ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1588 by gezelter, Sat Jul 9 15:05:59 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
70 <
71 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                                ForceField* ff, Globals* simParams) :
73 <                                forceField_(ff), simParams_(simParams),
74 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 <                                sman_(NULL), fortranInitialized_(false) {
77 <
78 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77      MoleculeStamp* molStamp;
78      int nMolWithSameStamp;
79      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81      CutoffGroupStamp* cgStamp;    
82      RigidBodyStamp* rbStamp;
83      int nRigidAtoms = 0;
84      
85 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
86 <        molStamp = i->first;
87 <        nMolWithSameStamp = i->second;
88 <        
89 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
90 <
91 <        //calculate atoms in molecules
92 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
93 <
94 <
95 <        //calculate atoms in cutoff groups
96 <        int nAtomsInGroups = 0;
97 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
98 <        
99 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
100 <            cgStamp = molStamp->getCutoffGroup(j);
101 <            nAtomsInGroups += cgStamp->getNMembers();
102 <        }
103 <
104 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
105 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
106 <
107 <        //calculate atoms in rigid bodies
108 <        int nAtomsInRigidBodies = 0;
109 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
110 <        
111 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
112 <            rbStamp = molStamp->getRigidBody(j);
113 <            nAtomsInRigidBodies += rbStamp->getNMembers();
114 <        }
115 <
116 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
117 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
118 <        
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103 >      }
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
129      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 <
131 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
132 <    //therefore the total number of  integrable objects in the system is equal to
133 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
134 <    //file plus the number of  rigid bodies defined in meta-data file
135 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
136 <
130 >    
131 >    //every free atom (atom does not belong to rigid bodies) is an
132 >    //integrable object therefore the total number of integrable objects
133 >    //in the system is equal to the total number of atoms minus number of
134 >    //atoms belong to rigid body defined in meta-data file plus the number
135 >    //of rigid bodies defined in meta-data file
136 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 >      + nGlobalRigidBodies_;
138 >    
139      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
140      molToProcMap_.resize(nGlobalMols_);
141 < #endif
142 <
143 < }
144 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
141 >  }
142 >  
143 >  SimInfo::~SimInfo() {
144 >    map<int, Molecule*>::iterator i;
145      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146 <        delete i->second;
146 >      delete i->second;
147      }
148      molecules_.clear();
149 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
149 >      
150      delete sman_;
151      delete simParams_;
152      delete forceField_;
153 < }
153 >  }
154  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
155  
156 < bool SimInfo::addMolecule(Molecule* mol) {
156 >  bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
164 <        nAtoms_ += mol->getNAtoms();
165 <        nBonds_ += mol->getNBonds();
166 <        nBends_ += mol->getNBends();
167 <        nTorsions_ += mol->getNTorsions();
168 <        nRigidBodies_ += mol->getNRigidBodies();
169 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
170 <        nCutoffGroups_ += mol->getNCutoffGroups();
171 <        nConstraints_ += mol->getNConstraintPairs();
172 <
173 <        addExcludePairs(mol);
174 <        
175 <        return true;
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164 >      nAtoms_ += mol->getNAtoms();
165 >      nBonds_ += mol->getNBonds();
166 >      nBends_ += mol->getNBends();
167 >      nTorsions_ += mol->getNTorsions();
168 >      nInversions_ += mol->getNInversions();
169 >      nRigidBodies_ += mol->getNRigidBodies();
170 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
171 >      nCutoffGroups_ += mol->getNCutoffGroups();
172 >      nConstraints_ += mol->getNConstraintPairs();
173 >      
174 >      addInteractionPairs(mol);
175 >      
176 >      return true;
177      } else {
178 <        return false;
178 >      return false;
179      }
180 < }
181 <
182 < bool SimInfo::removeMolecule(Molecule* mol) {
180 >  }
181 >  
182 >  bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
185  
186      if (i != molecules_.end() ) {
187  
188 <        assert(mol == i->second);
188 >      assert(mol == i->second);
189          
190 <        nAtoms_ -= mol->getNAtoms();
191 <        nBonds_ -= mol->getNBonds();
192 <        nBends_ -= mol->getNBends();
193 <        nTorsions_ -= mol->getNTorsions();
194 <        nRigidBodies_ -= mol->getNRigidBodies();
195 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
196 <        nCutoffGroups_ -= mol->getNCutoffGroups();
197 <        nConstraints_ -= mol->getNConstraintPairs();
190 >      nAtoms_ -= mol->getNAtoms();
191 >      nBonds_ -= mol->getNBonds();
192 >      nBends_ -= mol->getNBends();
193 >      nTorsions_ -= mol->getNTorsions();
194 >      nInversions_ -= mol->getNInversions();
195 >      nRigidBodies_ -= mol->getNRigidBodies();
196 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
197 >      nCutoffGroups_ -= mol->getNCutoffGroups();
198 >      nConstraints_ -= mol->getNConstraintPairs();
199  
200 <        removeExcludePairs(mol);
201 <        molecules_.erase(mol->getGlobalIndex());
200 >      removeInteractionPairs(mol);
201 >      molecules_.erase(mol->getGlobalIndex());
202  
203 <        delete mol;
203 >      delete mol;
204          
205 <        return true;
205 >      return true;
206      } else {
207 <        return false;
207 >      return false;
208      }
209 +  }    
210  
221
222 }    
223
211          
212 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
212 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
213      i = molecules_.begin();
214      return i == molecules_.end() ? NULL : i->second;
215 < }    
215 >  }    
216  
217 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
217 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
218      ++i;
219      return i == molecules_.end() ? NULL : i->second;    
220 < }
220 >  }
221  
222  
223 < void SimInfo::calcNdf() {
223 >  void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
230      ndf_local = 0;
231      
232      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
233 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234 <               integrableObject = mol->nextIntegrableObject(j)) {
233 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234 >           integrableObject = mol->nextIntegrableObject(j)) {
235  
236 <            ndf_local += 3;
236 >        ndf_local += 3;
237  
238 <            if (integrableObject->isDirectional()) {
239 <                if (integrableObject->isLinear()) {
240 <                    ndf_local += 2;
241 <                } else {
242 <                    ndf_local += 3;
243 <                }
244 <            }
238 >        if (integrableObject->isDirectional()) {
239 >          if (integrableObject->isLinear()) {
240 >            ndf_local += 2;
241 >          } else {
242 >            ndf_local += 3;
243 >          }
244 >        }
245              
246 <        }//end for (integrableObject)
247 <    }// end for (mol)
246 >      }
247 >    }
248      
249      // n_constraints is local, so subtract them on each processor
250      ndf_local -= nConstraints_;
# Line 272 | Line 259 | void SimInfo::calcNdf() {
259      // entire system:
260      ndf_ = ndf_ - 3 - nZconstraint_;
261  
262 < }
262 >  }
263  
264 < void SimInfo::calcNdfRaw() {
264 >  int SimInfo::getFdf() {
265 > #ifdef IS_MPI
266 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 > #else
268 >    fdf_ = fdf_local;
269 > #endif
270 >    return fdf_;
271 >  }
272 >  
273 >  unsigned int SimInfo::getNLocalCutoffGroups(){
274 >    int nLocalCutoffAtoms = 0;
275 >    Molecule* mol;
276 >    MoleculeIterator mi;
277 >    CutoffGroup* cg;
278 >    Molecule::CutoffGroupIterator ci;
279 >    
280 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 >      
282 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 >           cg = mol->nextCutoffGroup(ci)) {
284 >        nLocalCutoffAtoms += cg->getNumAtom();
285 >        
286 >      }        
287 >    }
288 >    
289 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 >  }
291 >    
292 >  void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 286 | Line 301 | void SimInfo::calcNdfRaw() {
301      ndfRaw_local = 0;
302      
303      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
304 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 <               integrableObject = mol->nextIntegrableObject(j)) {
304 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 >           integrableObject = mol->nextIntegrableObject(j)) {
306  
307 <            ndfRaw_local += 3;
307 >        ndfRaw_local += 3;
308  
309 <            if (integrableObject->isDirectional()) {
310 <                if (integrableObject->isLinear()) {
311 <                    ndfRaw_local += 2;
312 <                } else {
313 <                    ndfRaw_local += 3;
314 <                }
315 <            }
309 >        if (integrableObject->isDirectional()) {
310 >          if (integrableObject->isLinear()) {
311 >            ndfRaw_local += 2;
312 >          } else {
313 >            ndfRaw_local += 3;
314 >          }
315 >        }
316              
317 <        }
317 >      }
318      }
319      
320   #ifdef IS_MPI
# Line 307 | Line 322 | void SimInfo::calcNdfRaw() {
322   #else
323      ndfRaw_ = ndfRaw_local;
324   #endif
325 < }
325 >  }
326  
327 < void SimInfo::calcNdfTrans() {
327 >  void SimInfo::calcNdfTrans() {
328      int ndfTrans_local;
329  
330      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 338 | void SimInfo::calcNdfTrans() {
338  
339      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
340  
341 < }
341 >  }
342  
343 < void SimInfo::addExcludePairs(Molecule* mol) {
344 <    std::vector<Bond*>::iterator bondIter;
345 <    std::vector<Bend*>::iterator bendIter;
346 <    std::vector<Torsion*>::iterator torsionIter;
343 >  void SimInfo::addInteractionPairs(Molecule* mol) {
344 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
352 +    Inversion* inversion;
353      int a;
354      int b;
355      int c;
356      int d;
339    
340    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341        a = bond->getAtomA()->getGlobalIndex();
342        b = bond->getAtomB()->getGlobalIndex();        
343        exclude_.addPair(a, b);
344    }
357  
358 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
359 <        a = bend->getAtomA()->getGlobalIndex();
360 <        b = bend->getAtomB()->getGlobalIndex();        
361 <        c = bend->getAtomC()->getGlobalIndex();
358 >    // atomGroups can be used to add special interaction maps between
359 >    // groups of atoms that are in two separate rigid bodies.
360 >    // However, most site-site interactions between two rigid bodies
361 >    // are probably not special, just the ones between the physically
362 >    // bonded atoms.  Interactions *within* a single rigid body should
363 >    // always be excluded.  These are done at the bottom of this
364 >    // function.
365  
366 <        exclude_.addPair(a, b);
367 <        exclude_.addPair(a, c);
368 <        exclude_.addPair(b, c);        
369 <    }
370 <
371 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
372 <        a = torsion->getAtomA()->getGlobalIndex();
373 <        b = torsion->getAtomB()->getGlobalIndex();        
374 <        c = torsion->getAtomC()->getGlobalIndex();        
375 <        d = torsion->getAtomD()->getGlobalIndex();        
366 >    map<int, set<int> > atomGroups;
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii);
373 >         integrableObject != NULL;
374 >         integrableObject = mol->nextIntegrableObject(ii)) {
375 >      
376 >      if (integrableObject->isRigidBody()) {
377 >        rb = static_cast<RigidBody*>(integrableObject);
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >        }
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >        }      
386 >      } else {
387 >        set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 >      }
391 >    }  
392 >          
393 >    for (bond= mol->beginBond(bondIter); bond != NULL;
394 >         bond = mol->nextBond(bondIter)) {
395  
396 <        exclude_.addPair(a, b);
397 <        exclude_.addPair(a, c);
398 <        exclude_.addPair(a, d);
399 <        exclude_.addPair(b, c);
400 <        exclude_.addPair(b, d);
401 <        exclude_.addPair(c, d);        
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();  
398 >    
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);
401 >      } else {
402 >        excludedInteractions_.addPair(a, b);
403 >      }
404      }
405  
406 <    
407 < }
406 >    for (bend= mol->beginBend(bendIter); bend != NULL;
407 >         bend = mol->nextBend(bendIter)) {
408  
409 < void SimInfo::removeExcludePairs(Molecule* mol) {
410 <    std::vector<Bond*>::iterator bondIter;
411 <    std::vector<Bend*>::iterator bendIter;
412 <    std::vector<Torsion*>::iterator torsionIter;
409 >      a = bend->getAtomA()->getGlobalIndex();
410 >      b = bend->getAtomB()->getGlobalIndex();        
411 >      c = bend->getAtomC()->getGlobalIndex();
412 >      
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);      
415 >        oneTwoInteractions_.addPair(b, c);
416 >      } else {
417 >        excludedInteractions_.addPair(a, b);
418 >        excludedInteractions_.addPair(b, c);
419 >      }
420 >
421 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 >        oneThreeInteractions_.addPair(a, c);      
423 >      } else {
424 >        excludedInteractions_.addPair(a, c);
425 >      }
426 >    }
427 >
428 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 >         torsion = mol->nextTorsion(torsionIter)) {
430 >
431 >      a = torsion->getAtomA()->getGlobalIndex();
432 >      b = torsion->getAtomB()->getGlobalIndex();        
433 >      c = torsion->getAtomC()->getGlobalIndex();        
434 >      d = torsion->getAtomD()->getGlobalIndex();      
435 >
436 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 >        oneTwoInteractions_.addPair(a, b);      
438 >        oneTwoInteractions_.addPair(b, c);
439 >        oneTwoInteractions_.addPair(c, d);
440 >      } else {
441 >        excludedInteractions_.addPair(a, b);
442 >        excludedInteractions_.addPair(b, c);
443 >        excludedInteractions_.addPair(c, d);
444 >      }
445 >
446 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 >        oneThreeInteractions_.addPair(a, c);      
448 >        oneThreeInteractions_.addPair(b, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, c);
451 >        excludedInteractions_.addPair(b, d);
452 >      }
453 >
454 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 >        oneFourInteractions_.addPair(a, d);      
456 >      } else {
457 >        excludedInteractions_.addPair(a, d);
458 >      }
459 >    }
460 >
461 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 >         inversion = mol->nextInversion(inversionIter)) {
463 >
464 >      a = inversion->getAtomA()->getGlobalIndex();
465 >      b = inversion->getAtomB()->getGlobalIndex();        
466 >      c = inversion->getAtomC()->getGlobalIndex();        
467 >      d = inversion->getAtomD()->getGlobalIndex();        
468 >
469 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 >        oneTwoInteractions_.addPair(a, b);      
471 >        oneTwoInteractions_.addPair(a, c);
472 >        oneTwoInteractions_.addPair(a, d);
473 >      } else {
474 >        excludedInteractions_.addPair(a, b);
475 >        excludedInteractions_.addPair(a, c);
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478 >
479 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 >        oneThreeInteractions_.addPair(b, c);    
481 >        oneThreeInteractions_.addPair(b, d);    
482 >        oneThreeInteractions_.addPair(c, d);      
483 >      } else {
484 >        excludedInteractions_.addPair(b, c);
485 >        excludedInteractions_.addPair(b, d);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488 >    }
489 >
490 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >         rb = mol->nextRigidBody(rbIter)) {
492 >      vector<Atom*> atoms = rb->getAtoms();
493 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495 >          a = atoms[i]->getGlobalIndex();
496 >          b = atoms[j]->getGlobalIndex();
497 >          excludedInteractions_.addPair(a, b);
498 >        }
499 >      }
500 >    }        
501 >
502 >  }
503 >
504 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
505 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
513 +    Inversion* inversion;
514      int a;
515      int b;
516      int c;
517      int d;
518 +
519 +    map<int, set<int> > atomGroups;
520 +    Molecule::RigidBodyIterator rbIter;
521 +    RigidBody* rb;
522 +    Molecule::IntegrableObjectIterator ii;
523 +    StuntDouble* integrableObject;
524      
525 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
526 <        a = bond->getAtomA()->getGlobalIndex();
527 <        b = bond->getAtomB()->getGlobalIndex();        
528 <        exclude_.removePair(a, b);
525 >    for (integrableObject = mol->beginIntegrableObject(ii);
526 >         integrableObject != NULL;
527 >         integrableObject = mol->nextIntegrableObject(ii)) {
528 >      
529 >      if (integrableObject->isRigidBody()) {
530 >        rb = static_cast<RigidBody*>(integrableObject);
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 >        }
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 >        }      
539 >      } else {
540 >        set<int> oneAtomSet;
541 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543 >      }
544 >    }  
545 >
546 >    for (bond= mol->beginBond(bondIter); bond != NULL;
547 >         bond = mol->nextBond(bondIter)) {
548 >      
549 >      a = bond->getAtomA()->getGlobalIndex();
550 >      b = bond->getAtomB()->getGlobalIndex();  
551 >    
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);
554 >      } else {
555 >        excludedInteractions_.removePair(a, b);
556 >      }
557      }
558  
559 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
560 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
559 >    for (bend= mol->beginBend(bendIter); bend != NULL;
560 >         bend = mol->nextBend(bendIter)) {
561  
562 <        exclude_.removePair(a, b);
563 <        exclude_.removePair(a, c);
564 <        exclude_.removePair(b, c);        
562 >      a = bend->getAtomA()->getGlobalIndex();
563 >      b = bend->getAtomB()->getGlobalIndex();        
564 >      c = bend->getAtomC()->getGlobalIndex();
565 >      
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);      
568 >        oneTwoInteractions_.removePair(b, c);
569 >      } else {
570 >        excludedInteractions_.removePair(a, b);
571 >        excludedInteractions_.removePair(b, c);
572 >      }
573 >
574 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 >        oneThreeInteractions_.removePair(a, c);      
576 >      } else {
577 >        excludedInteractions_.removePair(a, c);
578 >      }
579      }
580  
581 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
582 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
581 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 >         torsion = mol->nextTorsion(torsionIter)) {
583  
584 <        exclude_.removePair(a, b);
585 <        exclude_.removePair(a, c);
586 <        exclude_.removePair(a, d);
587 <        exclude_.removePair(b, c);
588 <        exclude_.removePair(b, d);
589 <        exclude_.removePair(c, d);        
584 >      a = torsion->getAtomA()->getGlobalIndex();
585 >      b = torsion->getAtomB()->getGlobalIndex();        
586 >      c = torsion->getAtomC()->getGlobalIndex();        
587 >      d = torsion->getAtomD()->getGlobalIndex();      
588 >  
589 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 >        oneTwoInteractions_.removePair(a, b);      
591 >        oneTwoInteractions_.removePair(b, c);
592 >        oneTwoInteractions_.removePair(c, d);
593 >      } else {
594 >        excludedInteractions_.removePair(a, b);
595 >        excludedInteractions_.removePair(b, c);
596 >        excludedInteractions_.removePair(c, d);
597 >      }
598 >
599 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 >        oneThreeInteractions_.removePair(a, c);      
601 >        oneThreeInteractions_.removePair(b, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, c);
604 >        excludedInteractions_.removePair(b, d);
605 >      }
606 >
607 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 >        oneFourInteractions_.removePair(a, d);      
609 >      } else {
610 >        excludedInteractions_.removePair(a, d);
611 >      }
612      }
613  
614 < }
614 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 >         inversion = mol->nextInversion(inversionIter)) {
616  
617 +      a = inversion->getAtomA()->getGlobalIndex();
618 +      b = inversion->getAtomB()->getGlobalIndex();        
619 +      c = inversion->getAtomC()->getGlobalIndex();        
620 +      d = inversion->getAtomD()->getGlobalIndex();        
621  
622 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
623 <    int curStampId;
622 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 >        oneTwoInteractions_.removePair(a, b);      
624 >        oneTwoInteractions_.removePair(a, c);
625 >        oneTwoInteractions_.removePair(a, d);
626 >      } else {
627 >        excludedInteractions_.removePair(a, b);
628 >        excludedInteractions_.removePair(a, c);
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631  
632 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 +        oneThreeInteractions_.removePair(b, c);    
634 +        oneThreeInteractions_.removePair(b, d);    
635 +        oneThreeInteractions_.removePair(c, d);      
636 +      } else {
637 +        excludedInteractions_.removePair(b, c);
638 +        excludedInteractions_.removePair(b, d);
639 +        excludedInteractions_.removePair(c, d);
640 +      }
641 +    }
642 +
643 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 +         rb = mol->nextRigidBody(rbIter)) {
645 +      vector<Atom*> atoms = rb->getAtoms();
646 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648 +          a = atoms[i]->getGlobalIndex();
649 +          b = atoms[j]->getGlobalIndex();
650 +          excludedInteractions_.removePair(a, b);
651 +        }
652 +      }
653 +    }        
654 +    
655 +  }
656 +  
657 +  
658 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659 +    int curStampId;
660 +    
661      //index from 0
662      curStampId = moleculeStamps_.size();
663  
664      moleculeStamps_.push_back(molStamp);
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666 < }
666 >  }
667  
428 void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
439 <    /** @deprecate */    
440 <    int isError = 0;
441 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 <    if(isError){
443 <        sprintf( painCave.errMsg,
444 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 <        painCave.isFatal = 1;
446 <        simError();
447 <    }
448 <  
449 <    
450 <    setupCutoff();
451 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
681 <
682 <    fortranInitialized_ = true;
683 < }
684 <
685 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
681 >  }
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
695 >    set<AtomType*> atomTypes;
696 >    
697      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 +      for(atom = mol->beginAtom(ai); atom != NULL;
699 +          atom = mol->nextAtom(ai)) {
700 +        atomTypes.insert(atom->getAtomType());
701 +      }      
702 +    }    
703 +    
704 + #ifdef IS_MPI
705  
706 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
707 <            atomTypes.insert(atom->getAtomType());
708 <        }
709 <        
706 >    // loop over the found atom types on this processor, and add their
707 >    // numerical idents to a vector:
708 >    
709 >    vector<int> foundTypes;
710 >    set<AtomType*>::iterator i;
711 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
712 >      foundTypes.push_back( (*i)->getIdent() );
713 >
714 >    // count_local holds the number of found types on this processor
715 >    int count_local = foundTypes.size();
716 >
717 >    int nproc = MPI::COMM_WORLD.Get_size();
718 >
719 >    // we need arrays to hold the counts and displacement vectors for
720 >    // all processors
721 >    vector<int> counts(nproc, 0);
722 >    vector<int> disps(nproc, 0);
723 >
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734      }
735  
736 <    return atomTypes;        
737 < }
736 >    // we need a (possibly redundant) set of all found types:
737 >    vector<int> ftGlobal(totalCount);
738 >    
739 >    // now spray out the foundTypes to all the other processors:    
740 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 < void SimInfo::setupSimType() {
745 <    std::set<AtomType*>::iterator i;
746 <    std::set<AtomType*> atomTypes;
747 <    atomTypes = getUniqueAtomTypes();
744 >    vector<int>::iterator j;
745 >
746 >    // foundIdents is a stl set, so inserting an already found ident
747 >    // will have no effect.
748 >    set<int> foundIdents;
749 >
750 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751 >      foundIdents.insert((*j));
752      
753 <    int useLennardJones = 0;
754 <    int useElectrostatic = 0;
755 <    int useEAM = 0;
756 <    int useCharge = 0;
757 <    int useDirectional = 0;
758 <    int useDipole = 0;
759 <    int useGayBerne = 0;
489 <    int useSticky = 0;
490 <    int useShape = 0;
491 <    int useFLARB = 0; //it is not in AtomType yet
492 <    int useDirectionalAtom = 0;    
493 <    int useElectrostatics = 0;
494 <    //usePBC and useRF are from simParams
495 <    int usePBC = simParams_->getPBC();
496 <    int useRF = simParams_->getUseRF();
753 >    // now iterate over the foundIdents and get the actual atom types
754 >    // that correspond to these:
755 >    set<int>::iterator it;
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757 >      atomTypes.insert( forceField_->getAtomType((*it)) );
758 >
759 > #endif
760  
761 +    return atomTypes;        
762 +  }
763 +
764 +  void SimInfo::setupSimVariables() {
765 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
766 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
767 +    calcBoxDipole_ = false;
768 +    if ( simParams_->haveAccumulateBoxDipole() )
769 +      if ( simParams_->getAccumulateBoxDipole() ) {
770 +        calcBoxDipole_ = true;      
771 +      }
772 +    
773 +    set<AtomType*>::iterator i;
774 +    set<AtomType*> atomTypes;
775 +    atomTypes = getSimulatedAtomTypes();    
776 +    int usesElectrostatic = 0;
777 +    int usesMetallic = 0;
778 +    int usesDirectional = 0;
779      //loop over all of the atom types
780      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
781 <        useLennardJones |= (*i)->isLennardJones();
782 <        useElectrostatic |= (*i)->isElectrostatic();
783 <        useEAM |= (*i)->isEAM();
503 <        useCharge |= (*i)->isCharge();
504 <        useDirectional |= (*i)->isDirectional();
505 <        useDipole |= (*i)->isDipole();
506 <        useGayBerne |= (*i)->isGayBerne();
507 <        useSticky |= (*i)->isSticky();
508 <        useShape |= (*i)->isShape();
781 >      usesElectrostatic |= (*i)->isElectrostatic();
782 >      usesMetallic |= (*i)->isMetal();
783 >      usesDirectional |= (*i)->isDirectional();
784      }
785 <
511 <    if (useSticky || useDipole || useGayBerne || useShape) {
512 <        useDirectionalAtom = 1;
513 <    }
514 <
515 <    if (useCharge || useDipole) {
516 <        useElectrostatics = 1;
517 <    }
518 <
785 >    
786   #ifdef IS_MPI    
787      int temp;
788 +    temp = usesDirectional;
789 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 +    
791 +    temp = usesMetallic;
792 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 +    
794 +    temp = usesElectrostatic;
795 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 + #else
797  
798 <    temp = usePBC;
799 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    usesDirectionalAtoms_ = usesDirectional;
799 >    usesMetallicAtoms_ = usesMetallic;
800 >    usesElectrostaticAtoms_ = usesElectrostatic;
801  
802 <    temp = useDirectionalAtom;
803 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 > #endif
803 >    
804 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807 >  }
808  
528    temp = useLennardJones;
529    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809  
810 <    temp = useElectrostatics;
811 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >  vector<int> SimInfo::getGlobalAtomIndices() {
811 >    SimInfo::MoleculeIterator mi;
812 >    Molecule* mol;
813 >    Molecule::AtomIterator ai;
814 >    Atom* atom;
815  
816 <    temp = useCharge;
535 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
536 <
537 <    temp = useDipole;
538 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
539 <
540 <    temp = useSticky;
541 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
542 <
543 <    temp = useGayBerne;
544 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
545 <
546 <    temp = useEAM;
547 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
548 <
549 <    temp = useShape;
550 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
551 <
552 <    temp = useFLARB;
553 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 <
555 <    temp = useRF;
556 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
817      
818 < #endif
818 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
819 >      
820 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 >      }
823 >    }
824 >    return GlobalAtomIndices;
825 >  }
826  
560    fInfo_.SIM_uses_PBC = usePBC;    
561    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562    fInfo_.SIM_uses_LennardJones = useLennardJones;
563    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
564    fInfo_.SIM_uses_Charges = useCharge;
565    fInfo_.SIM_uses_Dipoles = useDipole;
566    fInfo_.SIM_uses_Sticky = useSticky;
567    fInfo_.SIM_uses_GayBerne = useGayBerne;
568    fInfo_.SIM_uses_EAM = useEAM;
569    fInfo_.SIM_uses_Shapes = useShape;
570    fInfo_.SIM_uses_FLARB = useFLARB;
571    fInfo_.SIM_uses_RF = useRF;
827  
828 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
828 >  vector<int> SimInfo::getGlobalGroupIndices() {
829 >    SimInfo::MoleculeIterator mi;
830 >    Molecule* mol;
831 >    Molecule::CutoffGroupIterator ci;
832 >    CutoffGroup* cg;
833  
834 <        if (simParams_->haveDielectric()) {
835 <            fInfo_.dielect = simParams_->getDielectric();
836 <        } else {
837 <            sprintf(painCave.errMsg,
838 <                    "SimSetup Error: No Dielectric constant was set.\n"
839 <                    "\tYou are trying to use Reaction Field without"
840 <                    "\tsetting a dielectric constant!\n");
841 <            painCave.isFatal = 1;
842 <            simError();
843 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
834 >    vector<int> GlobalGroupIndices;
835 >    
836 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
837 >      
838 >      //local index of cutoff group is trivial, it only depends on the
839 >      //order of travesing
840 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
841 >           cg = mol->nextCutoffGroup(ci)) {
842 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
843 >      }        
844      }
845 +    return GlobalGroupIndices;
846 +  }
847  
590 }
848  
849 < void SimInfo::setupFortranSim() {
850 <    int isError;
594 <    int nExclude;
595 <    std::vector<int> fortranGlobalGroupMembership;
596 <    
597 <    nExclude = exclude_.getSize();
598 <    isError = 0;
849 >  void SimInfo::prepareTopology() {
850 >    int nExclude, nOneTwo, nOneThree, nOneFour;
851  
600    //globalGroupMembership_ is filled by SimCreator    
601    for (int i = 0; i < nGlobalAtoms_; i++) {
602        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
603    }
604
852      //calculate mass ratio of cutoff group
606    std::vector<double> mfact;
853      SimInfo::MoleculeIterator mi;
854      Molecule* mol;
855      Molecule::CutoffGroupIterator ci;
856      CutoffGroup* cg;
857      Molecule::AtomIterator ai;
858      Atom* atom;
859 <    double totalMass;
859 >    RealType totalMass;
860  
861 <    //to avoid memory reallocation, reserve enough space for mfact
862 <    mfact.reserve(getNCutoffGroups());
861 >    /**
862 >     * The mass factor is the relative mass of an atom to the total
863 >     * mass of the cutoff group it belongs to.  By default, all atoms
864 >     * are their own cutoff groups, and therefore have mass factors of
865 >     * 1.  We need some special handling for massless atoms, which
866 >     * will be treated as carrying the entire mass of the cutoff
867 >     * group.
868 >     */
869 >    massFactors_.clear();
870 >    massFactors_.resize(getNAtoms(), 1.0);
871      
872      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
873 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
873 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
874 >           cg = mol->nextCutoffGroup(ci)) {
875  
876 <            totalMass = cg->getMass();
877 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
878 <                        mfact.push_back(atom->getMass()/totalMass);
879 <            }
880 <
881 <        }      
876 >        totalMass = cg->getMass();
877 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
878 >          // Check for massless groups - set mfact to 1 if true
879 >          if (totalMass != 0)
880 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
881 >          else
882 >            massFactors_[atom->getLocalIndex()] = 1.0;
883 >        }
884 >      }      
885      }
886  
887 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
630 <    std::vector<int> identArray;
887 >    // Build the identArray_
888  
889 <    //to avoid memory reallocation, reserve enough space identArray
890 <    identArray.reserve(getNAtoms());
634 <    
889 >    identArray_.clear();
890 >    identArray_.reserve(getNAtoms());    
891      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
892 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 <            identArray.push_back(atom->getIdent());
894 <        }
892 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        identArray_.push_back(atom->getIdent());
894 >      }
895      }    
640
641    //fill molMembershipArray
642    //molMembershipArray is filled by SimCreator    
643    std::vector<int> molMembershipArray(nGlobalAtoms_);
644    for (int i = 0; i < nGlobalAtoms_; i++) {
645        molMembershipArray[i] = globalMolMembership_[i] + 1;
646    }
896      
897 <    //setup fortran simulation
649 <    //gloalExcludes and molMembershipArray should go away (They are never used)
650 <    //why the hell fortran need to know molecule?
651 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652 <    int nGlobalExcludes = 0;
653 <    int* globalExcludes = NULL;
654 <    int* excludeList = exclude_.getExcludeList();
655 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
897 >    //scan topology
898  
899 <    if( isError ){
899 >    nExclude = excludedInteractions_.getSize();
900 >    nOneTwo = oneTwoInteractions_.getSize();
901 >    nOneThree = oneThreeInteractions_.getSize();
902 >    nOneFour = oneFourInteractions_.getSize();
903  
904 <        sprintf( painCave.errMsg,
905 <                 "There was an error setting the simulation information in fortran.\n" );
906 <        painCave.isFatal = 1;
907 <        painCave.severity = OOPSE_ERROR;
665 <        simError();
666 <    }
904 >    int* excludeList = excludedInteractions_.getPairList();
905 >    int* oneTwoList = oneTwoInteractions_.getPairList();
906 >    int* oneThreeList = oneThreeInteractions_.getPairList();
907 >    int* oneFourList = oneFourInteractions_.getPairList();
908  
909 < #ifdef IS_MPI
910 <    sprintf( checkPointMsg,
670 <       "succesfully sent the simulation information to fortran.\n");
671 <    MPIcheckPoint();
672 < #endif // is_mpi
673 < }
909 >    topologyDone_ = true;
910 >  }
911  
912 +  void SimInfo::addProperty(GenericData* genData) {
913 +    properties_.addProperty(genData);  
914 +  }
915  
916 < #ifdef IS_MPI
917 < void SimInfo::setupFortranParallel() {
918 <    
679 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
680 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
681 <    std::vector<int> localToGlobalCutoffGroupIndex;
682 <    SimInfo::MoleculeIterator mi;
683 <    Molecule::AtomIterator ai;
684 <    Molecule::CutoffGroupIterator ci;
685 <    Molecule* mol;
686 <    Atom* atom;
687 <    CutoffGroup* cg;
688 <    mpiSimData parallelData;
689 <    int isError;
916 >  void SimInfo::removeProperty(const string& propName) {
917 >    properties_.removeProperty(propName);  
918 >  }
919  
920 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
920 >  void SimInfo::clearProperties() {
921 >    properties_.clearProperties();
922 >  }
923  
924 <        //local index(index in DataStorge) of atom is important
925 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
926 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
927 <        }
924 >  vector<string> SimInfo::getPropertyNames() {
925 >    return properties_.getPropertyNames();  
926 >  }
927 >      
928 >  vector<GenericData*> SimInfo::getProperties() {
929 >    return properties_.getProperties();
930 >  }
931  
932 <        //local index of cutoff group is trivial, it only depends on the order of travesing
933 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
934 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
701 <        }        
702 <        
703 <    }
932 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
933 >    return properties_.getPropertyByName(propName);
934 >  }
935  
936 <    //fill up mpiSimData struct
937 <    parallelData.nMolGlobal = getNGlobalMolecules();
938 <    parallelData.nMolLocal = getNMolecules();
939 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
940 <    parallelData.nAtomsLocal = getNAtoms();
710 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
711 <    parallelData.nGroupsLocal = getNCutoffGroups();
712 <    parallelData.myNode = worldRank;
713 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
714 <
715 <    //pass mpiSimData struct and index arrays to fortran
716 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
717 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
718 <                    &localToGlobalCutoffGroupIndex[0], &isError);
719 <
720 <    if (isError) {
721 <        sprintf(painCave.errMsg,
722 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
723 <        painCave.isFatal = 1;
724 <        simError();
725 <    }
726 <
727 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
728 <    MPIcheckPoint();
729 <
730 <
731 < }
732 <
733 < #endif
734 <
735 < double SimInfo::calcMaxCutoffRadius() {
736 <
737 <
738 <    std::set<AtomType*> atomTypes;
739 <    std::set<AtomType*>::iterator i;
740 <    std::vector<double> cutoffRadius;
741 <
742 <    //get the unique atom types
743 <    atomTypes = getUniqueAtomTypes();
744 <
745 <    //query the max cutoff radius among these atom types
746 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
748 <    }
749 <
750 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
751 < #ifdef IS_MPI
752 <    //pick the max cutoff radius among the processors
753 < #endif
754 <
755 <    return maxCutoffRadius;
756 < }
757 <
758 < void SimInfo::getCutoff(double& rcut, double& rsw) {
759 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut = 15.0;
770 <        } else{
771 <            rcut = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw = 0.95 * rcut;
782 <        } else{
783 <            rsw = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
803 <    }
804 < }
805 <
806 < void SimInfo::setupCutoff() {
807 <    getCutoff(rcut_, rsw_);    
808 <    double rnblist = rcut_ + 1; // skin of neighbor list
809 <
810 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 < }
813 <
814 < void SimInfo::addProperty(GenericData* genData) {
815 <    properties_.addProperty(genData);  
816 < }
817 <
818 < void SimInfo::removeProperty(const std::string& propName) {
819 <    properties_.removeProperty(propName);  
820 < }
821 <
822 < void SimInfo::clearProperties() {
823 <    properties_.clearProperties();
824 < }
825 <
826 < std::vector<std::string> SimInfo::getPropertyNames() {
827 <    return properties_.getPropertyNames();  
828 < }
829 <      
830 < std::vector<GenericData*> SimInfo::getProperties() {
831 <    return properties_.getProperties();
832 < }
833 <
834 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
835 <    return properties_.getPropertyByName(propName);
836 < }
837 <
838 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
839 <    //if (sman_ == sman_) {
840 <    //    return;
841 <    //}
842 <    
843 <    //delete sman_;
936 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
937 >    if (sman_ == sman) {
938 >      return;
939 >    }    
940 >    delete sman_;
941      sman_ = sman;
942  
943      Molecule* mol;
944      RigidBody* rb;
945      Atom* atom;
946 +    CutoffGroup* cg;
947      SimInfo::MoleculeIterator mi;
948      Molecule::RigidBodyIterator rbIter;
949 <    Molecule::AtomIterator atomIter;;
949 >    Molecule::AtomIterator atomIter;
950 >    Molecule::CutoffGroupIterator cgIter;
951  
952      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
953          
954 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
955 <            atom->setSnapshotManager(sman_);
956 <        }
954 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
955 >        atom->setSnapshotManager(sman_);
956 >      }
957          
958 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
959 <            rb->setSnapshotManager(sman_);
960 <        }
958 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
959 >        rb->setSnapshotManager(sman_);
960 >      }
961 >
962 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
963 >        cg->setSnapshotManager(sman_);
964 >      }
965      }    
966      
967 < }
967 >  }
968  
969 < Vector3d SimInfo::getComVel(){
969 >  Vector3d SimInfo::getComVel(){
970      SimInfo::MoleculeIterator i;
971      Molecule* mol;
972  
973      Vector3d comVel(0.0);
974 <    double totalMass = 0.0;
974 >    RealType totalMass = 0.0;
975      
976  
977      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
978 <        double mass = mol->getMass();
979 <        totalMass += mass;
980 <        comVel += mass * mol->getComVel();
978 >      RealType mass = mol->getMass();
979 >      totalMass += mass;
980 >      comVel += mass * mol->getComVel();
981      }  
982  
983   #ifdef IS_MPI
984 <    double tmpMass = totalMass;
984 >    RealType tmpMass = totalMass;
985      Vector3d tmpComVel(comVel);    
986 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
987 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
987 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
988   #endif
989  
990      comVel /= totalMass;
991  
992      return comVel;
993 < }
993 >  }
994  
995 < Vector3d SimInfo::getCom(){
995 >  Vector3d SimInfo::getCom(){
996      SimInfo::MoleculeIterator i;
997      Molecule* mol;
998  
999      Vector3d com(0.0);
1000 <    double totalMass = 0.0;
1000 >    RealType totalMass = 0.0;
1001      
1002      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1003 <        double mass = mol->getMass();
1004 <        totalMass += mass;
1005 <        com += mass * mol->getCom();
1003 >      RealType mass = mol->getMass();
1004 >      totalMass += mass;
1005 >      com += mass * mol->getCom();
1006      }  
1007  
1008   #ifdef IS_MPI
1009 <    double tmpMass = totalMass;
1009 >    RealType tmpMass = totalMass;
1010      Vector3d tmpCom(com);    
1011 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1012 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1012 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1013   #endif
1014  
1015      com /= totalMass;
1016  
1017      return com;
1018  
1019 < }        
1019 >  }        
1020  
1021 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1021 >  ostream& operator <<(ostream& o, SimInfo& info) {
1022  
1023      return o;
1024 < }
1024 >  }
1025 >  
1026 >  
1027 >   /*
1028 >   Returns center of mass and center of mass velocity in one function call.
1029 >   */
1030 >  
1031 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1032 >      SimInfo::MoleculeIterator i;
1033 >      Molecule* mol;
1034 >      
1035 >    
1036 >      RealType totalMass = 0.0;
1037 >    
1038  
1039 < }//end namespace oopse
1039 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1040 >         RealType mass = mol->getMass();
1041 >         totalMass += mass;
1042 >         com += mass * mol->getCom();
1043 >         comVel += mass * mol->getComVel();          
1044 >      }  
1045 >      
1046 > #ifdef IS_MPI
1047 >      RealType tmpMass = totalMass;
1048 >      Vector3d tmpCom(com);  
1049 >      Vector3d tmpComVel(comVel);
1050 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1051 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1052 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1053 > #endif
1054 >      
1055 >      com /= totalMass;
1056 >      comVel /= totalMass;
1057 >   }        
1058 >  
1059 >   /*
1060 >   Return intertia tensor for entire system and angular momentum Vector.
1061  
1062 +
1063 +       [  Ixx -Ixy  -Ixz ]
1064 +    J =| -Iyx  Iyy  -Iyz |
1065 +       [ -Izx -Iyz   Izz ]
1066 +    */
1067 +
1068 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1069 +      
1070 +
1071 +      RealType xx = 0.0;
1072 +      RealType yy = 0.0;
1073 +      RealType zz = 0.0;
1074 +      RealType xy = 0.0;
1075 +      RealType xz = 0.0;
1076 +      RealType yz = 0.0;
1077 +      Vector3d com(0.0);
1078 +      Vector3d comVel(0.0);
1079 +      
1080 +      getComAll(com, comVel);
1081 +      
1082 +      SimInfo::MoleculeIterator i;
1083 +      Molecule* mol;
1084 +      
1085 +      Vector3d thisq(0.0);
1086 +      Vector3d thisv(0.0);
1087 +
1088 +      RealType thisMass = 0.0;
1089 +    
1090 +      
1091 +      
1092 +  
1093 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1094 +        
1095 +         thisq = mol->getCom()-com;
1096 +         thisv = mol->getComVel()-comVel;
1097 +         thisMass = mol->getMass();
1098 +         // Compute moment of intertia coefficients.
1099 +         xx += thisq[0]*thisq[0]*thisMass;
1100 +         yy += thisq[1]*thisq[1]*thisMass;
1101 +         zz += thisq[2]*thisq[2]*thisMass;
1102 +        
1103 +         // compute products of intertia
1104 +         xy += thisq[0]*thisq[1]*thisMass;
1105 +         xz += thisq[0]*thisq[2]*thisMass;
1106 +         yz += thisq[1]*thisq[2]*thisMass;
1107 +            
1108 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1109 +            
1110 +      }  
1111 +      
1112 +      
1113 +      inertiaTensor(0,0) = yy + zz;
1114 +      inertiaTensor(0,1) = -xy;
1115 +      inertiaTensor(0,2) = -xz;
1116 +      inertiaTensor(1,0) = -xy;
1117 +      inertiaTensor(1,1) = xx + zz;
1118 +      inertiaTensor(1,2) = -yz;
1119 +      inertiaTensor(2,0) = -xz;
1120 +      inertiaTensor(2,1) = -yz;
1121 +      inertiaTensor(2,2) = xx + yy;
1122 +      
1123 + #ifdef IS_MPI
1124 +      Mat3x3d tmpI(inertiaTensor);
1125 +      Vector3d tmpAngMom;
1126 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1127 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1128 + #endif
1129 +              
1130 +      return;
1131 +   }
1132 +
1133 +   //Returns the angular momentum of the system
1134 +   Vector3d SimInfo::getAngularMomentum(){
1135 +      
1136 +      Vector3d com(0.0);
1137 +      Vector3d comVel(0.0);
1138 +      Vector3d angularMomentum(0.0);
1139 +      
1140 +      getComAll(com,comVel);
1141 +      
1142 +      SimInfo::MoleculeIterator i;
1143 +      Molecule* mol;
1144 +      
1145 +      Vector3d thisr(0.0);
1146 +      Vector3d thisp(0.0);
1147 +      
1148 +      RealType thisMass;
1149 +      
1150 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1151 +        thisMass = mol->getMass();
1152 +        thisr = mol->getCom()-com;
1153 +        thisp = (mol->getComVel()-comVel)*thisMass;
1154 +        
1155 +        angularMomentum += cross( thisr, thisp );
1156 +        
1157 +      }  
1158 +      
1159 + #ifdef IS_MPI
1160 +      Vector3d tmpAngMom;
1161 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 + #endif
1163 +      
1164 +      return angularMomentum;
1165 +   }
1166 +  
1167 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1168 +    return IOIndexToIntegrableObject.at(index);
1169 +  }
1170 +  
1171 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1172 +    IOIndexToIntegrableObject= v;
1173 +  }
1174 +
1175 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1176 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1177 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1178 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1179 +  */
1180 +  void SimInfo::getGyrationalVolume(RealType &volume){
1181 +    Mat3x3d intTensor;
1182 +    RealType det;
1183 +    Vector3d dummyAngMom;
1184 +    RealType sysconstants;
1185 +    RealType geomCnst;
1186 +
1187 +    geomCnst = 3.0/2.0;
1188 +    /* Get the inertial tensor and angular momentum for free*/
1189 +    getInertiaTensor(intTensor,dummyAngMom);
1190 +    
1191 +    det = intTensor.determinant();
1192 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1193 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1194 +    return;
1195 +  }
1196 +
1197 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1198 +    Mat3x3d intTensor;
1199 +    Vector3d dummyAngMom;
1200 +    RealType sysconstants;
1201 +    RealType geomCnst;
1202 +
1203 +    geomCnst = 3.0/2.0;
1204 +    /* Get the inertial tensor and angular momentum for free*/
1205 +    getInertiaTensor(intTensor,dummyAngMom);
1206 +    
1207 +    detI = intTensor.determinant();
1208 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1209 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1210 +    return;
1211 +  }
1212 + /*
1213 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1214 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1215 +      sdByGlobalIndex_ = v;
1216 +    }
1217 +
1218 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1219 +      //assert(index < nAtoms_ + nRigidBodies_);
1220 +      return sdByGlobalIndex_.at(index);
1221 +    }  
1222 + */  
1223 +  int SimInfo::getNGlobalConstraints() {
1224 +    int nGlobalConstraints;
1225 + #ifdef IS_MPI
1226 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1227 +                  MPI_COMM_WORLD);    
1228 + #else
1229 +    nGlobalConstraints =  nConstraints_;
1230 + #endif
1231 +    return nGlobalConstraints;
1232 +  }
1233 +
1234 + }//end namespace OpenMD
1235 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1588 by gezelter, Sat Jul 9 15:05:59 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines