298  
299      MoleculeIterator i;
300 <    std::vector<StuntDouble*>::iterator j;
300 >    vector<StuntDouble*>::iterator j;
301      Molecule* mol;
302      StuntDouble* integrableObject;
303  
# Line 324 | Line 344 | namespace oopse {
344  
345    }
346  
347 <  void SimInfo::addExcludePairs(Molecule* mol) {
348 <    std::vector<Bond*>::iterator bondIter;
349 <    std::vector<Bend*>::iterator bendIter;
350 <    std::vector<Torsion*>::iterator torsionIter;
347 >  void SimInfo::addInteractionPairs(Molecule* mol) {
348 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
349 >    vector<Bond*>::iterator bondIter;
350 >    vector<Bend*>::iterator bendIter;
351 >    vector<Torsion*>::iterator torsionIter;
352 >    vector<Inversion*>::iterator inversionIter;
353      Bond* bond;
354      Bend* bend;
355      Torsion* torsion;
356 +    Inversion* inversion;
357      int a;
358      int b;
359      int c;
360      int d;
361 +
362 +    // atomGroups can be used to add special interaction maps between
363 +    // groups of atoms that are in two separate rigid bodies.
364 +    // However, most site-site interactions between two rigid bodies
365 +    // are probably not special, just the ones between the physically
366 +    // bonded atoms.  Interactions *within* a single rigid body should
367 +    // always be excluded.  These are done at the bottom of this
368 +    // function.
369 +
370 +    map<int, set<int> > atomGroups;
371 +    Molecule::RigidBodyIterator rbIter;
372 +    RigidBody* rb;
373 +    Molecule::IntegrableObjectIterator ii;
374 +    StuntDouble* integrableObject;
375      
376 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
376 >    for (integrableObject = mol->beginIntegrableObject(ii);
377 >         integrableObject != NULL;
378 >         integrableObject = mol->nextIntegrableObject(ii)) {
379 >      
380 >      if (integrableObject->isRigidBody()) {
381 >        rb = static_cast<RigidBody*>(integrableObject);
382 >        vector<Atom*> atoms = rb->getAtoms();
383 >        set<int> rigidAtoms;
384 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
385 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
386 >        }
387 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
388 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
389 >        }      
390 >      } else {
391 >        set<int> oneAtomSet;
392 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
393 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
394 >      }
395 >    }  
396 >          
397 >    for (bond= mol->beginBond(bondIter); bond != NULL;
398 >         bond = mol->nextBond(bondIter)) {
399 >
400        a = bond->getAtomA()->getGlobalIndex();
401 <      b = bond->getAtomB()->getGlobalIndex();        
402 <      exclude_.addPair(a, b);
401 >      b = bond->getAtomB()->getGlobalIndex();  
402 >    
403 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
404 >        oneTwoInteractions_.addPair(a, b);
405 >      } else {
406 >        excludedInteractions_.addPair(a, b);
407 >      }
408      }
409  
410 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
410 >    for (bend= mol->beginBend(bendIter); bend != NULL;
411 >         bend = mol->nextBend(bendIter)) {
412 >
413        a = bend->getAtomA()->getGlobalIndex();
414        b = bend->getAtomB()->getGlobalIndex();        
415        c = bend->getAtomC()->getGlobalIndex();
416 +      
417 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 +        oneTwoInteractions_.addPair(a, b);      
419 +        oneTwoInteractions_.addPair(b, c);
420 +      } else {
421 +        excludedInteractions_.addPair(a, b);
422 +        excludedInteractions_.addPair(b, c);
423 +      }
424  
425 <      exclude_.addPair(a, b);
426 <      exclude_.addPair(a, c);
427 <      exclude_.addPair(b, c);        
425 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
426 >        oneThreeInteractions_.addPair(a, c);      
427 >      } else {
428 >        excludedInteractions_.addPair(a, c);
429 >      }
430      }
431  
432 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
432 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
433 >         torsion = mol->nextTorsion(torsionIter)) {
434 >
435        a = torsion->getAtomA()->getGlobalIndex();
436        b = torsion->getAtomB()->getGlobalIndex();        
437        c = torsion->getAtomC()->getGlobalIndex();        
438 <      d = torsion->getAtomD()->getGlobalIndex();        
438 >      d = torsion->getAtomD()->getGlobalIndex();      
439  
440 <      exclude_.addPair(a, b);
441 <      exclude_.addPair(a, c);
442 <      exclude_.addPair(a, d);
443 <      exclude_.addPair(b, c);
444 <      exclude_.addPair(b, d);
445 <      exclude_.addPair(c, d);        
440 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
441 >        oneTwoInteractions_.addPair(a, b);      
442 >        oneTwoInteractions_.addPair(b, c);
443 >        oneTwoInteractions_.addPair(c, d);
444 >      } else {
445 >        excludedInteractions_.addPair(a, b);
446 >        excludedInteractions_.addPair(b, c);
447 >        excludedInteractions_.addPair(c, d);
448 >      }
449 >
450 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
451 >        oneThreeInteractions_.addPair(a, c);      
452 >        oneThreeInteractions_.addPair(b, d);      
453 >      } else {
454 >        excludedInteractions_.addPair(a, c);
455 >        excludedInteractions_.addPair(b, d);
456 >      }
457 >
458 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
459 >        oneFourInteractions_.addPair(a, d);      
460 >      } else {
461 >        excludedInteractions_.addPair(a, d);
462 >      }
463      }
464  
465 <    Molecule::RigidBodyIterator rbIter;
466 <    RigidBody* rb;
467 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
468 <      std::vector<Atom*> atoms = rb->getAtoms();
469 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
470 <        for (int j = i + 1; j < atoms.size(); ++j) {
465 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
466 >         inversion = mol->nextInversion(inversionIter)) {
467 >
468 >      a = inversion->getAtomA()->getGlobalIndex();
469 >      b = inversion->getAtomB()->getGlobalIndex();        
470 >      c = inversion->getAtomC()->getGlobalIndex();        
471 >      d = inversion->getAtomD()->getGlobalIndex();        
472 >
473 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
474 >        oneTwoInteractions_.addPair(a, b);      
475 >        oneTwoInteractions_.addPair(a, c);
476 >        oneTwoInteractions_.addPair(a, d);
477 >      } else {
478 >        excludedInteractions_.addPair(a, b);
479 >        excludedInteractions_.addPair(a, c);
480 >        excludedInteractions_.addPair(a, d);
481 >      }
482 >
483 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
484 >        oneThreeInteractions_.addPair(b, c);    
485 >        oneThreeInteractions_.addPair(b, d);    
486 >        oneThreeInteractions_.addPair(c, d);      
487 >      } else {
488 >        excludedInteractions_.addPair(b, c);
489 >        excludedInteractions_.addPair(b, d);
490 >        excludedInteractions_.addPair(c, d);
491 >      }
492 >    }
493 >
494 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
495 >         rb = mol->nextRigidBody(rbIter)) {
496 >      vector<Atom*> atoms = rb->getAtoms();
497 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
498 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
499            a = atoms[i]->getGlobalIndex();
500            b = atoms[j]->getGlobalIndex();
501 <          exclude_.addPair(a, b);
501 >          excludedInteractions_.addPair(a, b);
502          }
503        }
504      }        
505  
506    }
507  
508 <  void SimInfo::removeExcludePairs(Molecule* mol) {
509 <    std::vector<Bond*>::iterator bondIter;
510 <    std::vector<Bend*>::iterator bendIter;
511 <    std::vector<Torsion*>::iterator torsionIter;
508 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
509 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
510 >    vector<Bond*>::iterator bondIter;
511 >    vector<Bend*>::iterator bendIter;
512 >    vector<Torsion*>::iterator torsionIter;
513 >    vector<Inversion*>::iterator inversionIter;
514      Bond* bond;
515      Bend* bend;
516      Torsion* torsion;
517 +    Inversion* inversion;
518      int a;
519      int b;
520      int c;
521      int d;
522 +
523 +    map<int, set<int> > atomGroups;
524 +    Molecule::RigidBodyIterator rbIter;
525 +    RigidBody* rb;
526 +    Molecule::IntegrableObjectIterator ii;
527 +    StuntDouble* integrableObject;
528      
529 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
529 >    for (integrableObject = mol->beginIntegrableObject(ii);
530 >         integrableObject != NULL;
531 >         integrableObject = mol->nextIntegrableObject(ii)) {
532 >      
533 >      if (integrableObject->isRigidBody()) {
534 >        rb = static_cast<RigidBody*>(integrableObject);
535 >        vector<Atom*> atoms = rb->getAtoms();
536 >        set<int> rigidAtoms;
537 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
538 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
539 >        }
540 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
541 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
542 >        }      
543 >      } else {
544 >        set<int> oneAtomSet;
545 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
546 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
547 >      }
548 >    }  
549 >
550 >    for (bond= mol->beginBond(bondIter); bond != NULL;
551 >         bond = mol->nextBond(bondIter)) {
552 >      
553        a = bond->getAtomA()->getGlobalIndex();
554 <      b = bond->getAtomB()->getGlobalIndex();        
555 <      exclude_.removePair(a, b);
554 >      b = bond->getAtomB()->getGlobalIndex();  
555 >    
556 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
557 >        oneTwoInteractions_.removePair(a, b);
558 >      } else {
559 >        excludedInteractions_.removePair(a, b);
560 >      }
561      }
562  
563 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
563 >    for (bend= mol->beginBend(bendIter); bend != NULL;
564 >         bend = mol->nextBend(bendIter)) {
565 >
566        a = bend->getAtomA()->getGlobalIndex();
567        b = bend->getAtomB()->getGlobalIndex();        
568        c = bend->getAtomC()->getGlobalIndex();
569 +      
570 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 +        oneTwoInteractions_.removePair(a, b);      
572 +        oneTwoInteractions_.removePair(b, c);
573 +      } else {
574 +        excludedInteractions_.removePair(a, b);
575 +        excludedInteractions_.removePair(b, c);
576 +      }
577  
578 <      exclude_.removePair(a, b);
579 <      exclude_.removePair(a, c);
580 <      exclude_.removePair(b, c);        
578 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
579 >        oneThreeInteractions_.removePair(a, c);      
580 >      } else {
581 >        excludedInteractions_.removePair(a, c);
582 >      }
583      }
584  
585 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
585 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
586 >         torsion = mol->nextTorsion(torsionIter)) {
587 >
588        a = torsion->getAtomA()->getGlobalIndex();
589        b = torsion->getAtomB()->getGlobalIndex();        
590        c = torsion->getAtomC()->getGlobalIndex();        
591 <      d = torsion->getAtomD()->getGlobalIndex();        
591 >      d = torsion->getAtomD()->getGlobalIndex();      
592 >  
593 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
594 >        oneTwoInteractions_.removePair(a, b);      
595 >        oneTwoInteractions_.removePair(b, c);
596 >        oneTwoInteractions_.removePair(c, d);
597 >      } else {
598 >        excludedInteractions_.removePair(a, b);
599 >        excludedInteractions_.removePair(b, c);
600 >        excludedInteractions_.removePair(c, d);
601 >      }
602  
603 <      exclude_.removePair(a, b);
604 <      exclude_.removePair(a, c);
605 <      exclude_.removePair(a, d);
606 <      exclude_.removePair(b, c);
607 <      exclude_.removePair(b, d);
608 <      exclude_.removePair(c, d);        
603 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
604 >        oneThreeInteractions_.removePair(a, c);      
605 >        oneThreeInteractions_.removePair(b, d);      
606 >      } else {
607 >        excludedInteractions_.removePair(a, c);
608 >        excludedInteractions_.removePair(b, d);
609 >      }
610 >
611 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
612 >        oneFourInteractions_.removePair(a, d);      
613 >      } else {
614 >        excludedInteractions_.removePair(a, d);
615 >      }
616      }
617  
618 <    Molecule::RigidBodyIterator rbIter;
619 <    RigidBody* rb;
620 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
621 <      std::vector<Atom*> atoms = rb->getAtoms();
622 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
623 <        for (int j = i + 1; j < atoms.size(); ++j) {
618 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
619 >         inversion = mol->nextInversion(inversionIter)) {
620 >
621 >      a = inversion->getAtomA()->getGlobalIndex();
622 >      b = inversion->getAtomB()->getGlobalIndex();        
623 >      c = inversion->getAtomC()->getGlobalIndex();        
624 >      d = inversion->getAtomD()->getGlobalIndex();        
625 >
626 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
627 >        oneTwoInteractions_.removePair(a, b);      
628 >        oneTwoInteractions_.removePair(a, c);
629 >        oneTwoInteractions_.removePair(a, d);
630 >      } else {
631 >        excludedInteractions_.removePair(a, b);
632 >        excludedInteractions_.removePair(a, c);
633 >        excludedInteractions_.removePair(a, d);
634 >      }
635 >
636 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
637 >        oneThreeInteractions_.removePair(b, c);    
638 >        oneThreeInteractions_.removePair(b, d);    
639 >        oneThreeInteractions_.removePair(c, d);      
640 >      } else {
641 >        excludedInteractions_.removePair(b, c);
642 >        excludedInteractions_.removePair(b, d);
643 >        excludedInteractions_.removePair(c, d);
644 >      }
645 >    }
646 >
647 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
648 >         rb = mol->nextRigidBody(rbIter)) {
649 >      vector<Atom*> atoms = rb->getAtoms();
650 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
651 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
652            a = atoms[i]->getGlobalIndex();
653            b = atoms[j]->getGlobalIndex();
654 <          exclude_.removePair(a, b);
654 >          excludedInteractions_.removePair(a, b);
655          }
656        }
657      }        
658 <
658 >    
659    }
660 <
661 <
660 >  
661 >  
662    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
663      int curStampId;
664 <
664 >    
665      //index from 0
666      curStampId = moleculeStamps_.size();
667  
# Line 449 | Line 669 | namespace oopse {
669      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
670    }
671  
452  void SimInfo::update() {
672  
673 <    setupSimType();
674 <
675 < #ifdef IS_MPI
676 <    setupFortranParallel();
677 < #endif
678 <
679 <    setupFortranSim();
680 <
681 <    //setup fortran force field
463 <    /** @deprecate */    
464 <    int isError = 0;
465 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466 <    if(isError){
467 <      sprintf( painCave.errMsg,
468 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
469 <      painCave.isFatal = 1;
470 <      simError();
471 <    }
472 <  
473 <    
474 <    setupCutoff();
475 <
673 >  /**
674 >   * update
675 >   *
676 >   *  Performs the global checks and variable settings after the
677 >   *  objects have been created.
678 >   *
679 >   */
680 >  void SimInfo::update() {  
681 >    setupSimVariables();
682      calcNdf();
683      calcNdfRaw();
684      calcNdfTrans();
479
480    fortranInitialized_ = true;
685    }
686 <
687 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
686 >  
687 >  /**
688 >   * getSimulatedAtomTypes
689 >   *
690 >   * Returns an STL set of AtomType* that are actually present in this
691 >   * simulation.  Must query all processors to assemble this information.
692 >   *
693 >   */
694 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
695      SimInfo::MoleculeIterator mi;
696      Molecule* mol;
697      Molecule::AtomIterator ai;
698      Atom* atom;
699 <    std::set<AtomType*> atomTypes;
700 <
699 >    set<AtomType*> atomTypes;
700 >    
701      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
702 <
703 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
702 >      for(atom = mol->beginAtom(ai); atom != NULL;
703 >          atom = mol->nextAtom(ai)) {
704          atomTypes.insert(atom->getAtomType());
705 <      }
706 <        
705 >      }      
706 >    }    
707 >    
708 > #ifdef IS_MPI
709 >
710 >    // loop over the found atom types on this processor, and add their
711 >    // numerical idents to a vector:
712 >    
713 >    vector<int> foundTypes;
714 >    set<AtomType*>::iterator i;
715 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
716 >      foundTypes.push_back( (*i)->getIdent() );
717 >
718 >    // count_local holds the number of found types on this processor
719 >    int count_local = foundTypes.size();
720 >
721 >    int nproc = MPI::COMM_WORLD.Get_size();
722 >
723 >    // we need arrays to hold the counts and displacement vectors for
724 >    // all processors
725 >    vector<int> counts(nproc, 0);
726 >    vector<int> disps(nproc, 0);
727 >
728 >    // fill the counts array
729 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
730 >                              1, MPI::INT);
731 >  
732 >    // use the processor counts to compute the displacement array
733 >    disps[0] = 0;    
734 >    int totalCount = counts[0];
735 >    for (int iproc = 1; iproc < nproc; iproc++) {
736 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
737 >      totalCount += counts[iproc];
738      }
739  
740 +    // we need a (possibly redundant) set of all found types:
741 +    vector<int> ftGlobal(totalCount);
742 +    
743 +    // now spray out the foundTypes to all the other processors:    
744 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
745 +                               &ftGlobal[0], &counts[0], &disps[0],
746 +                               MPI::INT);
747 +
748 +    vector<int>::iterator j;
749 +
750 +    // foundIdents is a stl set, so inserting an already found ident
751 +    // will have no effect.
752 +    set<int> foundIdents;
753 +
754 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
755 +      foundIdents.insert((*j));
756 +    
757 +    // now iterate over the foundIdents and get the actual atom types
758 +    // that correspond to these:
759 +    set<int>::iterator it;
760 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
761 +      atomTypes.insert( forceField_->getAtomType((*it)) );
762 +
763 + #endif
764 +
765      return atomTypes;        
766    }
767  
768 <  void SimInfo::setupSimType() {
769 <    std::set<AtomType*>::iterator i;
770 <    std::set<AtomType*> atomTypes;
771 <    atomTypes = getUniqueAtomTypes();
768 >  void SimInfo::setupSimVariables() {
769 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
770 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
771 >    calcBoxDipole_ = false;
772 >    if ( simParams_->haveAccumulateBoxDipole() )
773 >      if ( simParams_->getAccumulateBoxDipole() ) {
774 >        calcBoxDipole_ = true;      
775 >      }
776      
777 <    int useLennardJones = 0;
778 <    int useElectrostatic = 0;
779 <    int useEAM = 0;
780 <    int useCharge = 0;
781 <    int useDirectional = 0;
782 <    int useDipole = 0;
512 <    int useGayBerne = 0;
513 <    int useSticky = 0;
514 <    int useStickyPower = 0;
515 <    int useShape = 0;
516 <    int useFLARB = 0; //it is not in AtomType yet
517 <    int useDirectionalAtom = 0;    
518 <    int useElectrostatics = 0;
519 <    //usePBC and useRF are from simParams
520 <    int usePBC = simParams_->getPBC();
521 <    int useRF = simParams_->getUseRF();
522 <
777 >    set<AtomType*>::iterator i;
778 >    set<AtomType*> atomTypes;
779 >    atomTypes = getSimulatedAtomTypes();    
780 >    int usesElectrostatic = 0;
781 >    int usesMetallic = 0;
782 >    int usesDirectional = 0;
783      //loop over all of the atom types
784      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
785 <      useLennardJones |= (*i)->isLennardJones();
786 <      useElectrostatic |= (*i)->isElectrostatic();
787 <      useEAM |= (*i)->isEAM();
528 <      useCharge |= (*i)->isCharge();
529 <      useDirectional |= (*i)->isDirectional();
530 <      useDipole |= (*i)->isDipole();
531 <      useGayBerne |= (*i)->isGayBerne();
532 <      useSticky |= (*i)->isSticky();
533 <      useStickyPower |= (*i)->isStickyPower();
534 <      useShape |= (*i)->isShape();
785 >      usesElectrostatic |= (*i)->isElectrostatic();
786 >      usesMetallic |= (*i)->isMetal();
787 >      usesDirectional |= (*i)->isDirectional();
788      }
789 <
537 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
538 <      useDirectionalAtom = 1;
539 <    }
540 <
541 <    if (useCharge || useDipole) {
542 <      useElectrostatics = 1;
543 <    }
544 <
789 >    
790   #ifdef IS_MPI    
791      int temp;
792 +    temp = usesDirectional;
793 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
794 +    
795 +    temp = usesMetallic;
796 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
797 +    
798 +    temp = usesElectrostatic;
799 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
800 + #else
801  
802 <    temp = usePBC;
803 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 >    usesDirectionalAtoms_ = usesDirectional;
803 >    usesMetallicAtoms_ = usesMetallic;
804 >    usesElectrostaticAtoms_ = usesElectrostatic;
805  
806 <    temp = useDirectionalAtom;
552 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useLennardJones;
555 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <
557 <    temp = useElectrostatics;
558 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
559 <
560 <    temp = useCharge;
561 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
562 <
563 <    temp = useDipole;
564 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
565 <
566 <    temp = useSticky;
567 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
568 <
569 <    temp = useStickyPower;
570 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
806 > #endif
807      
808 <    temp = useGayBerne;
809 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
809 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
810 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
811 >  }
812  
575    temp = useEAM;
576    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useShape;
815 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
814 >  vector<int> SimInfo::getGlobalAtomIndices() {
815 >    SimInfo::MoleculeIterator mi;
816 >    Molecule* mol;
817 >    Molecule::AtomIterator ai;
818 >    Atom* atom;
819  
820 <    temp = useFLARB;
582 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
583 <
584 <    temp = useRF;
585 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
820 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
821      
822 < #endif
822 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
823 >      
824 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
825 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
826 >      }
827 >    }
828 >    return GlobalAtomIndices;
829 >  }
830  
589    fInfo_.SIM_uses_PBC = usePBC;    
590    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
591    fInfo_.SIM_uses_LennardJones = useLennardJones;
592    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
593    fInfo_.SIM_uses_Charges = useCharge;
594    fInfo_.SIM_uses_Dipoles = useDipole;
595    fInfo_.SIM_uses_Sticky = useSticky;
596    fInfo_.SIM_uses_StickyPower = useStickyPower;
597    fInfo_.SIM_uses_GayBerne = useGayBerne;
598    fInfo_.SIM_uses_EAM = useEAM;
599    fInfo_.SIM_uses_Shapes = useShape;
600    fInfo_.SIM_uses_FLARB = useFLARB;
601    fInfo_.SIM_uses_RF = useRF;
831  
832 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
832 >  vector<int> SimInfo::getGlobalGroupIndices() {
833 >    SimInfo::MoleculeIterator mi;
834 >    Molecule* mol;
835 >    Molecule::CutoffGroupIterator ci;
836 >    CutoffGroup* cg;
837  
838 <      if (simParams_->haveDielectric()) {
839 <        fInfo_.dielect = simParams_->getDielectric();
840 <      } else {
841 <        sprintf(painCave.errMsg,
842 <                "SimSetup Error: No Dielectric constant was set.\n"
843 <                "\tYou are trying to use Reaction Field without"
844 <                "\tsetting a dielectric constant!\n");
845 <        painCave.isFatal = 1;
846 <        simError();
847 <      }
615 <        
616 <    } else {
617 <      fInfo_.dielect = 0.0;
838 >    vector<int> GlobalGroupIndices;
839 >    
840 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
841 >      
842 >      //local index of cutoff group is trivial, it only depends on the
843 >      //order of travesing
844 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
845 >           cg = mol->nextCutoffGroup(ci)) {
846 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
847 >      }        
848      }
849 <
849 >    return GlobalGroupIndices;
850    }
851  
622  void SimInfo::setupFortranSim() {
623    int isError;
624    int nExclude;
625    std::vector<int> fortranGlobalGroupMembership;
626    
627    nExclude = exclude_.getSize();
628    isError = 0;
852  
853 <    //globalGroupMembership_ is filled by SimCreator    
854 <    for (int i = 0; i < nGlobalAtoms_; i++) {
632 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
633 <    }
853 >  void SimInfo::prepareTopology() {
854 >    int nExclude, nOneTwo, nOneThree, nOneFour;
855  
856      //calculate mass ratio of cutoff group
636    std::vector<double> mfact;
857      SimInfo::MoleculeIterator mi;
858      Molecule* mol;
859      Molecule::CutoffGroupIterator ci;
860      CutoffGroup* cg;
861      Molecule::AtomIterator ai;
862      Atom* atom;
863 <    double totalMass;
863 >    RealType totalMass;
864  
865 <    //to avoid memory reallocation, reserve enough space for mfact
866 <    mfact.reserve(getNCutoffGroups());
865 >    /**
866 >     * The mass factor is the relative mass of an atom to the total
867 >     * mass of the cutoff group it belongs to.  By default, all atoms
868 >     * are their own cutoff groups, and therefore have mass factors of
869 >     * 1.  We need some special handling for massless atoms, which
870 >     * will be treated as carrying the entire mass of the cutoff
871 >     * group.
872 >     */
873 >    massFactors_.clear();
874 >    massFactors_.resize(getNAtoms(), 1.0);
875      
876      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
877 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
878 >           cg = mol->nextCutoffGroup(ci)) {
879  
880          totalMass = cg->getMass();
881          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
882 <          mfact.push_back(atom->getMass()/totalMass);
882 >          // Check for massless groups - set mfact to 1 if true
883 >          if (totalMass != 0)
884 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
885 >          else
886 >            massFactors_[atom->getLocalIndex()] = 1.0;
887          }
655
888        }      
889      }
890  
891 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
660 <    std::vector<int> identArray;
891 >    // Build the identArray_
892  
893 <    //to avoid memory reallocation, reserve enough space identArray
894 <    identArray.reserve(getNAtoms());
664 <    
893 >    identArray_.clear();
894 >    identArray_.reserve(getNAtoms());    
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
897 <        identArray.push_back(atom->getIdent());
897 >        identArray_.push_back(atom->getIdent());
898        }
899      }    
670
671    //fill molMembershipArray
672    //molMembershipArray is filled by SimCreator    
673    std::vector<int> molMembershipArray(nGlobalAtoms_);
674    for (int i = 0; i < nGlobalAtoms_; i++) {
675      molMembershipArray[i] = globalMolMembership_[i] + 1;
676    }
900      
901 <    //setup fortran simulation
679 <    int nGlobalExcludes = 0;
680 <    int* globalExcludes = NULL;
681 <    int* excludeList = exclude_.getExcludeList();
682 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
683 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
684 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
901 >    //scan topology
902  
903 <    if( isError ){
903 >    nExclude = excludedInteractions_.getSize();
904 >    nOneTwo = oneTwoInteractions_.getSize();
905 >    nOneThree = oneThreeInteractions_.getSize();
906 >    nOneFour = oneFourInteractions_.getSize();
907  
908 <      sprintf( painCave.errMsg,
909 <               "There was an error setting the simulation information in fortran.\n" );
910 <      painCave.isFatal = 1;
911 <      painCave.severity = OOPSE_ERROR;
692 <      simError();
693 <    }
908 >    int* excludeList = excludedInteractions_.getPairList();
909 >    int* oneTwoList = oneTwoInteractions_.getPairList();
910 >    int* oneThreeList = oneThreeInteractions_.getPairList();
911 >    int* oneFourList = oneFourInteractions_.getPairList();
912  
913 < #ifdef IS_MPI
696 <    sprintf( checkPointMsg,
697 <             "succesfully sent the simulation information to fortran.\n");
698 <    MPIcheckPoint();
699 < #endif // is_mpi
700 <  }
701 <
702 <
703 < #ifdef IS_MPI
704 <  void SimInfo::setupFortranParallel() {
705 <    
706 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
707 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
708 <    std::vector<int> localToGlobalCutoffGroupIndex;
709 <    SimInfo::MoleculeIterator mi;
710 <    Molecule::AtomIterator ai;
711 <    Molecule::CutoffGroupIterator ci;
712 <    Molecule* mol;
713 <    Atom* atom;
714 <    CutoffGroup* cg;
715 <    mpiSimData parallelData;
716 <    int isError;
717 <
718 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
719 <
720 <      //local index(index in DataStorge) of atom is important
721 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
723 <      }
724 <
725 <      //local index of cutoff group is trivial, it only depends on the order of travesing
726 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
727 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
728 <      }        
729 <        
730 <    }
731 <
732 <    //fill up mpiSimData struct
733 <    parallelData.nMolGlobal = getNGlobalMolecules();
734 <    parallelData.nMolLocal = getNMolecules();
735 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
736 <    parallelData.nAtomsLocal = getNAtoms();
737 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
738 <    parallelData.nGroupsLocal = getNCutoffGroups();
739 <    parallelData.myNode = worldRank;
740 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
741 <
742 <    //pass mpiSimData struct and index arrays to fortran
743 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
744 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
745 <                    &localToGlobalCutoffGroupIndex[0], &isError);
746 <
747 <    if (isError) {
748 <      sprintf(painCave.errMsg,
749 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
750 <      painCave.isFatal = 1;
751 <      simError();
752 <    }
753 <
754 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
755 <    MPIcheckPoint();
756 <
757 <
913 >    topologyDone_ = true;
914    }
915  
760 #endif
761
762  double SimInfo::calcMaxCutoffRadius() {
763
764
765    std::set<AtomType*> atomTypes;
766    std::set<AtomType*>::iterator i;
767    std::vector<double> cutoffRadius;
768
769    //get the unique atom types
770    atomTypes = getUniqueAtomTypes();
771
772    //query the max cutoff radius among these atom types
773    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
775    }
776
777    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
778 #ifdef IS_MPI
779    //pick the max cutoff radius among the processors
780 #endif
781
782    return maxCutoffRadius;
783  }
784
785  void SimInfo::getCutoff(double& rcut, double& rsw) {
786    
787    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
788        
789      if (!simParams_->haveRcut()){
790        sprintf(painCave.errMsg,
791                "SimCreator Warning: No value was set for the cutoffRadius.\n"
792                "\tOOPSE will use a default value of 15.0 angstroms"
793                "\tfor the cutoffRadius.\n");
794        painCave.isFatal = 0;
795        simError();
796        rcut = 15.0;
797      } else{
798        rcut = simParams_->getRcut();
799      }
800
801      if (!simParams_->haveRsw()){
802        sprintf(painCave.errMsg,
803                "SimCreator Warning: No value was set for switchingRadius.\n"
804                "\tOOPSE will use a default value of\n"
805                "\t0.95 * cutoffRadius for the switchingRadius\n");
806        painCave.isFatal = 0;
807        simError();
808        rsw = 0.95 * rcut;
809      } else{
810        rsw = simParams_->getRsw();
811      }
812
813    } else {
814      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
815      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
816        
817      if (simParams_->haveRcut()) {
818        rcut = simParams_->getRcut();
819      } else {
820        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
821        rcut = calcMaxCutoffRadius();
822      }
823
824      if (simParams_->haveRsw()) {
825        rsw  = simParams_->getRsw();
826      } else {
827        rsw = rcut;
828      }
829    
830    }
831  }
832
833  void SimInfo::setupCutoff() {
834    getCutoff(rcut_, rsw_);    
835    double rnblist = rcut_ + 1; // skin of neighbor list
836
837    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
838    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
839  }
840
916    void SimInfo::addProperty(GenericData* genData) {
917      properties_.addProperty(genData);  
918    }
919  
920 <  void SimInfo::removeProperty(const std::string& propName) {
920 >  void SimInfo::removeProperty(const string& propName) {
921      properties_.removeProperty(propName);  
922    }
923  
# Line 850 | Line 925 | namespace oopse {
925      properties_.clearProperties();
926    }
927  
928 <  std::vector<std::string> SimInfo::getPropertyNames() {
928 >  vector<string> SimInfo::getPropertyNames() {
929      return properties_.getPropertyNames();  
930    }
931        
932 <  std::vector<GenericData*> SimInfo::getProperties() {
932 >  vector<GenericData*> SimInfo::getProperties() {
933      return properties_.getProperties();
934    }
935  
936 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
936 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
937      return properties_.getPropertyByName(propName);
938    }
939  
# Line 872 | Line 947 | namespace oopse {
947      Molecule* mol;
948      RigidBody* rb;
949      Atom* atom;
950 +    CutoffGroup* cg;
951      SimInfo::MoleculeIterator mi;
952      Molecule::RigidBodyIterator rbIter;
953 <    Molecule::AtomIterator atomIter;;
953 >    Molecule::AtomIterator atomIter;
954 >    Molecule::CutoffGroupIterator cgIter;
955  
956      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
957          
# Line 885 | Line 962 | namespace oopse {
962        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
963          rb->setSnapshotManager(sman_);
964        }
965 +
966 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
967 +        cg->setSnapshotManager(sman_);
968 +      }
969      }    
970      
971    }
# Line 894 | Line 975 | namespace oopse {
975      Molecule* mol;
976  
977      Vector3d comVel(0.0);
978 <    double totalMass = 0.0;
978 >    RealType totalMass = 0.0;
979      
980  
981      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
982 <      double mass = mol->getMass();
982 >      RealType mass = mol->getMass();
983        totalMass += mass;
984        comVel += mass * mol->getComVel();
985      }  
986  
987   #ifdef IS_MPI
988 <    double tmpMass = totalMass;
988 >    RealType tmpMass = totalMass;
989      Vector3d tmpComVel(comVel);    
990 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
991 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
990 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
991 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
992   #endif
993  
994      comVel /= totalMass;
# Line 920 | Line 1001 | namespace oopse {
1001      Molecule* mol;
1002  
1003      Vector3d com(0.0);
1004 <    double totalMass = 0.0;
1004 >    RealType totalMass = 0.0;
1005      
1006      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1007 <      double mass = mol->getMass();
1007 >      RealType mass = mol->getMass();
1008        totalMass += mass;
1009        com += mass * mol->getCom();
1010      }  
1011  
1012   #ifdef IS_MPI
1013 <    double tmpMass = totalMass;
1013 >    RealType tmpMass = totalMass;
1014      Vector3d tmpCom(com);    
1015 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1016 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1015 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1016 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1017   #endif
1018  
1019      com /= totalMass;
# Line 941 | Line 1022 | namespace oopse {
1022  
1023    }        
1024  
1025 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1025 >  ostream& operator <<(ostream& o, SimInfo& info) {
1026  
1027      return o;
1028    }
# Line 956 | Line 1037 | namespace oopse {
1037        Molecule* mol;
1038        
1039      
1040 <      double totalMass = 0.0;
1040 >      RealType totalMass = 0.0;
1041      
1042  
1043        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1044 <         double mass = mol->getMass();
1044 >         RealType mass = mol->getMass();
1045           totalMass += mass;
1046           com += mass * mol->getCom();
1047           comVel += mass * mol->getComVel();          
1048        }  
1049        
1050   #ifdef IS_MPI
1051 <      double tmpMass = totalMass;
1051 >      RealType tmpMass = totalMass;
1052        Vector3d tmpCom(com);  
1053        Vector3d tmpComVel(comVel);
1054 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1055 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1056 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1054 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1056 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1057   #endif
1058        
1059        com /= totalMass;
# Line 981 | Line 1062 | namespace oopse {
1062    
1063     /*
1064     Return intertia tensor for entire system and angular momentum Vector.
1065 +
1066 +
1067 +       [  Ixx -Ixy  -Ixz ]
1068 +    J =| -Iyx  Iyy  -Iyz |
1069 +       [ -Izx -Iyz   Izz ]
1070      */
1071  
1072     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1073        
1074  
1075 <      double xx = 0.0;
1076 <      double yy = 0.0;
1077 <      double zz = 0.0;
1078 <      double xy = 0.0;
1079 <      double xz = 0.0;
1080 <      double yz = 0.0;
1075 >      RealType xx = 0.0;
1076 >      RealType yy = 0.0;
1077 >      RealType zz = 0.0;
1078 >      RealType xy = 0.0;
1079 >      RealType xz = 0.0;
1080 >      RealType yz = 0.0;
1081        Vector3d com(0.0);
1082        Vector3d comVel(0.0);
1083        
# Line 1003 | Line 1089 | namespace oopse {
1089        Vector3d thisq(0.0);
1090        Vector3d thisv(0.0);
1091  
1092 <      double thisMass = 0.0;
1092 >      RealType thisMass = 0.0;
1093      
1094        
1095        
# Line 1032 | Line 1118 | namespace oopse {
1118        inertiaTensor(0,1) = -xy;
1119        inertiaTensor(0,2) = -xz;
1120        inertiaTensor(1,0) = -xy;
1121 <      inertiaTensor(2,0) = xx + zz;
1121 >      inertiaTensor(1,1) = xx + zz;
1122        inertiaTensor(1,2) = -yz;
1123        inertiaTensor(2,0) = -xz;
1124        inertiaTensor(2,1) = -yz;
# Line 1041 | Line 1127 | namespace oopse {
1127   #ifdef IS_MPI
1128        Mat3x3d tmpI(inertiaTensor);
1129        Vector3d tmpAngMom;
1130 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1131 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1130 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1131 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1132   #endif
1133                
1134        return;
# Line 1060 | Line 1146 | namespace oopse {
1146        SimInfo::MoleculeIterator i;
1147        Molecule* mol;
1148        
1149 <      Vector3d thisq(0.0);
1150 <      Vector3d thisv(0.0);
1149 >      Vector3d thisr(0.0);
1150 >      Vector3d thisp(0.0);
1151        
1152 <      double thisMass = 0.0;
1152 >      RealType thisMass;
1153        
1154        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1155 <         thisq = mol->getCom()-com;
1156 <         thisv = mol->getComVel()-comVel;
1157 <         thisMass = mol->getMass();
1072 <         angularMomentum += cross( thisq, thisv ) * thisMass;
1155 >        thisMass = mol->getMass();
1156 >        thisr = mol->getCom()-com;
1157 >        thisp = (mol->getComVel()-comVel)*thisMass;
1158          
1159 +        angularMomentum += cross( thisr, thisp );
1160 +        
1161        }  
1162        
1163   #ifdef IS_MPI
1164        Vector3d tmpAngMom;
1165 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1165 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1166   #endif
1167        
1168        return angularMomentum;
1169     }
1170    
1171 <  
1172 < }//end namespace oopse
1171 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1172 >    return IOIndexToIntegrableObject.at(index);
1173 >  }
1174 >  
1175 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1176 >    IOIndexToIntegrableObject= v;
1177 >  }
1178  
1179 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1180 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1181 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1182 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1183 +  */
1184 +  void SimInfo::getGyrationalVolume(RealType &volume){
1185 +    Mat3x3d intTensor;
1186 +    RealType det;
1187 +    Vector3d dummyAngMom;
1188 +    RealType sysconstants;
1189 +    RealType geomCnst;
1190 +
1191 +    geomCnst = 3.0/2.0;
1192 +    /* Get the inertial tensor and angular momentum for free*/
1193 +    getInertiaTensor(intTensor,dummyAngMom);
1194 +    
1195 +    det = intTensor.determinant();
1196 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1197 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1198 +    return;
1199 +  }
1200 +
1201 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1202 +    Mat3x3d intTensor;
1203 +    Vector3d dummyAngMom;
1204 +    RealType sysconstants;
1205 +    RealType geomCnst;
1206 +
1207 +    geomCnst = 3.0/2.0;
1208 +    /* Get the inertial tensor and angular momentum for free*/
1209 +    getInertiaTensor(intTensor,dummyAngMom);
1210 +    
1211 +    detI = intTensor.determinant();
1212 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1213 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1214 +    return;
1215 +  }
1216 + /*
1217 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1218 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1219 +      sdByGlobalIndex_ = v;
1220 +    }
1221 +
1222 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1223 +      //assert(index < nAtoms_ + nRigidBodies_);
1224 +      return sdByGlobalIndex_.at(index);
1225 +    }  
1226 + */  
1227 +  int SimInfo::getNGlobalConstraints() {
1228 +    int nGlobalConstraints;
1229 + #ifdef IS_MPI
1230 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1231 +                  MPI_COMM_WORLD);    
1232 + #else
1233 +    nGlobalConstraints =  nConstraints_;
1234 + #endif
1235 +    return nGlobalConstraints;
1236 +  }
1237 +
1238 + }//end namespace OpenMD
1239 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 555 by chuckv, Mon May 30 14:01:52 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines