ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 413 by tim, Wed Mar 9 17:30:29 2005 UTC vs.
Revision 1095 by chuckv, Tue Dec 5 00:17:24 2006 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                                ForceField* ff, Globals* simParams) :
87 <                                forceField_(ff), simParams_(simParams),
88 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <                                sman_(NULL), fortranInitialized_(false) {
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96  
97 <            
98 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
99 <    MoleculeStamp* molStamp;
100 <    int nMolWithSameStamp;
101 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
103 <    CutoffGroupStamp* cgStamp;    
104 <    RigidBodyStamp* rbStamp;
105 <    int nRigidAtoms = 0;
106 <    
107 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
108 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
97 >      MoleculeStamp* molStamp;
98 >      int nMolWithSameStamp;
99 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
101 >      CutoffGroupStamp* cgStamp;    
102 >      RigidBodyStamp* rbStamp;
103 >      int nRigidAtoms = 0;
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109          
110          addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112          //calculate atoms in molecules
113          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
97
115          //calculate atoms in cutoff groups
116          int nAtomsInGroups = 0;
117          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118          
119          for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <            cgStamp = molStamp->getCutoffGroup(j);
121 <            nAtomsInGroups += cgStamp->getNMembers();
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121 >          nAtomsInGroups += cgStamp->getNMembers();
122          }
123  
124          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 +
126          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127  
128          //calculate atoms in rigid bodies
# Line 112 | Line 130 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
130          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131          
132          for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <            rbStamp = molStamp->getRigidBody(j);
134 <            nAtomsInRigidBodies += rbStamp->getNMembers();
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134 >          nAtomsInRigidBodies += rbStamp->getNMembers();
135          }
136  
137          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139          
140 <    }
140 >      }
141  
142 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
143 <    //therefore the total number of cutoff groups in the system is equal to
144 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
145 <    //file plus the number of cutoff groups defined in meta-data file
146 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >      //group therefore the total number of cutoff groups in the system is
144 >      //equal to the total number of atoms minus number of atoms belong to
145 >      //cutoff group defined in meta-data file plus the number of cutoff
146 >      //groups defined in meta-data file
147 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148  
149 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
150 <    //therefore the total number of  integrable objects in the system is equal to
151 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
152 <    //file plus the number of  rigid bodies defined in meta-data file
153 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
149 >      //every free atom (atom does not belong to rigid bodies) is an
150 >      //integrable object therefore the total number of integrable objects
151 >      //in the system is equal to the total number of atoms minus number of
152 >      //atoms belong to rigid body defined in meta-data file plus the number
153 >      //of rigid bodies defined in meta-data file
154 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >                                                + nGlobalRigidBodies_;
156 >  
157 >      nGlobalMols_ = molStampIds_.size();
158  
136    nGlobalMols_ = molStampIds_.size();
137
159   #ifdef IS_MPI    
160 <    molToProcMap_.resize(nGlobalMols_);
160 >      molToProcMap_.resize(nGlobalMols_);
161   #endif
162  
163 < }
163 >    }
164  
165 < SimInfo::~SimInfo() {
165 >  SimInfo::~SimInfo() {
166      std::map<int, Molecule*>::iterator i;
167      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
168 <        delete i->second;
168 >      delete i->second;
169      }
170      molecules_.clear();
171 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
171 >      
172      delete sman_;
173      delete simParams_;
174      delete forceField_;
175 < }
175 >  }
176  
177 < int SimInfo::getNGlobalConstraints() {
177 >  int SimInfo::getNGlobalConstraints() {
178      int nGlobalConstraints;
179   #ifdef IS_MPI
180      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 164 | Line 183 | int SimInfo::getNGlobalConstraints() {
183      nGlobalConstraints =  nConstraints_;
184   #endif
185      return nGlobalConstraints;
186 < }
186 >  }
187  
188 < bool SimInfo::addMolecule(Molecule* mol) {
188 >  bool SimInfo::addMolecule(Molecule* mol) {
189      MoleculeIterator i;
190  
191      i = molecules_.find(mol->getGlobalIndex());
192      if (i == molecules_.end() ) {
193  
194 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195          
196 <        nAtoms_ += mol->getNAtoms();
197 <        nBonds_ += mol->getNBonds();
198 <        nBends_ += mol->getNBends();
199 <        nTorsions_ += mol->getNTorsions();
200 <        nRigidBodies_ += mol->getNRigidBodies();
201 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
202 <        nCutoffGroups_ += mol->getNCutoffGroups();
203 <        nConstraints_ += mol->getNConstraintPairs();
196 >      nAtoms_ += mol->getNAtoms();
197 >      nBonds_ += mol->getNBonds();
198 >      nBends_ += mol->getNBends();
199 >      nTorsions_ += mol->getNTorsions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204  
205 <        addExcludePairs(mol);
205 >      addExcludePairs(mol);
206          
207 <        return true;
207 >      return true;
208      } else {
209 <        return false;
209 >      return false;
210      }
211 < }
211 >  }
212  
213 < bool SimInfo::removeMolecule(Molecule* mol) {
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214      MoleculeIterator i;
215      i = molecules_.find(mol->getGlobalIndex());
216  
217      if (i != molecules_.end() ) {
218  
219 <        assert(mol == i->second);
219 >      assert(mol == i->second);
220          
221 <        nAtoms_ -= mol->getNAtoms();
222 <        nBonds_ -= mol->getNBonds();
223 <        nBends_ -= mol->getNBends();
224 <        nTorsions_ -= mol->getNTorsions();
225 <        nRigidBodies_ -= mol->getNRigidBodies();
226 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 <        nCutoffGroups_ -= mol->getNCutoffGroups();
228 <        nConstraints_ -= mol->getNConstraintPairs();
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nRigidBodies_ -= mol->getNRigidBodies();
226 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 >      nCutoffGroups_ -= mol->getNCutoffGroups();
228 >      nConstraints_ -= mol->getNConstraintPairs();
229  
230 <        removeExcludePairs(mol);
231 <        molecules_.erase(mol->getGlobalIndex());
230 >      removeExcludePairs(mol);
231 >      molecules_.erase(mol->getGlobalIndex());
232  
233 <        delete mol;
233 >      delete mol;
234          
235 <        return true;
235 >      return true;
236      } else {
237 <        return false;
237 >      return false;
238      }
239  
240  
241 < }    
241 >  }    
242  
243          
244 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
244 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245      i = molecules_.begin();
246      return i == molecules_.end() ? NULL : i->second;
247 < }    
247 >  }    
248  
249 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
249 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250      ++i;
251      return i == molecules_.end() ? NULL : i->second;    
252 < }
252 >  }
253  
254  
255 < void SimInfo::calcNdf() {
255 >  void SimInfo::calcNdf() {
256      int ndf_local;
257      MoleculeIterator i;
258      std::vector<StuntDouble*>::iterator j;
# Line 243 | Line 262 | void SimInfo::calcNdf() {
262      ndf_local = 0;
263      
264      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266 <               integrableObject = mol->nextIntegrableObject(j)) {
265 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266 >           integrableObject = mol->nextIntegrableObject(j)) {
267  
268 <            ndf_local += 3;
268 >        ndf_local += 3;
269  
270 <            if (integrableObject->isDirectional()) {
271 <                if (integrableObject->isLinear()) {
272 <                    ndf_local += 2;
273 <                } else {
274 <                    ndf_local += 3;
275 <                }
276 <            }
270 >        if (integrableObject->isDirectional()) {
271 >          if (integrableObject->isLinear()) {
272 >            ndf_local += 2;
273 >          } else {
274 >            ndf_local += 3;
275 >          }
276 >        }
277              
278 <        }//end for (integrableObject)
279 <    }// end for (mol)
278 >      }
279 >    }
280      
281      // n_constraints is local, so subtract them on each processor
282      ndf_local -= nConstraints_;
# Line 272 | Line 291 | void SimInfo::calcNdf() {
291      // entire system:
292      ndf_ = ndf_ - 3 - nZconstraint_;
293  
294 < }
294 >  }
295  
296 < void SimInfo::calcNdfRaw() {
296 >  int SimInfo::getFdf() {
297 > #ifdef IS_MPI
298 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299 > #else
300 >    fdf_ = fdf_local;
301 > #endif
302 >    return fdf_;
303 >  }
304 >    
305 >  void SimInfo::calcNdfRaw() {
306      int ndfRaw_local;
307  
308      MoleculeIterator i;
# Line 286 | Line 314 | void SimInfo::calcNdfRaw() {
314      ndfRaw_local = 0;
315      
316      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
317 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
318 <               integrableObject = mol->nextIntegrableObject(j)) {
317 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
318 >           integrableObject = mol->nextIntegrableObject(j)) {
319  
320 <            ndfRaw_local += 3;
320 >        ndfRaw_local += 3;
321  
322 <            if (integrableObject->isDirectional()) {
323 <                if (integrableObject->isLinear()) {
324 <                    ndfRaw_local += 2;
325 <                } else {
326 <                    ndfRaw_local += 3;
327 <                }
328 <            }
322 >        if (integrableObject->isDirectional()) {
323 >          if (integrableObject->isLinear()) {
324 >            ndfRaw_local += 2;
325 >          } else {
326 >            ndfRaw_local += 3;
327 >          }
328 >        }
329              
330 <        }
330 >      }
331      }
332      
333   #ifdef IS_MPI
# Line 307 | Line 335 | void SimInfo::calcNdfRaw() {
335   #else
336      ndfRaw_ = ndfRaw_local;
337   #endif
338 < }
338 >  }
339  
340 < void SimInfo::calcNdfTrans() {
340 >  void SimInfo::calcNdfTrans() {
341      int ndfTrans_local;
342  
343      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 351 | void SimInfo::calcNdfTrans() {
351  
352      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
353  
354 < }
354 >  }
355  
356 < void SimInfo::addExcludePairs(Molecule* mol) {
356 >  void SimInfo::addExcludePairs(Molecule* mol) {
357      std::vector<Bond*>::iterator bondIter;
358      std::vector<Bend*>::iterator bendIter;
359      std::vector<Torsion*>::iterator torsionIter;
# Line 336 | Line 364 | void SimInfo::addExcludePairs(Molecule* mol) {
364      int b;
365      int c;
366      int d;
367 +
368 +    std::map<int, std::set<int> > atomGroups;
369 +
370 +    Molecule::RigidBodyIterator rbIter;
371 +    RigidBody* rb;
372 +    Molecule::IntegrableObjectIterator ii;
373 +    StuntDouble* integrableObject;
374      
375 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
376 +           integrableObject = mol->nextIntegrableObject(ii)) {
377 +
378 +      if (integrableObject->isRigidBody()) {
379 +          rb = static_cast<RigidBody*>(integrableObject);
380 +          std::vector<Atom*> atoms = rb->getAtoms();
381 +          std::set<int> rigidAtoms;
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
384 +          }
385 +          for (int i = 0; i < atoms.size(); ++i) {
386 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
387 +          }      
388 +      } else {
389 +        std::set<int> oneAtomSet;
390 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
391 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
392 +      }
393 +    }  
394 +
395 +    
396 +    
397      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398 <        a = bond->getAtomA()->getGlobalIndex();
399 <        b = bond->getAtomB()->getGlobalIndex();        
400 <        exclude_.addPair(a, b);
398 >      a = bond->getAtomA()->getGlobalIndex();
399 >      b = bond->getAtomB()->getGlobalIndex();        
400 >      exclude_.addPair(a, b);
401      }
402  
403      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404 <        a = bend->getAtomA()->getGlobalIndex();
405 <        b = bend->getAtomB()->getGlobalIndex();        
406 <        c = bend->getAtomC()->getGlobalIndex();
404 >      a = bend->getAtomA()->getGlobalIndex();
405 >      b = bend->getAtomB()->getGlobalIndex();        
406 >      c = bend->getAtomC()->getGlobalIndex();
407 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410  
411 <        exclude_.addPair(a, b);
412 <        exclude_.addPair(a, c);
413 <        exclude_.addPair(b, c);        
411 >      exclude_.addPairs(rigidSetA, rigidSetB);
412 >      exclude_.addPairs(rigidSetA, rigidSetC);
413 >      exclude_.addPairs(rigidSetB, rigidSetC);
414 >      
415 >      //exclude_.addPair(a, b);
416 >      //exclude_.addPair(a, c);
417 >      //exclude_.addPair(b, c);        
418      }
419  
420      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 <        a = torsion->getAtomA()->getGlobalIndex();
422 <        b = torsion->getAtomB()->getGlobalIndex();        
423 <        c = torsion->getAtomC()->getGlobalIndex();        
424 <        d = torsion->getAtomD()->getGlobalIndex();        
421 >      a = torsion->getAtomA()->getGlobalIndex();
422 >      b = torsion->getAtomB()->getGlobalIndex();        
423 >      c = torsion->getAtomC()->getGlobalIndex();        
424 >      d = torsion->getAtomD()->getGlobalIndex();        
425 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
429  
430 <        exclude_.addPair(a, b);
431 <        exclude_.addPair(a, c);
432 <        exclude_.addPair(a, d);
433 <        exclude_.addPair(b, c);
434 <        exclude_.addPair(b, d);
435 <        exclude_.addPair(c, d);        
368 <    }
430 >      exclude_.addPairs(rigidSetA, rigidSetB);
431 >      exclude_.addPairs(rigidSetA, rigidSetC);
432 >      exclude_.addPairs(rigidSetA, rigidSetD);
433 >      exclude_.addPairs(rigidSetB, rigidSetC);
434 >      exclude_.addPairs(rigidSetB, rigidSetD);
435 >      exclude_.addPairs(rigidSetC, rigidSetD);
436  
437 <    
438 < }
437 >      /*
438 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444 >        
445 >      
446 >      exclude_.addPair(a, b);
447 >      exclude_.addPair(a, c);
448 >      exclude_.addPair(a, d);
449 >      exclude_.addPair(b, c);
450 >      exclude_.addPair(b, d);
451 >      exclude_.addPair(c, d);        
452 >      */
453 >    }
454  
455 < void SimInfo::removeExcludePairs(Molecule* mol) {
455 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
456 >      std::vector<Atom*> atoms = rb->getAtoms();
457 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
458 >        for (int j = i + 1; j < atoms.size(); ++j) {
459 >          a = atoms[i]->getGlobalIndex();
460 >          b = atoms[j]->getGlobalIndex();
461 >          exclude_.addPair(a, b);
462 >        }
463 >      }
464 >    }        
465 >
466 >  }
467 >
468 >  void SimInfo::removeExcludePairs(Molecule* mol) {
469      std::vector<Bond*>::iterator bondIter;
470      std::vector<Bend*>::iterator bendIter;
471      std::vector<Torsion*>::iterator torsionIter;
# Line 381 | Line 476 | void SimInfo::removeExcludePairs(Molecule* mol) {
476      int b;
477      int c;
478      int d;
479 +
480 +    std::map<int, std::set<int> > atomGroups;
481 +
482 +    Molecule::RigidBodyIterator rbIter;
483 +    RigidBody* rb;
484 +    Molecule::IntegrableObjectIterator ii;
485 +    StuntDouble* integrableObject;
486      
487 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
488 +           integrableObject = mol->nextIntegrableObject(ii)) {
489 +
490 +      if (integrableObject->isRigidBody()) {
491 +          rb = static_cast<RigidBody*>(integrableObject);
492 +          std::vector<Atom*> atoms = rb->getAtoms();
493 +          std::set<int> rigidAtoms;
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
496 +          }
497 +          for (int i = 0; i < atoms.size(); ++i) {
498 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
499 +          }      
500 +      } else {
501 +        std::set<int> oneAtomSet;
502 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
503 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
504 +      }
505 +    }  
506 +
507 +    
508      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
509 <        a = bond->getAtomA()->getGlobalIndex();
510 <        b = bond->getAtomB()->getGlobalIndex();        
511 <        exclude_.removePair(a, b);
509 >      a = bond->getAtomA()->getGlobalIndex();
510 >      b = bond->getAtomB()->getGlobalIndex();        
511 >      exclude_.removePair(a, b);
512      }
513  
514      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
515 <        a = bend->getAtomA()->getGlobalIndex();
516 <        b = bend->getAtomB()->getGlobalIndex();        
517 <        c = bend->getAtomC()->getGlobalIndex();
515 >      a = bend->getAtomA()->getGlobalIndex();
516 >      b = bend->getAtomB()->getGlobalIndex();        
517 >      c = bend->getAtomC()->getGlobalIndex();
518  
519 <        exclude_.removePair(a, b);
520 <        exclude_.removePair(a, c);
521 <        exclude_.removePair(b, c);        
519 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522 >
523 >      exclude_.removePairs(rigidSetA, rigidSetB);
524 >      exclude_.removePairs(rigidSetA, rigidSetC);
525 >      exclude_.removePairs(rigidSetB, rigidSetC);
526 >      
527 >      //exclude_.removePair(a, b);
528 >      //exclude_.removePair(a, c);
529 >      //exclude_.removePair(b, c);        
530      }
531  
532      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
533 <        a = torsion->getAtomA()->getGlobalIndex();
534 <        b = torsion->getAtomB()->getGlobalIndex();        
535 <        c = torsion->getAtomC()->getGlobalIndex();        
536 <        d = torsion->getAtomD()->getGlobalIndex();        
533 >      a = torsion->getAtomA()->getGlobalIndex();
534 >      b = torsion->getAtomB()->getGlobalIndex();        
535 >      c = torsion->getAtomC()->getGlobalIndex();        
536 >      d = torsion->getAtomD()->getGlobalIndex();        
537  
538 <        exclude_.removePair(a, b);
539 <        exclude_.removePair(a, c);
540 <        exclude_.removePair(a, d);
541 <        exclude_.removePair(b, c);
542 <        exclude_.removePair(b, d);
543 <        exclude_.removePair(c, d);        
538 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
539 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
540 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
541 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
542 >
543 >      exclude_.removePairs(rigidSetA, rigidSetB);
544 >      exclude_.removePairs(rigidSetA, rigidSetC);
545 >      exclude_.removePairs(rigidSetA, rigidSetD);
546 >      exclude_.removePairs(rigidSetB, rigidSetC);
547 >      exclude_.removePairs(rigidSetB, rigidSetD);
548 >      exclude_.removePairs(rigidSetC, rigidSetD);
549 >
550 >      /*
551 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
557 >
558 >      
559 >      exclude_.removePair(a, b);
560 >      exclude_.removePair(a, c);
561 >      exclude_.removePair(a, d);
562 >      exclude_.removePair(b, c);
563 >      exclude_.removePair(b, d);
564 >      exclude_.removePair(c, d);        
565 >      */
566      }
567  
568 < }
568 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
569 >      std::vector<Atom*> atoms = rb->getAtoms();
570 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
571 >        for (int j = i + 1; j < atoms.size(); ++j) {
572 >          a = atoms[i]->getGlobalIndex();
573 >          b = atoms[j]->getGlobalIndex();
574 >          exclude_.removePair(a, b);
575 >        }
576 >      }
577 >    }        
578  
579 +  }
580  
581 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581 >
582 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
583      int curStampId;
584  
585      //index from 0
# Line 423 | Line 587 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
587  
588      moleculeStamps_.push_back(molStamp);
589      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
590 < }
590 >  }
591  
592 < void SimInfo::update() {
592 >  void SimInfo::update() {
593  
594      setupSimType();
595  
# Line 438 | Line 602 | void SimInfo::update() {
602      //setup fortran force field
603      /** @deprecate */    
604      int isError = 0;
441    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
442    if(isError){
443        sprintf( painCave.errMsg,
444         "ForceField error: There was an error initializing the forceField in fortran.\n" );
445        painCave.isFatal = 1;
446        simError();
447    }
448  
605      
606      setupCutoff();
607 +    
608 +    setupElectrostaticSummationMethod( isError );
609 +    setupSwitchingFunction();
610 +    setupAccumulateBoxDipole();
611  
612 +    if(isError){
613 +      sprintf( painCave.errMsg,
614 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
615 +      painCave.isFatal = 1;
616 +      simError();
617 +    }
618 +
619      calcNdf();
620      calcNdfRaw();
621      calcNdfTrans();
622  
623      fortranInitialized_ = true;
624 < }
624 >  }
625  
626 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
626 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
627      SimInfo::MoleculeIterator mi;
628      Molecule* mol;
629      Molecule::AtomIterator ai;
# Line 465 | Line 632 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
632  
633      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
634  
635 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636 <            atomTypes.insert(atom->getAtomType());
637 <        }
635 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636 >        atomTypes.insert(atom->getAtomType());
637 >      }
638          
639      }
640  
641      return atomTypes;        
642 < }
642 >  }
643  
644 < void SimInfo::setupSimType() {
644 >  void SimInfo::setupSimType() {
645      std::set<AtomType*>::iterator i;
646      std::set<AtomType*> atomTypes;
647      atomTypes = getUniqueAtomTypes();
# Line 482 | Line 649 | void SimInfo::setupSimType() {
649      int useLennardJones = 0;
650      int useElectrostatic = 0;
651      int useEAM = 0;
652 +    int useSC = 0;
653      int useCharge = 0;
654      int useDirectional = 0;
655      int useDipole = 0;
656      int useGayBerne = 0;
657      int useSticky = 0;
658 +    int useStickyPower = 0;
659      int useShape = 0;
660      int useFLARB = 0; //it is not in AtomType yet
661      int useDirectionalAtom = 0;    
662      int useElectrostatics = 0;
663      //usePBC and useRF are from simParams
664 <    int usePBC = simParams_->getPBC();
665 <    int useRF = simParams_->getUseRF();
664 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 >    int useRF;
666 >    int useSF;
667 >    int useSP;
668 >    int useBoxDipole;
669 >    std::string myMethod;
670  
671 +    // set the useRF logical
672 +    useRF = 0;
673 +    useSF = 0;
674 +    useSP = 0;
675 +
676 +
677 +    if (simParams_->haveElectrostaticSummationMethod()) {
678 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
679 +      toUpper(myMethod);
680 +      if (myMethod == "REACTION_FIELD"){
681 +        useRF = 1;
682 +      } else if (myMethod == "SHIFTED_FORCE"){
683 +        useSF = 1;
684 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 +        useSP = 1;
686 +      }
687 +    }
688 +    
689 +    if (simParams_->haveAccumulateBoxDipole())
690 +      if (simParams_->getAccumulateBoxDipole())
691 +        useBoxDipole = 1;
692 +
693      //loop over all of the atom types
694      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 <        useLennardJones |= (*i)->isLennardJones();
696 <        useElectrostatic |= (*i)->isElectrostatic();
697 <        useEAM |= (*i)->isEAM();
698 <        useCharge |= (*i)->isCharge();
699 <        useDirectional |= (*i)->isDirectional();
700 <        useDipole |= (*i)->isDipole();
701 <        useGayBerne |= (*i)->isGayBerne();
702 <        useSticky |= (*i)->isSticky();
703 <        useShape |= (*i)->isShape();
695 >      useLennardJones |= (*i)->isLennardJones();
696 >      useElectrostatic |= (*i)->isElectrostatic();
697 >      useEAM |= (*i)->isEAM();
698 >      useSC |= (*i)->isSC();
699 >      useCharge |= (*i)->isCharge();
700 >      useDirectional |= (*i)->isDirectional();
701 >      useDipole |= (*i)->isDipole();
702 >      useGayBerne |= (*i)->isGayBerne();
703 >      useSticky |= (*i)->isSticky();
704 >      useStickyPower |= (*i)->isStickyPower();
705 >      useShape |= (*i)->isShape();
706      }
707  
708 <    if (useSticky || useDipole || useGayBerne || useShape) {
709 <        useDirectionalAtom = 1;
708 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 >      useDirectionalAtom = 1;
710      }
711  
712      if (useCharge || useDipole) {
713 <        useElectrostatics = 1;
713 >      useElectrostatics = 1;
714      }
715  
716   #ifdef IS_MPI    
# Line 540 | Line 737 | void SimInfo::setupSimType() {
737      temp = useSticky;
738      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739  
740 +    temp = useStickyPower;
741 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 +    
743      temp = useGayBerne;
744      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746      temp = useEAM;
747      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748  
749 +    temp = useSC;
750 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 +    
752      temp = useShape;
753      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754  
# Line 554 | Line 757 | void SimInfo::setupSimType() {
757  
758      temp = useRF;
759      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760 <    
760 >
761 >    temp = useSF;
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763 >
764 >    temp = useSP;
765 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 >    temp = useBoxDipole;
768 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 >
770   #endif
771  
772      fInfo_.SIM_uses_PBC = usePBC;    
# Line 564 | Line 776 | void SimInfo::setupSimType() {
776      fInfo_.SIM_uses_Charges = useCharge;
777      fInfo_.SIM_uses_Dipoles = useDipole;
778      fInfo_.SIM_uses_Sticky = useSticky;
779 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
780      fInfo_.SIM_uses_GayBerne = useGayBerne;
781      fInfo_.SIM_uses_EAM = useEAM;
782 +    fInfo_.SIM_uses_SC = useSC;
783      fInfo_.SIM_uses_Shapes = useShape;
784      fInfo_.SIM_uses_FLARB = useFLARB;
785      fInfo_.SIM_uses_RF = useRF;
786 +    fInfo_.SIM_uses_SF = useSF;
787 +    fInfo_.SIM_uses_SP = useSP;
788 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789 +  }
790  
791 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
574 <
575 <        if (simParams_->haveDielectric()) {
576 <            fInfo_.dielect = simParams_->getDielectric();
577 <        } else {
578 <            sprintf(painCave.errMsg,
579 <                    "SimSetup Error: No Dielectric constant was set.\n"
580 <                    "\tYou are trying to use Reaction Field without"
581 <                    "\tsetting a dielectric constant!\n");
582 <            painCave.isFatal = 1;
583 <            simError();
584 <        }
585 <        
586 <    } else {
587 <        fInfo_.dielect = 0.0;
588 <    }
589 <
590 < }
591 <
592 < void SimInfo::setupFortranSim() {
791 >  void SimInfo::setupFortranSim() {
792      int isError;
793      int nExclude;
794      std::vector<int> fortranGlobalGroupMembership;
# Line 599 | Line 798 | void SimInfo::setupFortranSim() {
798  
799      //globalGroupMembership_ is filled by SimCreator    
800      for (int i = 0; i < nGlobalAtoms_; i++) {
801 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
801 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
802      }
803  
804      //calculate mass ratio of cutoff group
805 <    std::vector<double> mfact;
805 >    std::vector<RealType> mfact;
806      SimInfo::MoleculeIterator mi;
807      Molecule* mol;
808      Molecule::CutoffGroupIterator ci;
809      CutoffGroup* cg;
810      Molecule::AtomIterator ai;
811      Atom* atom;
812 <    double totalMass;
812 >    RealType totalMass;
813  
814      //to avoid memory reallocation, reserve enough space for mfact
815      mfact.reserve(getNCutoffGroups());
816      
817      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
818 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
818 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
819  
820 <            totalMass = cg->getMass();
821 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 <                        mfact.push_back(atom->getMass()/totalMass);
823 <            }
820 >        totalMass = cg->getMass();
821 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 >          // Check for massless groups - set mfact to 1 if true
823 >          if (totalMass != 0)
824 >            mfact.push_back(atom->getMass()/totalMass);
825 >          else
826 >            mfact.push_back( 1.0 );
827 >        }
828  
829 <        }      
829 >      }      
830      }
831  
832      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 633 | Line 836 | void SimInfo::setupFortranSim() {
836      identArray.reserve(getNAtoms());
837      
838      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
839 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
840 <            identArray.push_back(atom->getIdent());
841 <        }
839 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
840 >        identArray.push_back(atom->getIdent());
841 >      }
842      }    
843  
844      //fill molMembershipArray
845      //molMembershipArray is filled by SimCreator    
846      std::vector<int> molMembershipArray(nGlobalAtoms_);
847      for (int i = 0; i < nGlobalAtoms_; i++) {
848 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
848 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
849      }
850      
851      //setup fortran simulation
649    //gloalExcludes and molMembershipArray should go away (They are never used)
650    //why the hell fortran need to know molecule?
651    //OOPSE = Object-Obfuscated Parallel Simulation Engine
852      int nGlobalExcludes = 0;
853      int* globalExcludes = NULL;
854      int* excludeList = exclude_.getExcludeList();
855      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
856 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
856 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
858  
859      if( isError ){
860  
861 <        sprintf( painCave.errMsg,
862 <                 "There was an error setting the simulation information in fortran.\n" );
863 <        painCave.isFatal = 1;
864 <        painCave.severity = OOPSE_ERROR;
865 <        simError();
861 >      sprintf( painCave.errMsg,
862 >               "There was an error setting the simulation information in fortran.\n" );
863 >      painCave.isFatal = 1;
864 >      painCave.severity = OOPSE_ERROR;
865 >      simError();
866      }
867  
868   #ifdef IS_MPI
869      sprintf( checkPointMsg,
870 <       "succesfully sent the simulation information to fortran.\n");
870 >             "succesfully sent the simulation information to fortran.\n");
871      MPIcheckPoint();
872   #endif // is_mpi
673 }
873  
874 +    // Setup number of neighbors in neighbor list if present
875 +    if (simParams_->haveNeighborListNeighbors()) {
876 +      setNeighbors(simParams_->getNeighborListNeighbors());
877 +    }
878 +  
879  
880 +  }
881 +
882 +
883   #ifdef IS_MPI
884 < void SimInfo::setupFortranParallel() {
884 >  void SimInfo::setupFortranParallel() {
885      
886      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
887      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 690 | Line 897 | void SimInfo::setupFortranParallel() {
897  
898      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
899  
900 <        //local index(index in DataStorge) of atom is important
901 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
902 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
903 <        }
900 >      //local index(index in DataStorge) of atom is important
901 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
902 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
903 >      }
904  
905 <        //local index of cutoff group is trivial, it only depends on the order of travesing
906 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
907 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
908 <        }        
905 >      //local index of cutoff group is trivial, it only depends on the order of travesing
906 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
907 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
908 >      }        
909          
910      }
911  
# Line 718 | Line 925 | void SimInfo::setupFortranParallel() {
925                      &localToGlobalCutoffGroupIndex[0], &isError);
926  
927      if (isError) {
928 <        sprintf(painCave.errMsg,
929 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
930 <        painCave.isFatal = 1;
931 <        simError();
928 >      sprintf(painCave.errMsg,
929 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
930 >      painCave.isFatal = 1;
931 >      simError();
932      }
933  
934      sprintf(checkPointMsg, " mpiRefresh successful.\n");
935      MPIcheckPoint();
936  
937  
938 < }
938 >  }
939  
940   #endif
941  
942 < double SimInfo::calcMaxCutoffRadius() {
942 >  void SimInfo::setupCutoff() {          
943 >    
944 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
945  
946 +    // Check the cutoff policy
947 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
948  
949 <    std::set<AtomType*> atomTypes;
950 <    std::set<AtomType*>::iterator i;
951 <    std::vector<double> cutoffRadius;
952 <
953 <    //get the unique atom types
743 <    atomTypes = getUniqueAtomTypes();
744 <
745 <    //query the max cutoff radius among these atom types
746 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
747 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
949 >    std::string myPolicy;
950 >    if (forceFieldOptions_.haveCutoffPolicy()){
951 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
952 >    }else if (simParams_->haveCutoffPolicy()) {
953 >      myPolicy = simParams_->getCutoffPolicy();
954      }
955  
956 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
957 < #ifdef IS_MPI
958 <    //pick the max cutoff radius among the processors
959 < #endif
956 >    if (!myPolicy.empty()){
957 >      toUpper(myPolicy);
958 >      if (myPolicy == "MIX") {
959 >        cp = MIX_CUTOFF_POLICY;
960 >      } else {
961 >        if (myPolicy == "MAX") {
962 >          cp = MAX_CUTOFF_POLICY;
963 >        } else {
964 >          if (myPolicy == "TRADITIONAL") {            
965 >            cp = TRADITIONAL_CUTOFF_POLICY;
966 >          } else {
967 >            // throw error        
968 >            sprintf( painCave.errMsg,
969 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
970 >            painCave.isFatal = 1;
971 >            simError();
972 >          }    
973 >        }          
974 >      }
975 >    }          
976 >    notifyFortranCutoffPolicy(&cp);
977  
978 <    return maxCutoffRadius;
979 < }
980 <
981 < void SimInfo::getCutoff(double& rcut, double& rsw) {
982 <    
983 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
978 >    // Check the Skin Thickness for neighborlists
979 >    RealType skin;
980 >    if (simParams_->haveSkinThickness()) {
981 >      skin = simParams_->getSkinThickness();
982 >      notifyFortranSkinThickness(&skin);
983 >    }            
984          
985 <        if (!simParams_->haveRcut()){
986 <            sprintf(painCave.errMsg,
985 >    // Check if the cutoff was set explicitly:
986 >    if (simParams_->haveCutoffRadius()) {
987 >      rcut_ = simParams_->getCutoffRadius();
988 >      if (simParams_->haveSwitchingRadius()) {
989 >        rsw_  = simParams_->getSwitchingRadius();
990 >      } else {
991 >        if (fInfo_.SIM_uses_Charges |
992 >            fInfo_.SIM_uses_Dipoles |
993 >            fInfo_.SIM_uses_RF) {
994 >          
995 >          rsw_ = 0.85 * rcut_;
996 >          sprintf(painCave.errMsg,
997 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
998 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
999 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1000 >        painCave.isFatal = 0;
1001 >        simError();
1002 >        } else {
1003 >          rsw_ = rcut_;
1004 >          sprintf(painCave.errMsg,
1005 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1006 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1007 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1008 >          painCave.isFatal = 0;
1009 >          simError();
1010 >        }
1011 >      }
1012 >      
1013 >      notifyFortranCutoffs(&rcut_, &rsw_);
1014 >      
1015 >    } else {
1016 >      
1017 >      // For electrostatic atoms, we'll assume a large safe value:
1018 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1019 >        sprintf(painCave.errMsg,
1020                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1021                  "\tOOPSE will use a default value of 15.0 angstroms"
1022                  "\tfor the cutoffRadius.\n");
1023 <            painCave.isFatal = 0;
1024 <            simError();
1025 <            rcut = 15.0;
1026 <        } else{
1027 <            rcut = simParams_->getRcut();
1023 >        painCave.isFatal = 0;
1024 >        simError();
1025 >        rcut_ = 15.0;
1026 >      
1027 >        if (simParams_->haveElectrostaticSummationMethod()) {
1028 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1029 >          toUpper(myMethod);
1030 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1031 >            if (simParams_->haveSwitchingRadius()){
1032 >              sprintf(painCave.errMsg,
1033 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1034 >                      "\teven though the electrostaticSummationMethod was\n"
1035 >                      "\tset to %s\n", myMethod.c_str());
1036 >              painCave.isFatal = 1;
1037 >              simError();            
1038 >            }
1039 >          }
1040          }
1041 <
1042 <        if (!simParams_->haveRsw()){
1043 <            sprintf(painCave.errMsg,
1044 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1045 <                "\tOOPSE will use a default value of\n"
1046 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1047 <            painCave.isFatal = 0;
1048 <            simError();
1049 <            rsw = 0.95 * rcut;
1050 <        } else{
1051 <            rsw = simParams_->getRsw();
1041 >      
1042 >        if (simParams_->haveSwitchingRadius()){
1043 >          rsw_ = simParams_->getSwitchingRadius();
1044 >        } else {        
1045 >          sprintf(painCave.errMsg,
1046 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1047 >                  "\tOOPSE will use a default value of\n"
1048 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1049 >          painCave.isFatal = 0;
1050 >          simError();
1051 >          rsw_ = 0.85 * rcut_;
1052          }
1053 <
1054 <    } else {
1055 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1056 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1053 >        notifyFortranCutoffs(&rcut_, &rsw_);
1054 >      } else {
1055 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1056 >        // We'll punt and let fortran figure out the cutoffs later.
1057          
1058 <        if (simParams_->haveRcut()) {
791 <            rcut = simParams_->getRcut();
792 <        } else {
793 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
794 <            rcut = calcMaxCutoffRadius();
795 <        }
1058 >        notifyFortranYouAreOnYourOwn();
1059  
1060 <        if (simParams_->haveRsw()) {
798 <            rsw  = simParams_->getRsw();
799 <        } else {
800 <            rsw = rcut;
801 <        }
802 <    
1060 >      }
1061      }
1062 < }
1062 >  }
1063  
1064 < void SimInfo::setupCutoff() {
1065 <    getCutoff(rcut_, rsw_);    
1066 <    double rnblist = rcut_ + 1; // skin of neighbor list
1064 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1065 >    
1066 >    int errorOut;
1067 >    int esm =  NONE;
1068 >    int sm = UNDAMPED;
1069 >    RealType alphaVal;
1070 >    RealType dielectric;
1071 >    
1072 >    errorOut = isError;
1073  
1074 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1075 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1076 < }
1074 >    if (simParams_->haveElectrostaticSummationMethod()) {
1075 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1076 >      toUpper(myMethod);
1077 >      if (myMethod == "NONE") {
1078 >        esm = NONE;
1079 >      } else {
1080 >        if (myMethod == "SWITCHING_FUNCTION") {
1081 >          esm = SWITCHING_FUNCTION;
1082 >        } else {
1083 >          if (myMethod == "SHIFTED_POTENTIAL") {
1084 >            esm = SHIFTED_POTENTIAL;
1085 >          } else {
1086 >            if (myMethod == "SHIFTED_FORCE") {            
1087 >              esm = SHIFTED_FORCE;
1088 >            } else {
1089 >              if (myMethod == "REACTION_FIELD") {
1090 >                esm = REACTION_FIELD;
1091 >                dielectric = simParams_->getDielectric();
1092 >                if (!simParams_->haveDielectric()) {
1093 >                  // throw warning
1094 >                  sprintf( painCave.errMsg,
1095 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1096 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1097 >                  painCave.isFatal = 0;
1098 >                  simError();
1099 >                }
1100 >              } else {
1101 >                // throw error        
1102 >                sprintf( painCave.errMsg,
1103 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1104 >                         "\t(Input file specified %s .)\n"
1105 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1106 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1107 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1108 >                painCave.isFatal = 1;
1109 >                simError();
1110 >              }    
1111 >            }          
1112 >          }
1113 >        }
1114 >      }
1115 >    }
1116 >    
1117 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1118 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1119 >      toUpper(myScreen);
1120 >      if (myScreen == "UNDAMPED") {
1121 >        sm = UNDAMPED;
1122 >      } else {
1123 >        if (myScreen == "DAMPED") {
1124 >          sm = DAMPED;
1125 >          if (!simParams_->haveDampingAlpha()) {
1126 >            // first set a cutoff dependent alpha value
1127 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1128 >            alphaVal = 0.5125 - rcut_* 0.025;
1129 >            // for values rcut > 20.5, alpha is zero
1130 >            if (alphaVal < 0) alphaVal = 0;
1131  
1132 < void SimInfo::addProperty(GenericData* genData) {
1133 <    properties_.addProperty(genData);  
1134 < }
1132 >            // throw warning
1133 >            sprintf( painCave.errMsg,
1134 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1135 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1136 >            painCave.isFatal = 0;
1137 >            simError();
1138 >          } else {
1139 >            alphaVal = simParams_->getDampingAlpha();
1140 >          }
1141 >          
1142 >        } else {
1143 >          // throw error        
1144 >          sprintf( painCave.errMsg,
1145 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1146 >                   "\t(Input file specified %s .)\n"
1147 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1148 >                   "or \"damped\".\n", myScreen.c_str() );
1149 >          painCave.isFatal = 1;
1150 >          simError();
1151 >        }
1152 >      }
1153 >    }
1154 >    
1155 >    // let's pass some summation method variables to fortran
1156 >    setElectrostaticSummationMethod( &esm );
1157 >    setFortranElectrostaticMethod( &esm );
1158 >    setScreeningMethod( &sm );
1159 >    setDampingAlpha( &alphaVal );
1160 >    setReactionFieldDielectric( &dielectric );
1161 >    initFortranFF( &errorOut );
1162 >  }
1163  
1164 < void SimInfo::removeProperty(const std::string& propName) {
1165 <    properties_.removeProperty(propName);  
1166 < }
1167 <
1168 < void SimInfo::clearProperties() {
1164 >  void SimInfo::setupSwitchingFunction() {    
1165 >    int ft = CUBIC;
1166 >
1167 >    if (simParams_->haveSwitchingFunctionType()) {
1168 >      std::string funcType = simParams_->getSwitchingFunctionType();
1169 >      toUpper(funcType);
1170 >      if (funcType == "CUBIC") {
1171 >        ft = CUBIC;
1172 >      } else {
1173 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1174 >          ft = FIFTH_ORDER_POLY;
1175 >        } else {
1176 >          // throw error        
1177 >          sprintf( painCave.errMsg,
1178 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1179 >          painCave.isFatal = 1;
1180 >          simError();
1181 >        }          
1182 >      }
1183 >    }
1184 >
1185 >    // send switching function notification to switcheroo
1186 >    setFunctionType(&ft);
1187 >
1188 >  }
1189 >
1190 >  void SimInfo::setupAccumulateBoxDipole() {    
1191 >
1192 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1193 >    if ( simParams_->haveAccumulateBoxDipole() )
1194 >      if ( simParams_->getAccumulateBoxDipole() ) {
1195 >        setAccumulateBoxDipole();
1196 >        calcBoxDipole_ = true;
1197 >      }
1198 >
1199 >  }
1200 >
1201 >  void SimInfo::addProperty(GenericData* genData) {
1202 >    properties_.addProperty(genData);  
1203 >  }
1204 >
1205 >  void SimInfo::removeProperty(const std::string& propName) {
1206 >    properties_.removeProperty(propName);  
1207 >  }
1208 >
1209 >  void SimInfo::clearProperties() {
1210      properties_.clearProperties();
1211 < }
1211 >  }
1212  
1213 < std::vector<std::string> SimInfo::getPropertyNames() {
1213 >  std::vector<std::string> SimInfo::getPropertyNames() {
1214      return properties_.getPropertyNames();  
1215 < }
1215 >  }
1216        
1217 < std::vector<GenericData*> SimInfo::getProperties() {
1217 >  std::vector<GenericData*> SimInfo::getProperties() {
1218      return properties_.getProperties();
1219 < }
1219 >  }
1220  
1221 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1221 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1222      return properties_.getPropertyByName(propName);
1223 < }
1223 >  }
1224  
1225 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1226 <    //if (sman_ == sman_) {
1227 <    //    return;
1228 <    //}
1229 <    
843 <    //delete sman_;
1225 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1226 >    if (sman_ == sman) {
1227 >      return;
1228 >    }    
1229 >    delete sman_;
1230      sman_ = sman;
1231  
1232      Molecule* mol;
# Line 852 | Line 1238 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1238  
1239      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1240          
1241 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1242 <            atom->setSnapshotManager(sman_);
1243 <        }
1241 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1242 >        atom->setSnapshotManager(sman_);
1243 >      }
1244          
1245 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1246 <            rb->setSnapshotManager(sman_);
1247 <        }
1245 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1246 >        rb->setSnapshotManager(sman_);
1247 >      }
1248      }    
1249      
1250 < }
1250 >  }
1251  
1252 < Vector3d SimInfo::getComVel(){
1252 >  Vector3d SimInfo::getComVel(){
1253      SimInfo::MoleculeIterator i;
1254      Molecule* mol;
1255  
1256      Vector3d comVel(0.0);
1257 <    double totalMass = 0.0;
1257 >    RealType totalMass = 0.0;
1258      
1259  
1260      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1261 <        double mass = mol->getMass();
1262 <        totalMass += mass;
1263 <        comVel += mass * mol->getComVel();
1261 >      RealType mass = mol->getMass();
1262 >      totalMass += mass;
1263 >      comVel += mass * mol->getComVel();
1264      }  
1265  
1266   #ifdef IS_MPI
1267 <    double tmpMass = totalMass;
1267 >    RealType tmpMass = totalMass;
1268      Vector3d tmpComVel(comVel);    
1269 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1270 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1269 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1270 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271   #endif
1272  
1273      comVel /= totalMass;
1274  
1275      return comVel;
1276 < }
1276 >  }
1277  
1278 < Vector3d SimInfo::getCom(){
1278 >  Vector3d SimInfo::getCom(){
1279      SimInfo::MoleculeIterator i;
1280      Molecule* mol;
1281  
1282      Vector3d com(0.0);
1283 <    double totalMass = 0.0;
1283 >    RealType totalMass = 0.0;
1284      
1285      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1286 <        double mass = mol->getMass();
1287 <        totalMass += mass;
1288 <        com += mass * mol->getCom();
1286 >      RealType mass = mol->getMass();
1287 >      totalMass += mass;
1288 >      com += mass * mol->getCom();
1289      }  
1290  
1291   #ifdef IS_MPI
1292 <    double tmpMass = totalMass;
1292 >    RealType tmpMass = totalMass;
1293      Vector3d tmpCom(com);    
1294 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1295 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1294 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1295 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296   #endif
1297  
1298      com /= totalMass;
1299  
1300      return com;
1301  
1302 < }        
1302 >  }        
1303  
1304 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1304 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1305  
1306      return o;
1307 < }
1307 >  }
1308 >  
1309 >  
1310 >   /*
1311 >   Returns center of mass and center of mass velocity in one function call.
1312 >   */
1313 >  
1314 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1315 >      SimInfo::MoleculeIterator i;
1316 >      Molecule* mol;
1317 >      
1318 >    
1319 >      RealType totalMass = 0.0;
1320 >    
1321  
1322 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1323 +         RealType mass = mol->getMass();
1324 +         totalMass += mass;
1325 +         com += mass * mol->getCom();
1326 +         comVel += mass * mol->getComVel();          
1327 +      }  
1328 +      
1329 + #ifdef IS_MPI
1330 +      RealType tmpMass = totalMass;
1331 +      Vector3d tmpCom(com);  
1332 +      Vector3d tmpComVel(comVel);
1333 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1334 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336 + #endif
1337 +      
1338 +      com /= totalMass;
1339 +      comVel /= totalMass;
1340 +   }        
1341 +  
1342 +   /*
1343 +   Return intertia tensor for entire system and angular momentum Vector.
1344 +
1345 +
1346 +       [  Ixx -Ixy  -Ixz ]
1347 +  J =| -Iyx  Iyy  -Iyz |
1348 +       [ -Izx -Iyz   Izz ]
1349 +    */
1350 +
1351 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1352 +      
1353 +
1354 +      RealType xx = 0.0;
1355 +      RealType yy = 0.0;
1356 +      RealType zz = 0.0;
1357 +      RealType xy = 0.0;
1358 +      RealType xz = 0.0;
1359 +      RealType yz = 0.0;
1360 +      Vector3d com(0.0);
1361 +      Vector3d comVel(0.0);
1362 +      
1363 +      getComAll(com, comVel);
1364 +      
1365 +      SimInfo::MoleculeIterator i;
1366 +      Molecule* mol;
1367 +      
1368 +      Vector3d thisq(0.0);
1369 +      Vector3d thisv(0.0);
1370 +
1371 +      RealType thisMass = 0.0;
1372 +    
1373 +      
1374 +      
1375 +  
1376 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1377 +        
1378 +         thisq = mol->getCom()-com;
1379 +         thisv = mol->getComVel()-comVel;
1380 +         thisMass = mol->getMass();
1381 +         // Compute moment of intertia coefficients.
1382 +         xx += thisq[0]*thisq[0]*thisMass;
1383 +         yy += thisq[1]*thisq[1]*thisMass;
1384 +         zz += thisq[2]*thisq[2]*thisMass;
1385 +        
1386 +         // compute products of intertia
1387 +         xy += thisq[0]*thisq[1]*thisMass;
1388 +         xz += thisq[0]*thisq[2]*thisMass;
1389 +         yz += thisq[1]*thisq[2]*thisMass;
1390 +            
1391 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1392 +            
1393 +      }  
1394 +      
1395 +      
1396 +      inertiaTensor(0,0) = yy + zz;
1397 +      inertiaTensor(0,1) = -xy;
1398 +      inertiaTensor(0,2) = -xz;
1399 +      inertiaTensor(1,0) = -xy;
1400 +      inertiaTensor(1,1) = xx + zz;
1401 +      inertiaTensor(1,2) = -yz;
1402 +      inertiaTensor(2,0) = -xz;
1403 +      inertiaTensor(2,1) = -yz;
1404 +      inertiaTensor(2,2) = xx + yy;
1405 +      
1406 + #ifdef IS_MPI
1407 +      Mat3x3d tmpI(inertiaTensor);
1408 +      Vector3d tmpAngMom;
1409 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1410 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411 + #endif
1412 +              
1413 +      return;
1414 +   }
1415 +
1416 +   //Returns the angular momentum of the system
1417 +   Vector3d SimInfo::getAngularMomentum(){
1418 +      
1419 +      Vector3d com(0.0);
1420 +      Vector3d comVel(0.0);
1421 +      Vector3d angularMomentum(0.0);
1422 +      
1423 +      getComAll(com,comVel);
1424 +      
1425 +      SimInfo::MoleculeIterator i;
1426 +      Molecule* mol;
1427 +      
1428 +      Vector3d thisr(0.0);
1429 +      Vector3d thisp(0.0);
1430 +      
1431 +      RealType thisMass;
1432 +      
1433 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1434 +        thisMass = mol->getMass();
1435 +        thisr = mol->getCom()-com;
1436 +        thisp = (mol->getComVel()-comVel)*thisMass;
1437 +        
1438 +        angularMomentum += cross( thisr, thisp );
1439 +        
1440 +      }  
1441 +      
1442 + #ifdef IS_MPI
1443 +      Vector3d tmpAngMom;
1444 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1445 + #endif
1446 +      
1447 +      return angularMomentum;
1448 +   }
1449 +  
1450 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1451 +    return IOIndexToIntegrableObject.at(index);
1452 +  }
1453 +  
1454 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1455 +    IOIndexToIntegrableObject= v;
1456 +  }
1457 +
1458 + /*
1459 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1460 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1461 +      sdByGlobalIndex_ = v;
1462 +    }
1463 +
1464 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1465 +      //assert(index < nAtoms_ + nRigidBodies_);
1466 +      return sdByGlobalIndex_.at(index);
1467 +    }  
1468 + */  
1469   }//end namespace oopse
1470  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines