ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 331 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58   #include "UseTheForce/doForces_interface.h"
59 < #include "UseTheForce/notifyCutoffs_interface.h"
59 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
62   #include "selection/SelectionManager.hpp"
63 + #include "io/ForceFieldOptions.hpp"
64 + #include "UseTheForce/ForceField.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67 +
68   #ifdef IS_MPI
69   #include "UseTheForce/mpiComponentPlan.h"
70   #include "UseTheForce/DarkSide/simParallel_interface.h"
71   #endif
72  
73 < namespace oopse {
74 <
75 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
76 <                                ForceField* ff, Globals* simParams) :
77 <                                forceField_(ff), simParams_(simParams),
78 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
79 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
80 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
81 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
82 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
83 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
84 <
85 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
73 > using namespace std;
74 > namespace OpenMD {
75 >  
76 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
77 >    forceField_(ff), simParams_(simParams),
78 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
79 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
80 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
81 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
82 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
83 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
84 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
85 >    
86      MoleculeStamp* molStamp;
87      int nMolWithSameStamp;
88      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
89 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
90      CutoffGroupStamp* cgStamp;    
91      RigidBodyStamp* rbStamp;
92      int nRigidAtoms = 0;
93      
94 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
95 <        molStamp = i->first;
96 <        nMolWithSameStamp = i->second;
97 <        
98 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
99 <
100 <        //calculate atoms in molecules
101 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 <
103 <
104 <        //calculate atoms in cutoff groups
105 <        int nAtomsInGroups = 0;
106 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
107 <        
108 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
109 <            cgStamp = molStamp->getCutoffGroup(j);
110 <            nAtomsInGroups += cgStamp->getNMembers();
111 <        }
112 <
113 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
114 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 <
116 <        //calculate atoms in rigid bodies
117 <        int nAtomsInRigidBodies = 0;
118 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 <        
120 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
121 <            rbStamp = molStamp->getRigidBody(j);
122 <            nAtomsInRigidBodies += rbStamp->getNMembers();
123 <        }
124 <
125 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 <        
94 >    vector<Component*> components = simParams->getComponents();
95 >    
96 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      nMolWithSameStamp = (*i)->getNMol();
99 >      
100 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
101 >      
102 >      //calculate atoms in molecules
103 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 >      
105 >      //calculate atoms in cutoff groups
106 >      int nAtomsInGroups = 0;
107 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
108 >      
109 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
110 >        cgStamp = molStamp->getCutoffGroupStamp(j);
111 >        nAtomsInGroups += cgStamp->getNMembers();
112 >      }
113 >      
114 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
115 >      
116 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
117 >      
118 >      //calculate atoms in rigid bodies
119 >      int nAtomsInRigidBodies = 0;
120 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
121 >      
122 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
123 >        rbStamp = molStamp->getRigidBodyStamp(j);
124 >        nAtomsInRigidBodies += rbStamp->getNMembers();
125 >      }
126 >      
127 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
128 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
129 >      
130      }
131 <
132 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
133 <    //therefore the total number of cutoff groups in the system is equal to
134 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
135 <    //file plus the number of cutoff groups defined in meta-data file
131 >    
132 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
133 >    //group therefore the total number of cutoff groups in the system is
134 >    //equal to the total number of atoms minus number of atoms belong to
135 >    //cutoff group defined in meta-data file plus the number of cutoff
136 >    //groups defined in meta-data file
137      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
138 <
139 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
140 <    //therefore the total number of  integrable objects in the system is equal to
141 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
142 <    //file plus the number of  rigid bodies defined in meta-data file
143 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
144 <
138 >    
139 >    //every free atom (atom does not belong to rigid bodies) is an
140 >    //integrable object therefore the total number of integrable objects
141 >    //in the system is equal to the total number of atoms minus number of
142 >    //atoms belong to rigid body defined in meta-data file plus the number
143 >    //of rigid bodies defined in meta-data file
144 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
145 >      + nGlobalRigidBodies_;
146 >    
147      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
148      molToProcMap_.resize(nGlobalMols_);
149 < #endif
150 <
151 <    selectMan_ = new SelectionManager(this);
152 <    selectMan_->selectAll();
153 < }
154 <
155 < SimInfo::~SimInfo() {
156 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
157 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
149 >  }
150 >  
151 >  SimInfo::~SimInfo() {
152 >    map<int, Molecule*>::iterator i;
153 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154 >      delete i->second;
155 >    }
156 >    molecules_.clear();
157 >      
158      delete sman_;
159      delete simParams_;
160      delete forceField_;
161 <    delete selectMan_;
155 < }
161 >  }
162  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
163  
164 < bool SimInfo::addMolecule(Molecule* mol) {
164 >  bool SimInfo::addMolecule(Molecule* mol) {
165      MoleculeIterator i;
166 <
166 >    
167      i = molecules_.find(mol->getGlobalIndex());
168      if (i == molecules_.end() ) {
169 <
170 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
171 <        
172 <        nAtoms_ += mol->getNAtoms();
173 <        nBonds_ += mol->getNBonds();
174 <        nBends_ += mol->getNBends();
175 <        nTorsions_ += mol->getNTorsions();
176 <        nRigidBodies_ += mol->getNRigidBodies();
177 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
178 <        nCutoffGroups_ += mol->getNCutoffGroups();
179 <        nConstraints_ += mol->getNConstraintPairs();
180 <
181 <        addExcludePairs(mol);
182 <        
183 <        return true;
169 >      
170 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
171 >      
172 >      nAtoms_ += mol->getNAtoms();
173 >      nBonds_ += mol->getNBonds();
174 >      nBends_ += mol->getNBends();
175 >      nTorsions_ += mol->getNTorsions();
176 >      nInversions_ += mol->getNInversions();
177 >      nRigidBodies_ += mol->getNRigidBodies();
178 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
179 >      nCutoffGroups_ += mol->getNCutoffGroups();
180 >      nConstraints_ += mol->getNConstraintPairs();
181 >      
182 >      addInteractionPairs(mol);
183 >      
184 >      return true;
185      } else {
186 <        return false;
186 >      return false;
187      }
188 < }
189 <
190 < bool SimInfo::removeMolecule(Molecule* mol) {
188 >  }
189 >  
190 >  bool SimInfo::removeMolecule(Molecule* mol) {
191      MoleculeIterator i;
192      i = molecules_.find(mol->getGlobalIndex());
193  
194      if (i != molecules_.end() ) {
195  
196 <        assert(mol == i->second);
196 >      assert(mol == i->second);
197          
198 <        nAtoms_ -= mol->getNAtoms();
199 <        nBonds_ -= mol->getNBonds();
200 <        nBends_ -= mol->getNBends();
201 <        nTorsions_ -= mol->getNTorsions();
202 <        nRigidBodies_ -= mol->getNRigidBodies();
203 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
204 <        nCutoffGroups_ -= mol->getNCutoffGroups();
205 <        nConstraints_ -= mol->getNConstraintPairs();
198 >      nAtoms_ -= mol->getNAtoms();
199 >      nBonds_ -= mol->getNBonds();
200 >      nBends_ -= mol->getNBends();
201 >      nTorsions_ -= mol->getNTorsions();
202 >      nInversions_ -= mol->getNInversions();
203 >      nRigidBodies_ -= mol->getNRigidBodies();
204 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
205 >      nCutoffGroups_ -= mol->getNCutoffGroups();
206 >      nConstraints_ -= mol->getNConstraintPairs();
207  
208 <        removeExcludePairs(mol);
209 <        molecules_.erase(mol->getGlobalIndex());
208 >      removeInteractionPairs(mol);
209 >      molecules_.erase(mol->getGlobalIndex());
210  
211 <        delete mol;
211 >      delete mol;
212          
213 <        return true;
213 >      return true;
214      } else {
215 <        return false;
215 >      return false;
216      }
217 +  }    
218  
220
221 }    
222
219          
220 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
220 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
221      i = molecules_.begin();
222      return i == molecules_.end() ? NULL : i->second;
223 < }    
223 >  }    
224  
225 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
225 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
226      ++i;
227      return i == molecules_.end() ? NULL : i->second;    
228 < }
228 >  }
229  
230  
231 < void SimInfo::calcNdf() {
231 >  void SimInfo::calcNdf() {
232      int ndf_local;
233      MoleculeIterator i;
234 <    std::vector<StuntDouble*>::iterator j;
234 >    vector<StuntDouble*>::iterator j;
235      Molecule* mol;
236      StuntDouble* integrableObject;
237  
238      ndf_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 <               integrableObject = mol->nextIntegrableObject(j)) {
241 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 >           integrableObject = mol->nextIntegrableObject(j)) {
243  
244 <            ndf_local += 3;
244 >        ndf_local += 3;
245  
246 <            if (integrableObject->isDirectional()) {
247 <                if (integrableObject->isLinear()) {
248 <                    ndf_local += 2;
249 <                } else {
250 <                    ndf_local += 3;
251 <                }
252 <            }
246 >        if (integrableObject->isDirectional()) {
247 >          if (integrableObject->isLinear()) {
248 >            ndf_local += 2;
249 >          } else {
250 >            ndf_local += 3;
251 >          }
252 >        }
253              
254 <        }//end for (integrableObject)
255 <    }// end for (mol)
254 >      }
255 >    }
256      
257      // n_constraints is local, so subtract them on each processor
258      ndf_local -= nConstraints_;
# Line 271 | Line 267 | void SimInfo::calcNdf() {
267      // entire system:
268      ndf_ = ndf_ - 3 - nZconstraint_;
269  
270 < }
270 >  }
271  
272 < void SimInfo::calcNdfRaw() {
272 >  int SimInfo::getFdf() {
273 > #ifdef IS_MPI
274 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
275 > #else
276 >    fdf_ = fdf_local;
277 > #endif
278 >    return fdf_;
279 >  }
280 >    
281 >  void SimInfo::calcNdfRaw() {
282      int ndfRaw_local;
283  
284      MoleculeIterator i;
285 <    std::vector<StuntDouble*>::iterator j;
285 >    vector<StuntDouble*>::iterator j;
286      Molecule* mol;
287      StuntDouble* integrableObject;
288  
# Line 285 | Line 290 | void SimInfo::calcNdfRaw() {
290      ndfRaw_local = 0;
291      
292      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
293 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
294 <               integrableObject = mol->nextIntegrableObject(j)) {
293 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
294 >           integrableObject = mol->nextIntegrableObject(j)) {
295  
296 <            ndfRaw_local += 3;
296 >        ndfRaw_local += 3;
297  
298 <            if (integrableObject->isDirectional()) {
299 <                if (integrableObject->isLinear()) {
300 <                    ndfRaw_local += 2;
301 <                } else {
302 <                    ndfRaw_local += 3;
303 <                }
304 <            }
298 >        if (integrableObject->isDirectional()) {
299 >          if (integrableObject->isLinear()) {
300 >            ndfRaw_local += 2;
301 >          } else {
302 >            ndfRaw_local += 3;
303 >          }
304 >        }
305              
306 <        }
306 >      }
307      }
308      
309   #ifdef IS_MPI
# Line 306 | Line 311 | void SimInfo::calcNdfRaw() {
311   #else
312      ndfRaw_ = ndfRaw_local;
313   #endif
314 < }
314 >  }
315  
316 < void SimInfo::calcNdfTrans() {
316 >  void SimInfo::calcNdfTrans() {
317      int ndfTrans_local;
318  
319      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 327 | void SimInfo::calcNdfTrans() {
327  
328      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
329  
330 < }
330 >  }
331  
332 < void SimInfo::addExcludePairs(Molecule* mol) {
333 <    std::vector<Bond*>::iterator bondIter;
334 <    std::vector<Bend*>::iterator bendIter;
335 <    std::vector<Torsion*>::iterator torsionIter;
332 >  void SimInfo::addInteractionPairs(Molecule* mol) {
333 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
334 >    vector<Bond*>::iterator bondIter;
335 >    vector<Bend*>::iterator bendIter;
336 >    vector<Torsion*>::iterator torsionIter;
337 >    vector<Inversion*>::iterator inversionIter;
338      Bond* bond;
339      Bend* bend;
340      Torsion* torsion;
341 +    Inversion* inversion;
342      int a;
343      int b;
344      int c;
345      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
346  
347 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
348 <        a = bend->getAtomA()->getGlobalIndex();
349 <        b = bend->getAtomB()->getGlobalIndex();        
350 <        c = bend->getAtomC()->getGlobalIndex();
347 >    // atomGroups can be used to add special interaction maps between
348 >    // groups of atoms that are in two separate rigid bodies.
349 >    // However, most site-site interactions between two rigid bodies
350 >    // are probably not special, just the ones between the physically
351 >    // bonded atoms.  Interactions *within* a single rigid body should
352 >    // always be excluded.  These are done at the bottom of this
353 >    // function.
354  
355 <        exclude_.addPair(a, b);
356 <        exclude_.addPair(a, c);
357 <        exclude_.addPair(b, c);        
355 >    map<int, set<int> > atomGroups;
356 >    Molecule::RigidBodyIterator rbIter;
357 >    RigidBody* rb;
358 >    Molecule::IntegrableObjectIterator ii;
359 >    StuntDouble* integrableObject;
360 >    
361 >    for (integrableObject = mol->beginIntegrableObject(ii);
362 >         integrableObject != NULL;
363 >         integrableObject = mol->nextIntegrableObject(ii)) {
364 >      
365 >      if (integrableObject->isRigidBody()) {
366 >        rb = static_cast<RigidBody*>(integrableObject);
367 >        vector<Atom*> atoms = rb->getAtoms();
368 >        set<int> rigidAtoms;
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
371 >        }
372 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
373 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
374 >        }      
375 >      } else {
376 >        set<int> oneAtomSet;
377 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
378 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
379 >      }
380 >    }  
381 >          
382 >    for (bond= mol->beginBond(bondIter); bond != NULL;
383 >         bond = mol->nextBond(bondIter)) {
384 >
385 >      a = bond->getAtomA()->getGlobalIndex();
386 >      b = bond->getAtomB()->getGlobalIndex();  
387 >    
388 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
389 >        oneTwoInteractions_.addPair(a, b);
390 >      } else {
391 >        excludedInteractions_.addPair(a, b);
392 >      }
393      }
394  
395 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
396 <        a = torsion->getAtomA()->getGlobalIndex();
357 <        b = torsion->getAtomB()->getGlobalIndex();        
358 <        c = torsion->getAtomC()->getGlobalIndex();        
359 <        d = torsion->getAtomD()->getGlobalIndex();        
395 >    for (bend= mol->beginBend(bendIter); bend != NULL;
396 >         bend = mol->nextBend(bendIter)) {
397  
398 <        exclude_.addPair(a, b);
399 <        exclude_.addPair(a, c);
400 <        exclude_.addPair(a, d);
401 <        exclude_.addPair(b, c);
402 <        exclude_.addPair(b, d);
403 <        exclude_.addPair(c, d);        
398 >      a = bend->getAtomA()->getGlobalIndex();
399 >      b = bend->getAtomB()->getGlobalIndex();        
400 >      c = bend->getAtomC()->getGlobalIndex();
401 >      
402 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
403 >        oneTwoInteractions_.addPair(a, b);      
404 >        oneTwoInteractions_.addPair(b, c);
405 >      } else {
406 >        excludedInteractions_.addPair(a, b);
407 >        excludedInteractions_.addPair(b, c);
408 >      }
409 >
410 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
411 >        oneThreeInteractions_.addPair(a, c);      
412 >      } else {
413 >        excludedInteractions_.addPair(a, c);
414 >      }
415      }
416  
417 <    
418 < }
417 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
418 >         torsion = mol->nextTorsion(torsionIter)) {
419  
420 < void SimInfo::removeExcludePairs(Molecule* mol) {
421 <    std::vector<Bond*>::iterator bondIter;
422 <    std::vector<Bend*>::iterator bendIter;
423 <    std::vector<Torsion*>::iterator torsionIter;
420 >      a = torsion->getAtomA()->getGlobalIndex();
421 >      b = torsion->getAtomB()->getGlobalIndex();        
422 >      c = torsion->getAtomC()->getGlobalIndex();        
423 >      d = torsion->getAtomD()->getGlobalIndex();      
424 >
425 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
426 >        oneTwoInteractions_.addPair(a, b);      
427 >        oneTwoInteractions_.addPair(b, c);
428 >        oneTwoInteractions_.addPair(c, d);
429 >      } else {
430 >        excludedInteractions_.addPair(a, b);
431 >        excludedInteractions_.addPair(b, c);
432 >        excludedInteractions_.addPair(c, d);
433 >      }
434 >
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >        oneThreeInteractions_.addPair(b, d);      
438 >      } else {
439 >        excludedInteractions_.addPair(a, c);
440 >        excludedInteractions_.addPair(b, d);
441 >      }
442 >
443 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
444 >        oneFourInteractions_.addPair(a, d);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, d);
447 >      }
448 >    }
449 >
450 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
451 >         inversion = mol->nextInversion(inversionIter)) {
452 >
453 >      a = inversion->getAtomA()->getGlobalIndex();
454 >      b = inversion->getAtomB()->getGlobalIndex();        
455 >      c = inversion->getAtomC()->getGlobalIndex();        
456 >      d = inversion->getAtomD()->getGlobalIndex();        
457 >
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(a, c);
461 >        oneTwoInteractions_.addPair(a, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(a, d);
466 >      }
467 >
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(b, c);    
470 >        oneThreeInteractions_.addPair(b, d);    
471 >        oneThreeInteractions_.addPair(c, d);      
472 >      } else {
473 >        excludedInteractions_.addPair(b, c);
474 >        excludedInteractions_.addPair(b, d);
475 >        excludedInteractions_.addPair(c, d);
476 >      }
477 >    }
478 >
479 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
480 >         rb = mol->nextRigidBody(rbIter)) {
481 >      vector<Atom*> atoms = rb->getAtoms();
482 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
483 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
484 >          a = atoms[i]->getGlobalIndex();
485 >          b = atoms[j]->getGlobalIndex();
486 >          excludedInteractions_.addPair(a, b);
487 >        }
488 >      }
489 >    }        
490 >
491 >  }
492 >
493 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
494 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
495 >    vector<Bond*>::iterator bondIter;
496 >    vector<Bend*>::iterator bendIter;
497 >    vector<Torsion*>::iterator torsionIter;
498 >    vector<Inversion*>::iterator inversionIter;
499      Bond* bond;
500      Bend* bend;
501      Torsion* torsion;
502 +    Inversion* inversion;
503      int a;
504      int b;
505      int c;
506      int d;
507 +
508 +    map<int, set<int> > atomGroups;
509 +    Molecule::RigidBodyIterator rbIter;
510 +    RigidBody* rb;
511 +    Molecule::IntegrableObjectIterator ii;
512 +    StuntDouble* integrableObject;
513      
514 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
515 <        a = bond->getAtomA()->getGlobalIndex();
516 <        b = bond->getAtomB()->getGlobalIndex();        
517 <        exclude_.removePair(a, b);
514 >    for (integrableObject = mol->beginIntegrableObject(ii);
515 >         integrableObject != NULL;
516 >         integrableObject = mol->nextIntegrableObject(ii)) {
517 >      
518 >      if (integrableObject->isRigidBody()) {
519 >        rb = static_cast<RigidBody*>(integrableObject);
520 >        vector<Atom*> atoms = rb->getAtoms();
521 >        set<int> rigidAtoms;
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
524 >        }
525 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
526 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
527 >        }      
528 >      } else {
529 >        set<int> oneAtomSet;
530 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
531 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
532 >      }
533 >    }  
534 >
535 >    for (bond= mol->beginBond(bondIter); bond != NULL;
536 >         bond = mol->nextBond(bondIter)) {
537 >      
538 >      a = bond->getAtomA()->getGlobalIndex();
539 >      b = bond->getAtomB()->getGlobalIndex();  
540 >    
541 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
542 >        oneTwoInteractions_.removePair(a, b);
543 >      } else {
544 >        excludedInteractions_.removePair(a, b);
545 >      }
546      }
547  
548 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
549 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
548 >    for (bend= mol->beginBend(bendIter); bend != NULL;
549 >         bend = mol->nextBend(bendIter)) {
550  
551 <        exclude_.removePair(a, b);
552 <        exclude_.removePair(a, c);
553 <        exclude_.removePair(b, c);        
551 >      a = bend->getAtomA()->getGlobalIndex();
552 >      b = bend->getAtomB()->getGlobalIndex();        
553 >      c = bend->getAtomC()->getGlobalIndex();
554 >      
555 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
556 >        oneTwoInteractions_.removePair(a, b);      
557 >        oneTwoInteractions_.removePair(b, c);
558 >      } else {
559 >        excludedInteractions_.removePair(a, b);
560 >        excludedInteractions_.removePair(b, c);
561 >      }
562 >
563 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
564 >        oneThreeInteractions_.removePair(a, c);      
565 >      } else {
566 >        excludedInteractions_.removePair(a, c);
567 >      }
568      }
569  
570 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
571 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
570 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
571 >         torsion = mol->nextTorsion(torsionIter)) {
572  
573 <        exclude_.removePair(a, b);
574 <        exclude_.removePair(a, c);
575 <        exclude_.removePair(a, d);
576 <        exclude_.removePair(b, c);
577 <        exclude_.removePair(b, d);
578 <        exclude_.removePair(c, d);        
573 >      a = torsion->getAtomA()->getGlobalIndex();
574 >      b = torsion->getAtomB()->getGlobalIndex();        
575 >      c = torsion->getAtomC()->getGlobalIndex();        
576 >      d = torsion->getAtomD()->getGlobalIndex();      
577 >  
578 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
579 >        oneTwoInteractions_.removePair(a, b);      
580 >        oneTwoInteractions_.removePair(b, c);
581 >        oneTwoInteractions_.removePair(c, d);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >        excludedInteractions_.removePair(b, c);
585 >        excludedInteractions_.removePair(c, d);
586 >      }
587 >
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >        oneThreeInteractions_.removePair(b, d);      
591 >      } else {
592 >        excludedInteractions_.removePair(a, c);
593 >        excludedInteractions_.removePair(b, d);
594 >      }
595 >
596 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
597 >        oneFourInteractions_.removePair(a, d);      
598 >      } else {
599 >        excludedInteractions_.removePair(a, d);
600 >      }
601      }
602  
603 < }
603 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
604 >         inversion = mol->nextInversion(inversionIter)) {
605  
606 +      a = inversion->getAtomA()->getGlobalIndex();
607 +      b = inversion->getAtomB()->getGlobalIndex();        
608 +      c = inversion->getAtomC()->getGlobalIndex();        
609 +      d = inversion->getAtomD()->getGlobalIndex();        
610  
611 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
612 <    int curStampId;
611 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
612 >        oneTwoInteractions_.removePair(a, b);      
613 >        oneTwoInteractions_.removePair(a, c);
614 >        oneTwoInteractions_.removePair(a, d);
615 >      } else {
616 >        excludedInteractions_.removePair(a, b);
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(a, d);
619 >      }
620  
621 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
622 +        oneThreeInteractions_.removePair(b, c);    
623 +        oneThreeInteractions_.removePair(b, d);    
624 +        oneThreeInteractions_.removePair(c, d);      
625 +      } else {
626 +        excludedInteractions_.removePair(b, c);
627 +        excludedInteractions_.removePair(b, d);
628 +        excludedInteractions_.removePair(c, d);
629 +      }
630 +    }
631 +
632 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
633 +         rb = mol->nextRigidBody(rbIter)) {
634 +      vector<Atom*> atoms = rb->getAtoms();
635 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
636 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
637 +          a = atoms[i]->getGlobalIndex();
638 +          b = atoms[j]->getGlobalIndex();
639 +          excludedInteractions_.removePair(a, b);
640 +        }
641 +      }
642 +    }        
643 +    
644 +  }
645 +  
646 +  
647 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
648 +    int curStampId;
649 +    
650      //index from 0
651      curStampId = moleculeStamps_.size();
652  
653      moleculeStamps_.push_back(molStamp);
654      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
655 < }
655 >  }
656  
427 void SimInfo::update() {
657  
658 <    setupSimType();
658 >  /**
659 >   * update
660 >   *
661 >   *  Performs the global checks and variable settings after the objects have been
662 >   *  created.
663 >   *
664 >   */
665 >  void SimInfo::update() {
666 >    
667 >    setupSimVariables();
668 >    setupCutoffs();
669 >    setupSwitching();
670 >    setupElectrostatics();
671 >    setupNeighborlists();
672  
673   #ifdef IS_MPI
674      setupFortranParallel();
675   #endif
434
676      setupFortranSim();
677 +    fortranInitialized_ = true;
678  
437    //setup fortran force field
438    /** @deprecate */    
439    int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
448    
449    setupCutoff();
450
679      calcNdf();
680      calcNdfRaw();
681      calcNdfTrans();
682 <
683 <    fortranInitialized_ = true;
684 < }
457 <
458 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  }
683 >  
684 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
685      SimInfo::MoleculeIterator mi;
686      Molecule* mol;
687      Molecule::AtomIterator ai;
688      Atom* atom;
689 <    std::set<AtomType*> atomTypes;
689 >    set<AtomType*> atomTypes;
690 >    
691 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
692 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
693 >        atomTypes.insert(atom->getAtomType());
694 >      }      
695 >    }    
696 >    return atomTypes;        
697 >  }
698  
699 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
700 <
701 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
702 <            atomTypes.insert(atom->getAtomType());
699 >  /**
700 >   * setupCutoffs
701 >   *
702 >   * Sets the values of cutoffRadius and cutoffMethod
703 >   *
704 >   * cutoffRadius : realType
705 >   *  If the cutoffRadius was explicitly set, use that value.
706 >   *  If the cutoffRadius was not explicitly set:
707 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
708 >   *      No electrostatic atoms?  Poll the atom types present in the
709 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
710 >   *      Use the maximum suggested value that was found.
711 >   *
712 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
713 >   *      If cutoffMethod was explicitly set, use that choice.
714 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
715 >   */
716 >  void SimInfo::setupCutoffs() {
717 >    
718 >    if (simParams_->haveCutoffRadius()) {
719 >      cutoffRadius_ = simParams_->getCutoffRadius();
720 >    } else {      
721 >      if (usesElectrostaticAtoms_) {
722 >        sprintf(painCave.errMsg,
723 >                "SimInfo: No value was set for the cutoffRadius.\n"
724 >                "\tOpenMD will use a default value of 12.0 angstroms"
725 >                "\tfor the cutoffRadius.\n");
726 >        painCave.isFatal = 0;
727 >        painCave.severity = OPENMD_INFO;
728 >        simError();
729 >        cutoffRadius_ = 12.0;
730 >      } else {
731 >        RealType thisCut;
732 >        set<AtomType*>::iterator i;
733 >        set<AtomType*> atomTypes;
734 >        atomTypes = getSimulatedAtomTypes();        
735 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
736 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
737 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
738          }
739 <        
739 >        sprintf(painCave.errMsg,
740 >                "SimInfo: No value was set for the cutoffRadius.\n"
741 >                "\tOpenMD will use %lf angstroms.\n",
742 >                cutoffRadius_);
743 >        painCave.isFatal = 0;
744 >        painCave.severity = OPENMD_INFO;
745 >        simError();
746 >      }            
747      }
748  
749 <    return atomTypes;        
474 < }
749 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
750  
751 < void SimInfo::setupSimType() {
752 <    std::set<AtomType*>::iterator i;
753 <    std::set<AtomType*> atomTypes;
754 <    atomTypes = getUniqueAtomTypes();
755 <    
756 <    int useLennardJones = 0;
757 <    int useElectrostatic = 0;
758 <    int useEAM = 0;
759 <    int useCharge = 0;
760 <    int useDirectional = 0;
761 <    int useDipole = 0;
762 <    int useGayBerne = 0;
763 <    int useSticky = 0;
764 <    int useShape = 0;
765 <    int useFLARB = 0; //it is not in AtomType yet
766 <    int useDirectionalAtom = 0;    
767 <    int useElectrostatics = 0;
768 <    //usePBC and useRF are from simParams
769 <    int usePBC = simParams_->getPBC();
770 <    int useRF = simParams_->getUseRF();
771 <
772 <    //loop over all of the atom types
773 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
774 <        useLennardJones |= (*i)->isLennardJones();
775 <        useElectrostatic |= (*i)->isElectrostatic();
776 <        useEAM |= (*i)->isEAM();
777 <        useCharge |= (*i)->isCharge();
778 <        useDirectional |= (*i)->isDirectional();
779 <        useDipole |= (*i)->isDipole();
780 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
751 >    map<string, CutoffMethod> stringToCutoffMethod;
752 >    stringToCutoffMethod["HARD"] = HARD;
753 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
754 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
755 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
756 >  
757 >    if (simParams_->haveCutoffMethod()) {
758 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
759 >      map<string, CutoffMethod>::iterator i;
760 >      i = stringToCutoffMethod.find(cutMeth);
761 >      if (i == stringToCutoffMethod.end()) {
762 >        sprintf(painCave.errMsg,
763 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
764 >                "\tShould be one of: "
765 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
766 >                cutMeth.c_str());
767 >        painCave.isFatal = 1;
768 >        painCave.severity = OPENMD_ERROR;
769 >        simError();
770 >      } else {
771 >        cutoffMethod_ = i->second;
772 >      }
773 >    } else {
774 >      sprintf(painCave.errMsg,
775 >              "SimInfo: No value was set for the cutoffMethod.\n"
776 >              "\tOpenMD will use SHIFTED_FORCE.\n");
777 >        painCave.isFatal = 0;
778 >        painCave.severity = OPENMD_INFO;
779 >        simError();
780 >        cutoffMethod_ = SHIFTED_FORCE;        
781      }
782  
783 <    if (useSticky || useDipole || useGayBerne || useShape) {
784 <        useDirectionalAtom = 1;
785 <    }
783 >    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
784 >  }
785 >  
786 >  /**
787 >   * setupSwitching
788 >   *
789 >   * Sets the values of switchingRadius and
790 >   *  If the switchingRadius was explicitly set, use that value (but check it)
791 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
792 >   */
793 >  void SimInfo::setupSwitching() {
794 >    
795 >    if (simParams_->haveSwitchingRadius()) {
796 >      switchingRadius_ = simParams_->getSwitchingRadius();
797 >      if (switchingRadius_ > cutoffRadius_) {        
798 >        sprintf(painCave.errMsg,
799 >                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
800 >                switchingRadius_, cutoffRadius_);
801 >        painCave.isFatal = 1;
802 >        painCave.severity = OPENMD_ERROR;
803 >        simError();
804 >      }
805 >    } else {      
806 >      switchingRadius_ = 0.85 * cutoffRadius_;
807 >      sprintf(painCave.errMsg,
808 >              "SimInfo: No value was set for the switchingRadius.\n"
809 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
810 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
811 >      painCave.isFatal = 0;
812 >      painCave.severity = OPENMD_WARNING;
813 >      simError();
814 >    }          
815 >  
816 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
817  
818 <    if (useCharge || useDipole) {
819 <        useElectrostatics = 1;
818 >    SwitchingFunctionType ft;
819 >    
820 >    if (simParams_->haveSwitchingFunctionType()) {
821 >      string funcType = simParams_->getSwitchingFunctionType();
822 >      toUpper(funcType);
823 >      if (funcType == "CUBIC") {
824 >        ft = cubic;
825 >      } else {
826 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
827 >          ft = fifth_order_poly;
828 >        } else {
829 >          // throw error        
830 >          sprintf( painCave.errMsg,
831 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
832 >                   "\tswitchingFunctionType must be one of: "
833 >                   "\"cubic\" or \"fifth_order_polynomial\".",
834 >                   funcType.c_str() );
835 >          painCave.isFatal = 1;
836 >          painCave.severity = OPENMD_ERROR;
837 >          simError();
838 >        }          
839 >      }
840      }
841  
842 < #ifdef IS_MPI    
843 <    int temp;
842 >    InteractionManager::Instance()->setSwitchingFunctionType(ft);
843 >  }
844  
845 <    temp = usePBC;
846 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
845 >  /**
846 >   * setupSkinThickness
847 >   *
848 >   *  If the skinThickness was explicitly set, use that value (but check it)
849 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
850 >   */
851 >  void SimInfo::setupSkinThickness() {    
852 >    if (simParams_->haveSkinThickness()) {
853 >      skinThickness_ = simParams_->getSkinThickness();
854 >    } else {      
855 >      skinThickness_ = 1.0;
856 >      sprintf(painCave.errMsg,
857 >              "SimInfo Warning: No value was set for the skinThickness.\n"
858 >              "\tOpenMD will use a default value of %f Angstroms\n"
859 >              "\tfor this simulation\n", skinThickness_);
860 >      painCave.isFatal = 0;
861 >      simError();
862 >    }            
863 >  }
864  
865 <    temp = useDirectionalAtom;
866 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
865 >  void SimInfo::setupSimType() {
866 >    set<AtomType*>::iterator i;
867 >    set<AtomType*> atomTypes;
868 >    atomTypes = getSimulatedAtomTypes();
869  
870 <    temp = useLennardJones;
528 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
870 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
871  
872 <    temp = useElectrostatics;
873 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
872 >    int usesElectrostatic = 0;
873 >    int usesMetallic = 0;
874 >    int usesDirectional = 0;
875 >    //loop over all of the atom types
876 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
877 >      usesElectrostatic |= (*i)->isElectrostatic();
878 >      usesMetallic |= (*i)->isMetal();
879 >      usesDirectional |= (*i)->isDirectional();
880 >    }
881  
882 <    temp = useCharge;
883 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
882 > #ifdef IS_MPI    
883 >    int temp;
884 >    temp = usesDirectional;
885 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886  
887 <    temp = useDipole;
888 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
887 >    temp = usesMetallic;
888 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889  
890 <    temp = useSticky;
891 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
890 >    temp = usesElectrostatic;
891 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
892 > #endif
893 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
894 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
895 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
896 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
897 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
898 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
899 >  }
900  
901 <    temp = useGayBerne;
902 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
903 <
904 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
901 >  void SimInfo::setupFortranSim() {
902 >    int isError;
903 >    int nExclude, nOneTwo, nOneThree, nOneFour;
904 >    vector<int> fortranGlobalGroupMembership;
905      
906 < #endif
906 >    notifyFortranSkinThickness(&skinThickness_);
907  
908 <    fInfo_.SIM_uses_PBC = usePBC;    
909 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
910 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
562 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563 <    fInfo_.SIM_uses_Charges = useCharge;
564 <    fInfo_.SIM_uses_Dipoles = useDipole;
565 <    fInfo_.SIM_uses_Sticky = useSticky;
566 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
567 <    fInfo_.SIM_uses_EAM = useEAM;
568 <    fInfo_.SIM_uses_Shapes = useShape;
569 <    fInfo_.SIM_uses_FLARB = useFLARB;
570 <    fInfo_.SIM_uses_RF = useRF;
571 <
572 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
908 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
909 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
910 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
911  
589 }
590
591 void SimInfo::setupFortranSim() {
592    int isError;
593    int nExclude;
594    std::vector<int> fortranGlobalGroupMembership;
595    
596    nExclude = exclude_.getSize();
912      isError = 0;
913  
914      //globalGroupMembership_ is filled by SimCreator    
915      for (int i = 0; i < nGlobalAtoms_; i++) {
916 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
916 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
917      }
918  
919      //calculate mass ratio of cutoff group
920 <    std::vector<double> mfact;
920 >    vector<RealType> mfact;
921      SimInfo::MoleculeIterator mi;
922      Molecule* mol;
923      Molecule::CutoffGroupIterator ci;
924      CutoffGroup* cg;
925      Molecule::AtomIterator ai;
926      Atom* atom;
927 <    double totalMass;
927 >    RealType totalMass;
928  
929      //to avoid memory reallocation, reserve enough space for mfact
930      mfact.reserve(getNCutoffGroups());
931      
932      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
933 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
933 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
934  
935 <            totalMass = cg->getMass();
936 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
937 <                        mfact.push_back(atom->getMass()/totalMass);
938 <            }
939 <
940 <        }      
935 >        totalMass = cg->getMass();
936 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
937 >          // Check for massless groups - set mfact to 1 if true
938 >          if (totalMass != 0)
939 >            mfact.push_back(atom->getMass()/totalMass);
940 >          else
941 >            mfact.push_back( 1.0 );
942 >        }
943 >      }      
944      }
945  
946      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
947 <    std::vector<int> identArray;
947 >    vector<int> identArray;
948  
949      //to avoid memory reallocation, reserve enough space identArray
950      identArray.reserve(getNAtoms());
951      
952      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
953 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
954 <            identArray.push_back(atom->getIdent());
955 <        }
953 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
954 >        identArray.push_back(atom->getIdent());
955 >      }
956      }    
957  
958      //fill molMembershipArray
959      //molMembershipArray is filled by SimCreator    
960 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
960 >    vector<int> molMembershipArray(nGlobalAtoms_);
961      for (int i = 0; i < nGlobalAtoms_; i++) {
962 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
962 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
963      }
964      
965      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
966  
967 <    if( isError ){
967 >    nExclude = excludedInteractions_.getSize();
968 >    nOneTwo = oneTwoInteractions_.getSize();
969 >    nOneThree = oneThreeInteractions_.getSize();
970 >    nOneFour = oneFourInteractions_.getSize();
971  
972 <        sprintf( painCave.errMsg,
973 <                 "There was an error setting the simulation information in fortran.\n" );
974 <        painCave.isFatal = 1;
975 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
972 >    int* excludeList = excludedInteractions_.getPairList();
973 >    int* oneTwoList = oneTwoInteractions_.getPairList();
974 >    int* oneThreeList = oneThreeInteractions_.getPairList();
975 >    int* oneFourList = oneFourInteractions_.getPairList();
976  
977 < #ifdef IS_MPI
977 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
978 >                   &nExclude, excludeList,
979 >                   &nOneTwo, oneTwoList,
980 >                   &nOneThree, oneThreeList,
981 >                   &nOneFour, oneFourList,
982 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
983 >                   &fortranGlobalGroupMembership[0], &isError);
984 >    
985 >    if( isError ){
986 >      
987 >      sprintf( painCave.errMsg,
988 >               "There was an error setting the simulation information in fortran.\n" );
989 >      painCave.isFatal = 1;
990 >      painCave.severity = OPENMD_ERROR;
991 >      simError();
992 >    }
993 >    
994 >    
995      sprintf( checkPointMsg,
996 <       "succesfully sent the simulation information to fortran.\n");
997 <    MPIcheckPoint();
998 < #endif // is_mpi
999 < }
996 >             "succesfully sent the simulation information to fortran.\n");
997 >    
998 >    errorCheckPoint();
999 >    
1000 >    // Setup number of neighbors in neighbor list if present
1001 >    if (simParams_->haveNeighborListNeighbors()) {
1002 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
1003 >      setNeighbors(&nlistNeighbors);
1004 >    }
1005 >  
1006  
1007 +  }
1008  
1009 < #ifdef IS_MPI
1010 < void SimInfo::setupFortranParallel() {
1011 <    
1009 >
1010 >  void SimInfo::setupFortranParallel() {
1011 > #ifdef IS_MPI    
1012      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1013 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 <    std::vector<int> localToGlobalCutoffGroupIndex;
1013 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 >    vector<int> localToGlobalCutoffGroupIndex;
1015      SimInfo::MoleculeIterator mi;
1016      Molecule::AtomIterator ai;
1017      Molecule::CutoffGroupIterator ci;
# Line 689 | Line 1023 | void SimInfo::setupFortranParallel() {
1023  
1024      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1025  
1026 <        //local index(index in DataStorge) of atom is important
1027 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1028 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1029 <        }
1026 >      //local index(index in DataStorge) of atom is important
1027 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1028 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1029 >      }
1030  
1031 <        //local index of cutoff group is trivial, it only depends on the order of travesing
1032 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1033 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1034 <        }        
1031 >      //local index of cutoff group is trivial, it only depends on the order of travesing
1032 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1033 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1034 >      }        
1035          
1036      }
1037  
# Line 717 | Line 1051 | void SimInfo::setupFortranParallel() {
1051                      &localToGlobalCutoffGroupIndex[0], &isError);
1052  
1053      if (isError) {
1054 <        sprintf(painCave.errMsg,
1055 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
1056 <        painCave.isFatal = 1;
1057 <        simError();
1054 >      sprintf(painCave.errMsg,
1055 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1056 >      painCave.isFatal = 1;
1057 >      simError();
1058      }
1059  
1060      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1061 <    MPIcheckPoint();
1061 >    errorCheckPoint();
1062  
729
730 }
731
1063   #endif
1064 +  }
1065  
734 double SimInfo::calcMaxCutoffRadius() {
1066  
1067 +  void SimInfo::setupSwitchingFunction() {    
1068  
1069 <    std::set<AtomType*> atomTypes;
738 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
1069 >  }
1070  
1071 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
1071 >  void SimInfo::setupAccumulateBoxDipole() {    
1072  
1073 <    //query the max cutoff radius among these atom types
1074 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
1075 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
1076 <    }
1073 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1074 >    if ( simParams_->haveAccumulateBoxDipole() )
1075 >      if ( simParams_->getAccumulateBoxDipole() ) {
1076 >        calcBoxDipole_ = true;
1077 >      }
1078  
1079 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 < #ifdef IS_MPI
751 <    //pick the max cutoff radius among the processors
752 < #endif
1079 >  }
1080  
1081 <    return maxCutoffRadius;
1082 < }
1081 >  void SimInfo::addProperty(GenericData* genData) {
1082 >    properties_.addProperty(genData);  
1083 >  }
1084  
1085 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
814 <    properties_.addProperty(genData);  
815 < }
816 <
817 < void SimInfo::removeProperty(const std::string& propName) {
1085 >  void SimInfo::removeProperty(const string& propName) {
1086      properties_.removeProperty(propName);  
1087 < }
1087 >  }
1088  
1089 < void SimInfo::clearProperties() {
1089 >  void SimInfo::clearProperties() {
1090      properties_.clearProperties();
1091 < }
1091 >  }
1092  
1093 < std::vector<std::string> SimInfo::getPropertyNames() {
1093 >  vector<string> SimInfo::getPropertyNames() {
1094      return properties_.getPropertyNames();  
1095 < }
1095 >  }
1096        
1097 < std::vector<GenericData*> SimInfo::getProperties() {
1097 >  vector<GenericData*> SimInfo::getProperties() {
1098      return properties_.getProperties();
1099 < }
1099 >  }
1100  
1101 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1101 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1102      return properties_.getPropertyByName(propName);
1103 < }
1103 >  }
1104  
1105 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1106 <    if (sman_ == sman_) {
1107 <        return;
1108 <    }
841 <    
1105 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1106 >    if (sman_ == sman) {
1107 >      return;
1108 >    }    
1109      delete sman_;
1110      sman_ = sman;
1111  
# Line 851 | Line 1118 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1118  
1119      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1120          
1121 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1122 <            atom->setSnapshotManager(sman_);
1123 <        }
1121 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1122 >        atom->setSnapshotManager(sman_);
1123 >      }
1124          
1125 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1126 <            rb->setSnapshotManager(sman_);
1127 <        }
1125 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1126 >        rb->setSnapshotManager(sman_);
1127 >      }
1128      }    
1129      
1130 < }
1130 >  }
1131  
1132 < Vector3d SimInfo::getComVel(){
1132 >  Vector3d SimInfo::getComVel(){
1133      SimInfo::MoleculeIterator i;
1134      Molecule* mol;
1135  
1136      Vector3d comVel(0.0);
1137 <    double totalMass = 0.0;
1137 >    RealType totalMass = 0.0;
1138      
1139  
1140      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1141 <        double mass = mol->getMass();
1142 <        totalMass += mass;
1143 <        comVel += mass * mol->getComVel();
1141 >      RealType mass = mol->getMass();
1142 >      totalMass += mass;
1143 >      comVel += mass * mol->getComVel();
1144      }  
1145  
1146   #ifdef IS_MPI
1147 <    double tmpMass = totalMass;
1147 >    RealType tmpMass = totalMass;
1148      Vector3d tmpComVel(comVel);    
1149 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151   #endif
1152  
1153      comVel /= totalMass;
1154  
1155      return comVel;
1156 < }
1156 >  }
1157  
1158 < Vector3d SimInfo::getCom(){
1158 >  Vector3d SimInfo::getCom(){
1159      SimInfo::MoleculeIterator i;
1160      Molecule* mol;
1161  
1162      Vector3d com(0.0);
1163 <    double totalMass = 0.0;
1163 >    RealType totalMass = 0.0;
1164      
1165      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1166 <        double mass = mol->getMass();
1167 <        totalMass += mass;
1168 <        com += mass * mol->getCom();
1166 >      RealType mass = mol->getMass();
1167 >      totalMass += mass;
1168 >      com += mass * mol->getCom();
1169      }  
1170  
1171   #ifdef IS_MPI
1172 <    double tmpMass = totalMass;
1172 >    RealType tmpMass = totalMass;
1173      Vector3d tmpCom(com);    
1174 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1175 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1174 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1175 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1176   #endif
1177  
1178      com /= totalMass;
1179  
1180      return com;
1181  
1182 < }        
1182 >  }        
1183  
1184 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1184 >  ostream& operator <<(ostream& o, SimInfo& info) {
1185  
1186      return o;
1187 < }
1187 >  }
1188 >  
1189 >  
1190 >   /*
1191 >   Returns center of mass and center of mass velocity in one function call.
1192 >   */
1193 >  
1194 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1195 >      SimInfo::MoleculeIterator i;
1196 >      Molecule* mol;
1197 >      
1198 >    
1199 >      RealType totalMass = 0.0;
1200 >    
1201  
1202 < }//end namespace oopse
1202 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1203 >         RealType mass = mol->getMass();
1204 >         totalMass += mass;
1205 >         com += mass * mol->getCom();
1206 >         comVel += mass * mol->getComVel();          
1207 >      }  
1208 >      
1209 > #ifdef IS_MPI
1210 >      RealType tmpMass = totalMass;
1211 >      Vector3d tmpCom(com);  
1212 >      Vector3d tmpComVel(comVel);
1213 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1215 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1216 > #endif
1217 >      
1218 >      com /= totalMass;
1219 >      comVel /= totalMass;
1220 >   }        
1221 >  
1222 >   /*
1223 >   Return intertia tensor for entire system and angular momentum Vector.
1224  
1225 +
1226 +       [  Ixx -Ixy  -Ixz ]
1227 +    J =| -Iyx  Iyy  -Iyz |
1228 +       [ -Izx -Iyz   Izz ]
1229 +    */
1230 +
1231 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1232 +      
1233 +
1234 +      RealType xx = 0.0;
1235 +      RealType yy = 0.0;
1236 +      RealType zz = 0.0;
1237 +      RealType xy = 0.0;
1238 +      RealType xz = 0.0;
1239 +      RealType yz = 0.0;
1240 +      Vector3d com(0.0);
1241 +      Vector3d comVel(0.0);
1242 +      
1243 +      getComAll(com, comVel);
1244 +      
1245 +      SimInfo::MoleculeIterator i;
1246 +      Molecule* mol;
1247 +      
1248 +      Vector3d thisq(0.0);
1249 +      Vector3d thisv(0.0);
1250 +
1251 +      RealType thisMass = 0.0;
1252 +    
1253 +      
1254 +      
1255 +  
1256 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1257 +        
1258 +         thisq = mol->getCom()-com;
1259 +         thisv = mol->getComVel()-comVel;
1260 +         thisMass = mol->getMass();
1261 +         // Compute moment of intertia coefficients.
1262 +         xx += thisq[0]*thisq[0]*thisMass;
1263 +         yy += thisq[1]*thisq[1]*thisMass;
1264 +         zz += thisq[2]*thisq[2]*thisMass;
1265 +        
1266 +         // compute products of intertia
1267 +         xy += thisq[0]*thisq[1]*thisMass;
1268 +         xz += thisq[0]*thisq[2]*thisMass;
1269 +         yz += thisq[1]*thisq[2]*thisMass;
1270 +            
1271 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1272 +            
1273 +      }  
1274 +      
1275 +      
1276 +      inertiaTensor(0,0) = yy + zz;
1277 +      inertiaTensor(0,1) = -xy;
1278 +      inertiaTensor(0,2) = -xz;
1279 +      inertiaTensor(1,0) = -xy;
1280 +      inertiaTensor(1,1) = xx + zz;
1281 +      inertiaTensor(1,2) = -yz;
1282 +      inertiaTensor(2,0) = -xz;
1283 +      inertiaTensor(2,1) = -yz;
1284 +      inertiaTensor(2,2) = xx + yy;
1285 +      
1286 + #ifdef IS_MPI
1287 +      Mat3x3d tmpI(inertiaTensor);
1288 +      Vector3d tmpAngMom;
1289 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1291 + #endif
1292 +              
1293 +      return;
1294 +   }
1295 +
1296 +   //Returns the angular momentum of the system
1297 +   Vector3d SimInfo::getAngularMomentum(){
1298 +      
1299 +      Vector3d com(0.0);
1300 +      Vector3d comVel(0.0);
1301 +      Vector3d angularMomentum(0.0);
1302 +      
1303 +      getComAll(com,comVel);
1304 +      
1305 +      SimInfo::MoleculeIterator i;
1306 +      Molecule* mol;
1307 +      
1308 +      Vector3d thisr(0.0);
1309 +      Vector3d thisp(0.0);
1310 +      
1311 +      RealType thisMass;
1312 +      
1313 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1314 +        thisMass = mol->getMass();
1315 +        thisr = mol->getCom()-com;
1316 +        thisp = (mol->getComVel()-comVel)*thisMass;
1317 +        
1318 +        angularMomentum += cross( thisr, thisp );
1319 +        
1320 +      }  
1321 +      
1322 + #ifdef IS_MPI
1323 +      Vector3d tmpAngMom;
1324 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325 + #endif
1326 +      
1327 +      return angularMomentum;
1328 +   }
1329 +  
1330 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1331 +    return IOIndexToIntegrableObject.at(index);
1332 +  }
1333 +  
1334 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1335 +    IOIndexToIntegrableObject= v;
1336 +  }
1337 +
1338 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1339 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1340 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1341 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1342 +  */
1343 +  void SimInfo::getGyrationalVolume(RealType &volume){
1344 +    Mat3x3d intTensor;
1345 +    RealType det;
1346 +    Vector3d dummyAngMom;
1347 +    RealType sysconstants;
1348 +    RealType geomCnst;
1349 +
1350 +    geomCnst = 3.0/2.0;
1351 +    /* Get the inertial tensor and angular momentum for free*/
1352 +    getInertiaTensor(intTensor,dummyAngMom);
1353 +    
1354 +    det = intTensor.determinant();
1355 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1356 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1357 +    return;
1358 +  }
1359 +
1360 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1361 +    Mat3x3d intTensor;
1362 +    Vector3d dummyAngMom;
1363 +    RealType sysconstants;
1364 +    RealType geomCnst;
1365 +
1366 +    geomCnst = 3.0/2.0;
1367 +    /* Get the inertial tensor and angular momentum for free*/
1368 +    getInertiaTensor(intTensor,dummyAngMom);
1369 +    
1370 +    detI = intTensor.determinant();
1371 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1372 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1373 +    return;
1374 +  }
1375 + /*
1376 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1377 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1378 +      sdByGlobalIndex_ = v;
1379 +    }
1380 +
1381 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1382 +      //assert(index < nAtoms_ + nRigidBodies_);
1383 +      return sdByGlobalIndex_.at(index);
1384 +    }  
1385 + */  
1386 +  int SimInfo::getNGlobalConstraints() {
1387 +    int nGlobalConstraints;
1388 + #ifdef IS_MPI
1389 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1390 +                  MPI_COMM_WORLD);    
1391 + #else
1392 +    nGlobalConstraints =  nConstraints_;
1393 + #endif
1394 +    return nGlobalConstraints;
1395 +  }
1396 +
1397 + }//end namespace OpenMD
1398 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 331 by tim, Sun Feb 13 21:18:27 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines