ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                                ForceField* ff, Globals* simParams) :
75 <                                forceField_(ff), simParams_(simParams),
76 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <                                sman_(NULL), fortranInitialized_(false) {
82 <
83 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84      MoleculeStamp* molStamp;
85      int nMolWithSameStamp;
86      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88      CutoffGroupStamp* cgStamp;    
89      RigidBodyStamp* rbStamp;
90      int nRigidAtoms = 0;
91      
92 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93 <        molStamp = i->first;
94 <        nMolWithSameStamp = i->second;
95 <        
96 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
97 <
98 <        //calculate atoms in molecules
99 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 <
101 <
102 <        //calculate atoms in cutoff groups
103 <        int nAtomsInGroups = 0;
104 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 <        
106 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 <            cgStamp = molStamp->getCutoffGroup(j);
108 <            nAtomsInGroups += cgStamp->getNMembers();
109 <        }
110 <
111 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 <
114 <        //calculate atoms in rigid bodies
115 <        int nAtomsInRigidBodies = 0;
116 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <            rbStamp = molStamp->getRigidBody(j);
120 <            nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 <
130 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
131 <    //therefore the total number of cutoff groups in the system is equal to
132 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
133 <    //file plus the number of cutoff groups defined in meta-data file
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 <
137 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
138 <    //therefore the total number of  integrable objects in the system is equal to
139 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
140 <    //file plus the number of  rigid bodies defined in meta-data file
141 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
142 <
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
146      molToProcMap_.resize(nGlobalMols_);
147 < #endif
148 <
149 < }
150 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
147 >  }
148 >  
149 >  SimInfo::~SimInfo() {
150 >    map<int, Molecule*>::iterator i;
151      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152 <        delete i->second;
152 >      delete i->second;
153      }
154      molecules_.clear();
155 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
155 >      
156      delete sman_;
157      delete simParams_;
158      delete forceField_;
159 < }
159 >  }
160  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
161  
162 < bool SimInfo::addMolecule(Molecule* mol) {
162 >  bool SimInfo::addMolecule(Molecule* mol) {
163      MoleculeIterator i;
164 <
164 >    
165      i = molecules_.find(mol->getGlobalIndex());
166      if (i == molecules_.end() ) {
167 <
168 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
169 <        
170 <        nAtoms_ += mol->getNAtoms();
171 <        nBonds_ += mol->getNBonds();
172 <        nBends_ += mol->getNBends();
173 <        nTorsions_ += mol->getNTorsions();
174 <        nRigidBodies_ += mol->getNRigidBodies();
175 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
176 <        nCutoffGroups_ += mol->getNCutoffGroups();
177 <        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <        addExcludePairs(mol);
180 <        
181 <        return true;
182 <    } else {
183 <        return false;
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170 >      nAtoms_ += mol->getNAtoms();
171 >      nBonds_ += mol->getNBonds();
172 >      nBends_ += mol->getNBends();
173 >      nTorsions_ += mol->getNTorsions();
174 >      nInversions_ += mol->getNInversions();
175 >      nRigidBodies_ += mol->getNRigidBodies();
176 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
177 >      nCutoffGroups_ += mol->getNCutoffGroups();
178 >      nConstraints_ += mol->getNConstraintPairs();
179 >      
180 >      addInteractionPairs(mol);
181 >      
182 >      return true;
183 >    } else {
184 >      return false;
185      }
186 < }
187 <
188 < bool SimInfo::removeMolecule(Molecule* mol) {
186 >  }
187 >  
188 >  bool SimInfo::removeMolecule(Molecule* mol) {
189      MoleculeIterator i;
190      i = molecules_.find(mol->getGlobalIndex());
191  
192      if (i != molecules_.end() ) {
193  
194 <        assert(mol == i->second);
194 >      assert(mol == i->second);
195          
196 <        nAtoms_ -= mol->getNAtoms();
197 <        nBonds_ -= mol->getNBonds();
198 <        nBends_ -= mol->getNBends();
199 <        nTorsions_ -= mol->getNTorsions();
200 <        nRigidBodies_ -= mol->getNRigidBodies();
201 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 <        nCutoffGroups_ -= mol->getNCutoffGroups();
203 <        nConstraints_ -= mol->getNConstraintPairs();
196 >      nAtoms_ -= mol->getNAtoms();
197 >      nBonds_ -= mol->getNBonds();
198 >      nBends_ -= mol->getNBends();
199 >      nTorsions_ -= mol->getNTorsions();
200 >      nInversions_ -= mol->getNInversions();
201 >      nRigidBodies_ -= mol->getNRigidBodies();
202 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 >      nCutoffGroups_ -= mol->getNCutoffGroups();
204 >      nConstraints_ -= mol->getNConstraintPairs();
205  
206 <        removeExcludePairs(mol);
207 <        molecules_.erase(mol->getGlobalIndex());
206 >      removeInteractionPairs(mol);
207 >      molecules_.erase(mol->getGlobalIndex());
208  
209 <        delete mol;
209 >      delete mol;
210          
211 <        return true;
211 >      return true;
212      } else {
213 <        return false;
213 >      return false;
214      }
215 +  }    
216  
221
222 }    
223
217          
218 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219      i = molecules_.begin();
220      return i == molecules_.end() ? NULL : i->second;
221 < }    
221 >  }    
222  
223 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224      ++i;
225      return i == molecules_.end() ? NULL : i->second;    
226 < }
226 >  }
227  
228  
229 < void SimInfo::calcNdf() {
229 >  void SimInfo::calcNdf() {
230      int ndf_local;
231      MoleculeIterator i;
232 <    std::vector<StuntDouble*>::iterator j;
232 >    vector<StuntDouble*>::iterator j;
233      Molecule* mol;
234      StuntDouble* integrableObject;
235  
236      ndf_local = 0;
237      
238      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 <               integrableObject = mol->nextIntegrableObject(j)) {
239 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 >           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 <            ndf_local += 3;
242 >        ndf_local += 3;
243  
244 <            if (integrableObject->isDirectional()) {
245 <                if (integrableObject->isLinear()) {
246 <                    ndf_local += 2;
247 <                } else {
248 <                    ndf_local += 3;
249 <                }
250 <            }
244 >        if (integrableObject->isDirectional()) {
245 >          if (integrableObject->isLinear()) {
246 >            ndf_local += 2;
247 >          } else {
248 >            ndf_local += 3;
249 >          }
250 >        }
251              
252 <        }//end for (integrableObject)
253 <    }// end for (mol)
252 >      }
253 >    }
254      
255      // n_constraints is local, so subtract them on each processor
256      ndf_local -= nConstraints_;
# Line 272 | Line 265 | void SimInfo::calcNdf() {
265      // entire system:
266      ndf_ = ndf_ - 3 - nZconstraint_;
267  
268 < }
268 >  }
269  
270 < void SimInfo::calcNdfRaw() {
270 >  int SimInfo::getFdf() {
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    fdf_ = fdf_local;
275 > #endif
276 >    return fdf_;
277 >  }
278 >    
279 >  void SimInfo::calcNdfRaw() {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
283 <    std::vector<StuntDouble*>::iterator j;
283 >    vector<StuntDouble*>::iterator j;
284      Molecule* mol;
285      StuntDouble* integrableObject;
286  
# Line 286 | Line 288 | void SimInfo::calcNdfRaw() {
288      ndfRaw_local = 0;
289      
290      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 <               integrableObject = mol->nextIntegrableObject(j)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 <            ndfRaw_local += 3;
294 >        ndfRaw_local += 3;
295  
296 <            if (integrableObject->isDirectional()) {
297 <                if (integrableObject->isLinear()) {
298 <                    ndfRaw_local += 2;
299 <                } else {
300 <                    ndfRaw_local += 3;
301 <                }
302 <            }
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303              
304 <        }
304 >      }
305      }
306      
307   #ifdef IS_MPI
# Line 307 | Line 309 | void SimInfo::calcNdfRaw() {
309   #else
310      ndfRaw_ = ndfRaw_local;
311   #endif
312 < }
312 >  }
313  
314 < void SimInfo::calcNdfTrans() {
314 >  void SimInfo::calcNdfTrans() {
315      int ndfTrans_local;
316  
317      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 325 | void SimInfo::calcNdfTrans() {
325  
326      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327  
328 < }
328 >  }
329  
330 < void SimInfo::addExcludePairs(Molecule* mol) {
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336      Bond* bond;
337      Bend* bend;
338      Torsion* torsion;
339 +    Inversion* inversion;
340      int a;
341      int b;
342      int c;
343      int d;
339    
340    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341        a = bond->getAtomA()->getGlobalIndex();
342        b = bond->getAtomB()->getGlobalIndex();        
343        exclude_.addPair(a, b);
344    }
344  
345 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
346 <        a = bend->getAtomA()->getGlobalIndex();
347 <        b = bend->getAtomB()->getGlobalIndex();        
348 <        c = bend->getAtomC()->getGlobalIndex();
345 >    // atomGroups can be used to add special interaction maps between
346 >    // groups of atoms that are in two separate rigid bodies.
347 >    // However, most site-site interactions between two rigid bodies
348 >    // are probably not special, just the ones between the physically
349 >    // bonded atoms.  Interactions *within* a single rigid body should
350 >    // always be excluded.  These are done at the bottom of this
351 >    // function.
352  
353 <        exclude_.addPair(a, b);
354 <        exclude_.addPair(a, c);
355 <        exclude_.addPair(b, c);        
356 <    }
357 <
358 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
359 <        a = torsion->getAtomA()->getGlobalIndex();
360 <        b = torsion->getAtomB()->getGlobalIndex();        
361 <        c = torsion->getAtomC()->getGlobalIndex();        
362 <        d = torsion->getAtomD()->getGlobalIndex();        
353 >    map<int, set<int> > atomGroups;
354 >    Molecule::RigidBodyIterator rbIter;
355 >    RigidBody* rb;
356 >    Molecule::IntegrableObjectIterator ii;
357 >    StuntDouble* integrableObject;
358 >    
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382  
383 <        exclude_.addPair(a, b);
384 <        exclude_.addPair(a, c);
385 <        exclude_.addPair(a, d);
386 <        exclude_.addPair(b, c);
387 <        exclude_.addPair(b, d);
388 <        exclude_.addPair(c, d);        
383 >      a = bond->getAtomA()->getGlobalIndex();
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391      }
392  
393 <    
394 < }
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395  
396 < void SimInfo::removeExcludePairs(Molecule* mol) {
397 <    std::vector<Bond*>::iterator bondIter;
398 <    std::vector<Bend*>::iterator bendIter;
399 <    std::vector<Torsion*>::iterator torsionIter;
396 >      a = bend->getAtomA()->getGlobalIndex();
397 >      b = bend->getAtomB()->getGlobalIndex();        
398 >      c = bend->getAtomC()->getGlobalIndex();
399 >      
400 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 >        oneTwoInteractions_.addPair(a, b);      
402 >        oneTwoInteractions_.addPair(b, c);
403 >      } else {
404 >        excludedInteractions_.addPair(a, b);
405 >        excludedInteractions_.addPair(b, c);
406 >      }
407 >
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413 >    }
414 >
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417 >
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422 >
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432 >
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440 >
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446 >    }
447 >
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450 >
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455 >
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465 >
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476 >
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482 >          a = atoms[i]->getGlobalIndex();
483 >          b = atoms[j]->getGlobalIndex();
484 >          excludedInteractions_.addPair(a, b);
485 >        }
486 >      }
487 >    }        
488 >
489 >  }
490 >
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497      Bond* bond;
498      Bend* bend;
499      Torsion* torsion;
500 +    Inversion* inversion;
501      int a;
502      int b;
503      int c;
504      int d;
505 +
506 +    map<int, set<int> > atomGroups;
507 +    Molecule::RigidBodyIterator rbIter;
508 +    RigidBody* rb;
509 +    Molecule::IntegrableObjectIterator ii;
510 +    StuntDouble* integrableObject;
511      
512 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
513 <        a = bond->getAtomA()->getGlobalIndex();
514 <        b = bond->getAtomB()->getGlobalIndex();        
515 <        exclude_.removePair(a, b);
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532 >
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536 >      a = bond->getAtomA()->getGlobalIndex();
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544      }
545  
546 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
547 <        a = bend->getAtomA()->getGlobalIndex();
393 <        b = bend->getAtomB()->getGlobalIndex();        
394 <        c = bend->getAtomC()->getGlobalIndex();
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548  
549 <        exclude_.removePair(a, b);
550 <        exclude_.removePair(a, c);
551 <        exclude_.removePair(b, c);        
549 >      a = bend->getAtomA()->getGlobalIndex();
550 >      b = bend->getAtomB()->getGlobalIndex();        
551 >      c = bend->getAtomC()->getGlobalIndex();
552 >      
553 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 >        oneTwoInteractions_.removePair(a, b);      
555 >        oneTwoInteractions_.removePair(b, c);
556 >      } else {
557 >        excludedInteractions_.removePair(a, b);
558 >        excludedInteractions_.removePair(b, c);
559 >      }
560 >
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566      }
567  
568 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
569 <        a = torsion->getAtomA()->getGlobalIndex();
403 <        b = torsion->getAtomB()->getGlobalIndex();        
404 <        c = torsion->getAtomC()->getGlobalIndex();        
405 <        d = torsion->getAtomD()->getGlobalIndex();        
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570  
571 <        exclude_.removePair(a, b);
572 <        exclude_.removePair(a, c);
573 <        exclude_.removePair(a, d);
574 <        exclude_.removePair(b, c);
575 <        exclude_.removePair(b, d);
576 <        exclude_.removePair(c, d);        
571 >      a = torsion->getAtomA()->getGlobalIndex();
572 >      b = torsion->getAtomB()->getGlobalIndex();        
573 >      c = torsion->getAtomC()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575 >  
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585 >
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593 >
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599      }
600  
601 < }
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603  
604 +      a = inversion->getAtomA()->getGlobalIndex();
605 +      b = inversion->getAtomB()->getGlobalIndex();        
606 +      c = inversion->getAtomC()->getGlobalIndex();        
607 +      d = inversion->getAtomD()->getGlobalIndex();        
608  
609 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
610 <    int curStampId;
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618  
619 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 +        oneThreeInteractions_.removePair(b, c);    
621 +        oneThreeInteractions_.removePair(b, d);    
622 +        oneThreeInteractions_.removePair(c, d);      
623 +      } else {
624 +        excludedInteractions_.removePair(b, c);
625 +        excludedInteractions_.removePair(b, d);
626 +        excludedInteractions_.removePair(c, d);
627 +      }
628 +    }
629 +
630 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 +         rb = mol->nextRigidBody(rbIter)) {
632 +      vector<Atom*> atoms = rb->getAtoms();
633 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635 +          a = atoms[i]->getGlobalIndex();
636 +          b = atoms[j]->getGlobalIndex();
637 +          excludedInteractions_.removePair(a, b);
638 +        }
639 +      }
640 +    }        
641 +    
642 +  }
643 +  
644 +  
645 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646 +    int curStampId;
647 +    
648      //index from 0
649      curStampId = moleculeStamps_.size();
650  
651      moleculeStamps_.push_back(molStamp);
652      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653 < }
653 >  }
654  
428 void SimInfo::update() {
655  
656 <    setupSimType();
657 <
658 < #ifdef IS_MPI
659 <    setupFortranParallel();
660 < #endif
661 <
662 <    setupFortranSim();
663 <
664 <    //setup fortran force field
439 <    /** @deprecate */    
440 <    int isError = 0;
441 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442 <    if(isError){
443 <        sprintf( painCave.errMsg,
444 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445 <        painCave.isFatal = 1;
446 <        simError();
447 <    }
448 <  
449 <    
450 <    setupCutoff();
451 <
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the
660 >   *  objects have been created.
661 >   *
662 >   */
663 >  void SimInfo::update() {  
664 >    setupSimVariables();
665      calcNdf();
666      calcNdfRaw();
667      calcNdfTrans();
668 <
669 <    fortranInitialized_ = true;
670 < }
671 <
672 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  }
669 >  
670 >  /**
671 >   * getSimulatedAtomTypes
672 >   *
673 >   * Returns an STL set of AtomType* that are actually present in this
674 >   * simulation.  Must query all processors to assemble this information.
675 >   *
676 >   */
677 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678      SimInfo::MoleculeIterator mi;
679      Molecule* mol;
680      Molecule::AtomIterator ai;
681      Atom* atom;
682 <    std::set<AtomType*> atomTypes;
682 >    set<AtomType*> atomTypes;
683 >    
684 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
685 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686 >        atomTypes.insert(atom->getAtomType());
687 >      }      
688 >    }    
689  
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
690 > #ifdef IS_MPI
691  
692 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
693 <            atomTypes.insert(atom->getAtomType());
470 <        }
471 <        
472 <    }
692 >    // loop over the found atom types on this processor, and add their
693 >    // numerical idents to a vector:
694  
695 <    return atomTypes;        
696 < }
695 >    vector<int> foundTypes;
696 >    set<AtomType*>::iterator i;
697 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 >      foundTypes.push_back( (*i)->getIdent() );
699  
700 < void SimInfo::setupSimType() {
701 <    std::set<AtomType*>::iterator i;
702 <    std::set<AtomType*> atomTypes;
703 <    atomTypes = getUniqueAtomTypes();
700 >    // count_local holds the number of found types on this processor
701 >    int count_local = foundTypes.size();
702 >
703 >    // count holds the total number of found types on all processors
704 >    // (some will be redundant with the ones found locally):
705 >    int count;
706 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707 >
708 >    // create a vector to hold the globally found types, and resize it:
709 >    vector<int> ftGlobal;
710 >    ftGlobal.resize(count);
711 >    vector<int> counts;
712 >
713 >    int nproc = MPI::COMM_WORLD.Get_size();
714 >    counts.resize(nproc);
715 >    vector<int> disps;
716 >    disps.resize(nproc);
717 >
718 >    // now spray out the foundTypes to all the other processors:
719      
720 <    int useLennardJones = 0;
721 <    int useElectrostatic = 0;
484 <    int useEAM = 0;
485 <    int useCharge = 0;
486 <    int useDirectional = 0;
487 <    int useDipole = 0;
488 <    int useGayBerne = 0;
489 <    int useSticky = 0;
490 <    int useShape = 0;
491 <    int useFLARB = 0; //it is not in AtomType yet
492 <    int useDirectionalAtom = 0;    
493 <    int useElectrostatics = 0;
494 <    //usePBC and useRF are from simParams
495 <    int usePBC = simParams_->getPBC();
496 <    int useRF = simParams_->getUseRF();
720 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722  
723 +    // foundIdents is a stl set, so inserting an already found ident
724 +    // will have no effect.
725 +    set<int> foundIdents;
726 +    vector<int>::iterator j;
727 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 +      foundIdents.insert((*j));
729 +    
730 +    // now iterate over the foundIdents and get the actual atom types
731 +    // that correspond to these:
732 +    set<int>::iterator it;
733 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 +      atomTypes.insert( forceField_->getAtomType((*it)) );
735 +
736 + #endif
737 +    
738 +    return atomTypes;        
739 +  }
740 +
741 +  void SimInfo::setupSimVariables() {
742 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 +    calcBoxDipole_ = false;
745 +    if ( simParams_->haveAccumulateBoxDipole() )
746 +      if ( simParams_->getAccumulateBoxDipole() ) {
747 +        calcBoxDipole_ = true;      
748 +      }
749 +
750 +    set<AtomType*>::iterator i;
751 +    set<AtomType*> atomTypes;
752 +    atomTypes = getSimulatedAtomTypes();    
753 +    int usesElectrostatic = 0;
754 +    int usesMetallic = 0;
755 +    int usesDirectional = 0;
756      //loop over all of the atom types
757      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 <        useLennardJones |= (*i)->isLennardJones();
759 <        useElectrostatic |= (*i)->isElectrostatic();
760 <        useEAM |= (*i)->isEAM();
503 <        useCharge |= (*i)->isCharge();
504 <        useDirectional |= (*i)->isDirectional();
505 <        useDipole |= (*i)->isDipole();
506 <        useGayBerne |= (*i)->isGayBerne();
507 <        useSticky |= (*i)->isSticky();
508 <        useShape |= (*i)->isShape();
758 >      usesElectrostatic |= (*i)->isElectrostatic();
759 >      usesMetallic |= (*i)->isMetal();
760 >      usesDirectional |= (*i)->isDirectional();
761      }
762  
511    if (useSticky || useDipole || useGayBerne || useShape) {
512        useDirectionalAtom = 1;
513    }
514
515    if (useCharge || useDipole) {
516        useElectrostatics = 1;
517    }
518
763   #ifdef IS_MPI    
764      int temp;
765 +    temp = usesDirectional;
766 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767  
768 <    temp = usePBC;
769 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
768 >    temp = usesMetallic;
769 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770  
771 <    temp = useDirectionalAtom;
772 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
527 <
528 <    temp = useLennardJones;
529 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
530 <
531 <    temp = useElectrostatics;
532 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
533 <
534 <    temp = useCharge;
535 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
536 <
537 <    temp = useDipole;
538 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
539 <
540 <    temp = useSticky;
541 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
542 <
543 <    temp = useGayBerne;
544 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
545 <
546 <    temp = useEAM;
547 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
548 <
549 <    temp = useShape;
550 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
551 <
552 <    temp = useFLARB;
553 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
554 <
555 <    temp = useRF;
556 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
557 <    
771 >    temp = usesElectrostatic;
772 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773   #endif
774 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
775 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780 +  }
781  
782 <    fInfo_.SIM_uses_PBC = usePBC;    
561 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
562 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
563 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
564 <    fInfo_.SIM_uses_Charges = useCharge;
565 <    fInfo_.SIM_uses_Dipoles = useDipole;
566 <    fInfo_.SIM_uses_Sticky = useSticky;
567 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
568 <    fInfo_.SIM_uses_EAM = useEAM;
569 <    fInfo_.SIM_uses_Shapes = useShape;
570 <    fInfo_.SIM_uses_FLARB = useFLARB;
571 <    fInfo_.SIM_uses_RF = useRF;
572 <
573 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
574 <
575 <        if (simParams_->haveDielectric()) {
576 <            fInfo_.dielect = simParams_->getDielectric();
577 <        } else {
578 <            sprintf(painCave.errMsg,
579 <                    "SimSetup Error: No Dielectric constant was set.\n"
580 <                    "\tYou are trying to use Reaction Field without"
581 <                    "\tsetting a dielectric constant!\n");
582 <            painCave.isFatal = 1;
583 <            simError();
584 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
588 <    }
589 <
590 < }
591 <
592 < void SimInfo::setupFortranSim() {
782 >  void SimInfo::setupFortran() {
783      int isError;
784 <    int nExclude;
785 <    std::vector<int> fortranGlobalGroupMembership;
784 >    int nExclude, nOneTwo, nOneThree, nOneFour;
785 >    vector<int> fortranGlobalGroupMembership;
786      
597    nExclude = exclude_.getSize();
787      isError = 0;
788  
789      //globalGroupMembership_ is filled by SimCreator    
790      for (int i = 0; i < nGlobalAtoms_; i++) {
791 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
791 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792      }
793  
794      //calculate mass ratio of cutoff group
795 <    std::vector<double> mfact;
795 >    vector<RealType> mfact;
796      SimInfo::MoleculeIterator mi;
797      Molecule* mol;
798      Molecule::CutoffGroupIterator ci;
799      CutoffGroup* cg;
800      Molecule::AtomIterator ai;
801      Atom* atom;
802 <    double totalMass;
802 >    RealType totalMass;
803  
804      //to avoid memory reallocation, reserve enough space for mfact
805      mfact.reserve(getNCutoffGroups());
806      
807      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
808 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
808 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809  
810 <            totalMass = cg->getMass();
811 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 <                        mfact.push_back(atom->getMass()/totalMass);
813 <            }
814 <
815 <        }      
810 >        totalMass = cg->getMass();
811 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 >          // Check for massless groups - set mfact to 1 if true
813 >          if (totalMass != 0)
814 >            mfact.push_back(atom->getMass()/totalMass);
815 >          else
816 >            mfact.push_back( 1.0 );
817 >        }
818 >      }      
819      }
820  
821 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
822 <    std::vector<int> identArray;
821 >    //fill ident array of local atoms (it is actually ident of
822 >    //AtomType, it is so confusing !!!)
823 >    vector<int> identArray;
824  
825      //to avoid memory reallocation, reserve enough space identArray
826      identArray.reserve(getNAtoms());
827      
828      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
829 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 <            identArray.push_back(atom->getIdent());
831 <        }
829 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 >        identArray.push_back(atom->getIdent());
831 >      }
832      }    
833  
834      //fill molMembershipArray
835      //molMembershipArray is filled by SimCreator    
836 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
836 >    vector<int> molMembershipArray(nGlobalAtoms_);
837      for (int i = 0; i < nGlobalAtoms_; i++) {
838 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
838 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
839      }
840      
841      //setup fortran simulation
649    //gloalExcludes and molMembershipArray should go away (They are never used)
650    //why the hell fortran need to know molecule?
651    //OOPSE = Object-Obfuscated Parallel Simulation Engine
652    int nGlobalExcludes = 0;
653    int* globalExcludes = NULL;
654    int* excludeList = exclude_.getExcludeList();
655    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
656                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
657                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
842  
843 <    if( isError ){
843 >    nExclude = excludedInteractions_.getSize();
844 >    nOneTwo = oneTwoInteractions_.getSize();
845 >    nOneThree = oneThreeInteractions_.getSize();
846 >    nOneFour = oneFourInteractions_.getSize();
847  
848 <        sprintf( painCave.errMsg,
849 <                 "There was an error setting the simulation information in fortran.\n" );
850 <        painCave.isFatal = 1;
851 <        painCave.severity = OOPSE_ERROR;
665 <        simError();
666 <    }
848 >    int* excludeList = excludedInteractions_.getPairList();
849 >    int* oneTwoList = oneTwoInteractions_.getPairList();
850 >    int* oneThreeList = oneThreeInteractions_.getPairList();
851 >    int* oneFourList = oneFourInteractions_.getPairList();
852  
853 < #ifdef IS_MPI
853 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
854 >                   &nExclude, excludeList,
855 >                   &nOneTwo, oneTwoList,
856 >                   &nOneThree, oneThreeList,
857 >                   &nOneFour, oneFourList,
858 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
859 >                   &fortranGlobalGroupMembership[0], &isError);
860 >    
861 >    if( isError ){
862 >      
863 >      sprintf( painCave.errMsg,
864 >               "There was an error setting the simulation information in fortran.\n" );
865 >      painCave.isFatal = 1;
866 >      painCave.severity = OPENMD_ERROR;
867 >      simError();
868 >    }
869 >    
870 >    
871      sprintf( checkPointMsg,
872 <       "succesfully sent the simulation information to fortran.\n");
671 <    MPIcheckPoint();
672 < #endif // is_mpi
673 < }
674 <
675 <
676 < #ifdef IS_MPI
677 < void SimInfo::setupFortranParallel() {
872 >             "succesfully sent the simulation information to fortran.\n");
873      
874 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
875 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
876 <    std::vector<int> localToGlobalCutoffGroupIndex;
877 <    SimInfo::MoleculeIterator mi;
878 <    Molecule::AtomIterator ai;
879 <    Molecule::CutoffGroupIterator ci;
880 <    Molecule* mol;
881 <    Atom* atom;
882 <    CutoffGroup* cg;
874 >    errorCheckPoint();
875 >    
876 >    // Setup number of neighbors in neighbor list if present
877 >    if (simParams_->haveNeighborListNeighbors()) {
878 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
879 >      setNeighbors(&nlistNeighbors);
880 >    }
881 >  
882 > #ifdef IS_MPI    
883 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
884 >    //localToGlobalGroupIndex
885 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 >    vector<int> localToGlobalCutoffGroupIndex;
887      mpiSimData parallelData;
689    int isError;
888  
889      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890  
891 <        //local index(index in DataStorge) of atom is important
892 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894 <        }
891 >      //local index(index in DataStorge) of atom is important
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894 >      }
895  
896 <        //local index of cutoff group is trivial, it only depends on the order of travesing
897 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899 <        }        
896 >      //local index of cutoff group is trivial, it only depends on the order of travesing
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899 >      }        
900          
901      }
902  
# Line 718 | Line 916 | void SimInfo::setupFortranParallel() {
916                      &localToGlobalCutoffGroupIndex[0], &isError);
917  
918      if (isError) {
919 <        sprintf(painCave.errMsg,
920 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
921 <        painCave.isFatal = 1;
922 <        simError();
919 >      sprintf(painCave.errMsg,
920 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
921 >      painCave.isFatal = 1;
922 >      simError();
923      }
924  
925      sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 <    MPIcheckPoint();
729 <
730 <
731 < }
732 <
926 >    errorCheckPoint();
927   #endif
928  
929 < double SimInfo::calcMaxCutoffRadius() {
929 >    initFortranFF(&isError);
930 >    if (isError) {
931 >      sprintf(painCave.errMsg,
932 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
933 >      painCave.isFatal = 1;
934 >      simError();
935 >    }
936 >    fortranInitialized_ = true;
937 >  }
938  
939 +  void SimInfo::addProperty(GenericData* genData) {
940 +    properties_.addProperty(genData);  
941 +  }
942  
943 <    std::set<AtomType*> atomTypes;
944 <    std::set<AtomType*>::iterator i;
945 <    std::vector<double> cutoffRadius;
943 >  void SimInfo::removeProperty(const string& propName) {
944 >    properties_.removeProperty(propName);  
945 >  }
946  
947 <    //get the unique atom types
948 <    atomTypes = getUniqueAtomTypes();
947 >  void SimInfo::clearProperties() {
948 >    properties_.clearProperties();
949 >  }
950  
951 <    //query the max cutoff radius among these atom types
952 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
953 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
954 <    }
951 >  vector<string> SimInfo::getPropertyNames() {
952 >    return properties_.getPropertyNames();  
953 >  }
954 >      
955 >  vector<GenericData*> SimInfo::getProperties() {
956 >    return properties_.getProperties();
957 >  }
958  
959 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
960 < #ifdef IS_MPI
961 <    //pick the max cutoff radius among the processors
753 < #endif
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960 >    return properties_.getPropertyByName(propName);
961 >  }
962  
963 <    return maxCutoffRadius;
964 < }
965 <
966 < void SimInfo::getCutoff(double& rcut, double& rsw) {
967 <    
760 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
761 <        
762 <        if (!simParams_->haveRcut()){
763 <            sprintf(painCave.errMsg,
764 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
765 <                "\tOOPSE will use a default value of 15.0 angstroms"
766 <                "\tfor the cutoffRadius.\n");
767 <            painCave.isFatal = 0;
768 <            simError();
769 <            rcut = 15.0;
770 <        } else{
771 <            rcut = simParams_->getRcut();
772 <        }
773 <
774 <        if (!simParams_->haveRsw()){
775 <            sprintf(painCave.errMsg,
776 <                "SimCreator Warning: No value was set for switchingRadius.\n"
777 <                "\tOOPSE will use a default value of\n"
778 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
779 <            painCave.isFatal = 0;
780 <            simError();
781 <            rsw = 0.95 * rcut;
782 <        } else{
783 <            rsw = simParams_->getRsw();
784 <        }
785 <
786 <    } else {
787 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
788 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
789 <        
790 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
796 <
797 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
803 <    }
804 < }
805 <
806 < void SimInfo::setupCutoff() {
807 <    getCutoff(rcut_, rsw_);    
808 <    double rnblist = rcut_ + 1; // skin of neighbor list
809 <
810 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
811 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
812 < }
813 <
814 < void SimInfo::addProperty(GenericData* genData) {
815 <    properties_.addProperty(genData);  
816 < }
817 <
818 < void SimInfo::removeProperty(const std::string& propName) {
819 <    properties_.removeProperty(propName);  
820 < }
821 <
822 < void SimInfo::clearProperties() {
823 <    properties_.clearProperties();
824 < }
825 <
826 < std::vector<std::string> SimInfo::getPropertyNames() {
827 <    return properties_.getPropertyNames();  
828 < }
829 <      
830 < std::vector<GenericData*> SimInfo::getProperties() {
831 <    return properties_.getProperties();
832 < }
833 <
834 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
835 <    return properties_.getPropertyByName(propName);
836 < }
837 <
838 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
839 <    //if (sman_ == sman_) {
840 <    //    return;
841 <    //}
842 <    
843 <    //delete sman_;
963 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
964 >    if (sman_ == sman) {
965 >      return;
966 >    }    
967 >    delete sman_;
968      sman_ = sman;
969  
970      Molecule* mol;
# Line 852 | Line 976 | void SimInfo::setSnapshotManager(SnapshotManager* sman
976  
977      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
978          
979 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 <            atom->setSnapshotManager(sman_);
981 <        }
979 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >        atom->setSnapshotManager(sman_);
981 >      }
982          
983 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
984 <            rb->setSnapshotManager(sman_);
985 <        }
983 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
984 >        rb->setSnapshotManager(sman_);
985 >      }
986      }    
987      
988 < }
988 >  }
989  
990 < Vector3d SimInfo::getComVel(){
990 >  Vector3d SimInfo::getComVel(){
991      SimInfo::MoleculeIterator i;
992      Molecule* mol;
993  
994      Vector3d comVel(0.0);
995 <    double totalMass = 0.0;
995 >    RealType totalMass = 0.0;
996      
997  
998      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 <        double mass = mol->getMass();
1000 <        totalMass += mass;
1001 <        comVel += mass * mol->getComVel();
999 >      RealType mass = mol->getMass();
1000 >      totalMass += mass;
1001 >      comVel += mass * mol->getComVel();
1002      }  
1003  
1004   #ifdef IS_MPI
1005 <    double tmpMass = totalMass;
1005 >    RealType tmpMass = totalMass;
1006      Vector3d tmpComVel(comVel);    
1007 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009   #endif
1010  
1011      comVel /= totalMass;
1012  
1013      return comVel;
1014 < }
1014 >  }
1015  
1016 < Vector3d SimInfo::getCom(){
1016 >  Vector3d SimInfo::getCom(){
1017      SimInfo::MoleculeIterator i;
1018      Molecule* mol;
1019  
1020      Vector3d com(0.0);
1021 <    double totalMass = 0.0;
1021 >    RealType totalMass = 0.0;
1022      
1023      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 <        double mass = mol->getMass();
1025 <        totalMass += mass;
1026 <        com += mass * mol->getCom();
1024 >      RealType mass = mol->getMass();
1025 >      totalMass += mass;
1026 >      com += mass * mol->getCom();
1027      }  
1028  
1029   #ifdef IS_MPI
1030 <    double tmpMass = totalMass;
1030 >    RealType tmpMass = totalMass;
1031      Vector3d tmpCom(com);    
1032 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1032 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034   #endif
1035  
1036      com /= totalMass;
1037  
1038      return com;
1039  
1040 < }        
1040 >  }        
1041  
1042 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043  
1044      return o;
1045 < }
1045 >  }
1046 >  
1047 >  
1048 >   /*
1049 >   Returns center of mass and center of mass velocity in one function call.
1050 >   */
1051 >  
1052 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1053 >      SimInfo::MoleculeIterator i;
1054 >      Molecule* mol;
1055 >      
1056 >    
1057 >      RealType totalMass = 0.0;
1058 >    
1059  
1060 < }//end namespace oopse
1060 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 >         RealType mass = mol->getMass();
1062 >         totalMass += mass;
1063 >         com += mass * mol->getCom();
1064 >         comVel += mass * mol->getComVel();          
1065 >      }  
1066 >      
1067 > #ifdef IS_MPI
1068 >      RealType tmpMass = totalMass;
1069 >      Vector3d tmpCom(com);  
1070 >      Vector3d tmpComVel(comVel);
1071 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 > #endif
1075 >      
1076 >      com /= totalMass;
1077 >      comVel /= totalMass;
1078 >   }        
1079 >  
1080 >   /*
1081 >   Return intertia tensor for entire system and angular momentum Vector.
1082  
1083 +
1084 +       [  Ixx -Ixy  -Ixz ]
1085 +    J =| -Iyx  Iyy  -Iyz |
1086 +       [ -Izx -Iyz   Izz ]
1087 +    */
1088 +
1089 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090 +      
1091 +
1092 +      RealType xx = 0.0;
1093 +      RealType yy = 0.0;
1094 +      RealType zz = 0.0;
1095 +      RealType xy = 0.0;
1096 +      RealType xz = 0.0;
1097 +      RealType yz = 0.0;
1098 +      Vector3d com(0.0);
1099 +      Vector3d comVel(0.0);
1100 +      
1101 +      getComAll(com, comVel);
1102 +      
1103 +      SimInfo::MoleculeIterator i;
1104 +      Molecule* mol;
1105 +      
1106 +      Vector3d thisq(0.0);
1107 +      Vector3d thisv(0.0);
1108 +
1109 +      RealType thisMass = 0.0;
1110 +    
1111 +      
1112 +      
1113 +  
1114 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 +        
1116 +         thisq = mol->getCom()-com;
1117 +         thisv = mol->getComVel()-comVel;
1118 +         thisMass = mol->getMass();
1119 +         // Compute moment of intertia coefficients.
1120 +         xx += thisq[0]*thisq[0]*thisMass;
1121 +         yy += thisq[1]*thisq[1]*thisMass;
1122 +         zz += thisq[2]*thisq[2]*thisMass;
1123 +        
1124 +         // compute products of intertia
1125 +         xy += thisq[0]*thisq[1]*thisMass;
1126 +         xz += thisq[0]*thisq[2]*thisMass;
1127 +         yz += thisq[1]*thisq[2]*thisMass;
1128 +            
1129 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1130 +            
1131 +      }  
1132 +      
1133 +      
1134 +      inertiaTensor(0,0) = yy + zz;
1135 +      inertiaTensor(0,1) = -xy;
1136 +      inertiaTensor(0,2) = -xz;
1137 +      inertiaTensor(1,0) = -xy;
1138 +      inertiaTensor(1,1) = xx + zz;
1139 +      inertiaTensor(1,2) = -yz;
1140 +      inertiaTensor(2,0) = -xz;
1141 +      inertiaTensor(2,1) = -yz;
1142 +      inertiaTensor(2,2) = xx + yy;
1143 +      
1144 + #ifdef IS_MPI
1145 +      Mat3x3d tmpI(inertiaTensor);
1146 +      Vector3d tmpAngMom;
1147 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 + #endif
1150 +              
1151 +      return;
1152 +   }
1153 +
1154 +   //Returns the angular momentum of the system
1155 +   Vector3d SimInfo::getAngularMomentum(){
1156 +      
1157 +      Vector3d com(0.0);
1158 +      Vector3d comVel(0.0);
1159 +      Vector3d angularMomentum(0.0);
1160 +      
1161 +      getComAll(com,comVel);
1162 +      
1163 +      SimInfo::MoleculeIterator i;
1164 +      Molecule* mol;
1165 +      
1166 +      Vector3d thisr(0.0);
1167 +      Vector3d thisp(0.0);
1168 +      
1169 +      RealType thisMass;
1170 +      
1171 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172 +        thisMass = mol->getMass();
1173 +        thisr = mol->getCom()-com;
1174 +        thisp = (mol->getComVel()-comVel)*thisMass;
1175 +        
1176 +        angularMomentum += cross( thisr, thisp );
1177 +        
1178 +      }  
1179 +      
1180 + #ifdef IS_MPI
1181 +      Vector3d tmpAngMom;
1182 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183 + #endif
1184 +      
1185 +      return angularMomentum;
1186 +   }
1187 +  
1188 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 +    return IOIndexToIntegrableObject.at(index);
1190 +  }
1191 +  
1192 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 +    IOIndexToIntegrableObject= v;
1194 +  }
1195 +
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237 +    }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253 +  }
1254 +
1255 + }//end namespace OpenMD
1256 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines