ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 326 by tim, Sun Feb 13 20:05:42 2005 UTC vs.
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "UseTheForce/fCutoffPolicy.h"
57 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60   #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
63   #include "utils/MemoryUtils.hpp"
64   #include "utils/simError.h"
65   #include "selection/SelectionManager.hpp"
66 + #include "io/ForceFieldOptions.hpp"
67 + #include "UseTheForce/ForceField.hpp"
68  
69   #ifdef IS_MPI
70   #include "UseTheForce/mpiComponentPlan.h"
# Line 64 | Line 72 | namespace oopse {
72   #endif
73  
74   namespace oopse {
75 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 +    std::map<int, std::set<int> >::iterator i = container.find(index);
77 +    std::set<int> result;
78 +    if (i != container.end()) {
79 +        result = i->second;
80 +    }
81  
82 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
83 <                                ForceField* ff, Globals* simParams) :
84 <                                forceField_(ff), simParams_(simParams),
85 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
86 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
87 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
88 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
89 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
90 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
93  
94 <            
95 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
96 <    MoleculeStamp* molStamp;
97 <    int nMolWithSameStamp;
98 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
100 <    CutoffGroupStamp* cgStamp;    
101 <    RigidBodyStamp* rbStamp;
102 <    int nRigidAtoms = 0;
103 <    
104 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
105 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
94 >      MoleculeStamp* molStamp;
95 >      int nMolWithSameStamp;
96 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
97 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
98 >      CutoffGroupStamp* cgStamp;    
99 >      RigidBodyStamp* rbStamp;
100 >      int nRigidAtoms = 0;
101 >      std::vector<Component*> components = simParams->getComponents();
102 >      
103 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
104 >        molStamp = (*i)->getMoleculeStamp();
105 >        nMolWithSameStamp = (*i)->getNMol();
106          
107          addMoleculeStamp(molStamp, nMolWithSameStamp);
108  
109          //calculate atoms in molecules
110          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
111  
97
112          //calculate atoms in cutoff groups
113          int nAtomsInGroups = 0;
114          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115          
116          for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <            cgStamp = molStamp->getCutoffGroup(j);
118 <            nAtomsInGroups += cgStamp->getNMembers();
117 >          cgStamp = molStamp->getCutoffGroupStamp(j);
118 >          nAtomsInGroups += cgStamp->getNMembers();
119          }
120  
121          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 +
123          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124  
125          //calculate atoms in rigid bodies
# Line 112 | Line 127 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
127          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128          
129          for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <            rbStamp = molStamp->getRigidBody(j);
131 <            nAtomsInRigidBodies += rbStamp->getNMembers();
130 >          rbStamp = molStamp->getRigidBodyStamp(j);
131 >          nAtomsInRigidBodies += rbStamp->getNMembers();
132          }
133  
134          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136          
137 <    }
137 >      }
138  
139 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
140 <    //therefore the total number of cutoff groups in the system is equal to
141 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
142 <    //file plus the number of cutoff groups defined in meta-data file
143 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
139 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 >      //group therefore the total number of cutoff groups in the system is
141 >      //equal to the total number of atoms minus number of atoms belong to
142 >      //cutoff group defined in meta-data file plus the number of cutoff
143 >      //groups defined in meta-data file
144 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
145  
146 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
147 <    //therefore the total number of  integrable objects in the system is equal to
148 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
149 <    //file plus the number of  rigid bodies defined in meta-data file
150 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 >      //every free atom (atom does not belong to rigid bodies) is an
147 >      //integrable object therefore the total number of integrable objects
148 >      //in the system is equal to the total number of atoms minus number of
149 >      //atoms belong to rigid body defined in meta-data file plus the number
150 >      //of rigid bodies defined in meta-data file
151 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
152 >                                                + nGlobalRigidBodies_;
153 >  
154 >      nGlobalMols_ = molStampIds_.size();
155  
136    nGlobalMols_ = molStampIds_.size();
137
156   #ifdef IS_MPI    
157 <    molToProcMap_.resize(nGlobalMols_);
157 >      molToProcMap_.resize(nGlobalMols_);
158   #endif
159  
160 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
160 >    }
161  
162 < SimInfo::~SimInfo() {
163 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
164 <
165 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
166 <    
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169      delete sman_;
170      delete simParams_;
171      delete forceField_;
172 <    delete selectMan_;
155 < }
172 >  }
173  
174 < int SimInfo::getNGlobalConstraints() {
174 >  int SimInfo::getNGlobalConstraints() {
175      int nGlobalConstraints;
176   #ifdef IS_MPI
177      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 180 | int SimInfo::getNGlobalConstraints() {
180      nGlobalConstraints =  nConstraints_;
181   #endif
182      return nGlobalConstraints;
183 < }
183 >  }
184  
185 < bool SimInfo::addMolecule(Molecule* mol) {
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186      MoleculeIterator i;
187  
188      i = molecules_.find(mol->getGlobalIndex());
189      if (i == molecules_.end() ) {
190  
191 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192          
193 <        nAtoms_ += mol->getNAtoms();
194 <        nBonds_ += mol->getNBonds();
195 <        nBends_ += mol->getNBends();
196 <        nTorsions_ += mol->getNTorsions();
197 <        nRigidBodies_ += mol->getNRigidBodies();
198 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
199 <        nCutoffGroups_ += mol->getNCutoffGroups();
200 <        nConstraints_ += mol->getNConstraintPairs();
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <        addExcludePairs(mol);
202 >      addExcludePairs(mol);
203          
204 <        return true;
204 >      return true;
205      } else {
206 <        return false;
206 >      return false;
207      }
208 < }
208 >  }
209  
210 < bool SimInfo::removeMolecule(Molecule* mol) {
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211      MoleculeIterator i;
212      i = molecules_.find(mol->getGlobalIndex());
213  
214      if (i != molecules_.end() ) {
215  
216 <        assert(mol == i->second);
216 >      assert(mol == i->second);
217          
218 <        nAtoms_ -= mol->getNAtoms();
219 <        nBonds_ -= mol->getNBonds();
220 <        nBends_ -= mol->getNBends();
221 <        nTorsions_ -= mol->getNTorsions();
222 <        nRigidBodies_ -= mol->getNRigidBodies();
223 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 <        nCutoffGroups_ -= mol->getNCutoffGroups();
225 <        nConstraints_ -= mol->getNConstraintPairs();
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 <        removeExcludePairs(mol);
228 <        molecules_.erase(mol->getGlobalIndex());
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229  
230 <        delete mol;
231 <        
232 <        return true;
230 >      delete mol;
231 >        
232 >      return true;
233      } else {
234 <        return false;
234 >      return false;
235      }
236  
237  
238 < }    
238 >  }    
239  
240          
241 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242      i = molecules_.begin();
243      return i == molecules_.end() ? NULL : i->second;
244 < }    
244 >  }    
245  
246 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247      ++i;
248      return i == molecules_.end() ? NULL : i->second;    
249 < }
249 >  }
250  
251  
252 < void SimInfo::calcNdf() {
252 >  void SimInfo::calcNdf() {
253      int ndf_local;
254      MoleculeIterator i;
255      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 259 | void SimInfo::calcNdf() {
259      ndf_local = 0;
260      
261      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 <               integrableObject = mol->nextIntegrableObject(j)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <            ndf_local += 3;
265 >        ndf_local += 3;
266  
267 <            if (integrableObject->isDirectional()) {
268 <                if (integrableObject->isLinear()) {
269 <                    ndf_local += 2;
270 <                } else {
271 <                    ndf_local += 3;
272 <                }
273 <            }
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274              
275 <        }//end for (integrableObject)
276 <    }// end for (mol)
275 >      }
276 >    }
277      
278      // n_constraints is local, so subtract them on each processor
279      ndf_local -= nConstraints_;
# Line 271 | Line 288 | void SimInfo::calcNdf() {
288      // entire system:
289      ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 < }
291 >  }
292  
293 < void SimInfo::calcNdfRaw() {
293 >  int SimInfo::getFdf() {
294 > #ifdef IS_MPI
295 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 > #else
297 >    fdf_ = fdf_local;
298 > #endif
299 >    return fdf_;
300 >  }
301 >    
302 >  void SimInfo::calcNdfRaw() {
303      int ndfRaw_local;
304  
305      MoleculeIterator i;
# Line 285 | Line 311 | void SimInfo::calcNdfRaw() {
311      ndfRaw_local = 0;
312      
313      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 <               integrableObject = mol->nextIntegrableObject(j)) {
314 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(j)) {
316  
317 <            ndfRaw_local += 3;
317 >        ndfRaw_local += 3;
318  
319 <            if (integrableObject->isDirectional()) {
320 <                if (integrableObject->isLinear()) {
321 <                    ndfRaw_local += 2;
322 <                } else {
323 <                    ndfRaw_local += 3;
324 <                }
325 <            }
319 >        if (integrableObject->isDirectional()) {
320 >          if (integrableObject->isLinear()) {
321 >            ndfRaw_local += 2;
322 >          } else {
323 >            ndfRaw_local += 3;
324 >          }
325 >        }
326              
327 <        }
327 >      }
328      }
329      
330   #ifdef IS_MPI
# Line 306 | Line 332 | void SimInfo::calcNdfRaw() {
332   #else
333      ndfRaw_ = ndfRaw_local;
334   #endif
335 < }
335 >  }
336  
337 < void SimInfo::calcNdfTrans() {
337 >  void SimInfo::calcNdfTrans() {
338      int ndfTrans_local;
339  
340      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 348 | void SimInfo::calcNdfTrans() {
348  
349      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350  
351 < }
351 >  }
352  
353 < void SimInfo::addExcludePairs(Molecule* mol) {
353 >  void SimInfo::addExcludePairs(Molecule* mol) {
354      std::vector<Bond*>::iterator bondIter;
355      std::vector<Bend*>::iterator bendIter;
356      std::vector<Torsion*>::iterator torsionIter;
# Line 335 | Line 361 | void SimInfo::addExcludePairs(Molecule* mol) {
361      int b;
362      int c;
363      int d;
364 +
365 +    std::map<int, std::set<int> > atomGroups;
366 +
367 +    Molecule::RigidBodyIterator rbIter;
368 +    RigidBody* rb;
369 +    Molecule::IntegrableObjectIterator ii;
370 +    StuntDouble* integrableObject;
371      
372 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 +           integrableObject = mol->nextIntegrableObject(ii)) {
374 +
375 +      if (integrableObject->isRigidBody()) {
376 +          rb = static_cast<RigidBody*>(integrableObject);
377 +          std::vector<Atom*> atoms = rb->getAtoms();
378 +          std::set<int> rigidAtoms;
379 +          for (int i = 0; i < atoms.size(); ++i) {
380 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 +          }
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 +          }      
385 +      } else {
386 +        std::set<int> oneAtomSet;
387 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 +      }
390 +    }  
391 +
392 +    
393 +    
394      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 <        a = bond->getAtomA()->getGlobalIndex();
396 <        b = bond->getAtomB()->getGlobalIndex();        
397 <        exclude_.addPair(a, b);
395 >      a = bond->getAtomA()->getGlobalIndex();
396 >      b = bond->getAtomB()->getGlobalIndex();        
397 >      exclude_.addPair(a, b);
398      }
399  
400      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 <        a = bend->getAtomA()->getGlobalIndex();
402 <        b = bend->getAtomB()->getGlobalIndex();        
403 <        c = bend->getAtomC()->getGlobalIndex();
401 >      a = bend->getAtomA()->getGlobalIndex();
402 >      b = bend->getAtomB()->getGlobalIndex();        
403 >      c = bend->getAtomC()->getGlobalIndex();
404 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 <        exclude_.addPair(a, b);
409 <        exclude_.addPair(a, c);
410 <        exclude_.addPair(b, c);        
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415      }
416  
417      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 <        a = torsion->getAtomA()->getGlobalIndex();
419 <        b = torsion->getAtomB()->getGlobalIndex();        
420 <        c = torsion->getAtomC()->getGlobalIndex();        
421 <        d = torsion->getAtomD()->getGlobalIndex();        
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();        
422 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 <        exclude_.addPair(a, b);
428 <        exclude_.addPair(a, c);
429 <        exclude_.addPair(a, d);
430 <        exclude_.addPair(b, c);
431 <        exclude_.addPair(b, d);
432 <        exclude_.addPair(c, d);        
427 >      exclude_.addPairs(rigidSetA, rigidSetB);
428 >      exclude_.addPairs(rigidSetA, rigidSetC);
429 >      exclude_.addPairs(rigidSetA, rigidSetD);
430 >      exclude_.addPairs(rigidSetB, rigidSetC);
431 >      exclude_.addPairs(rigidSetB, rigidSetD);
432 >      exclude_.addPairs(rigidSetC, rigidSetD);
433 >
434 >      /*
435 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 >        
442 >      
443 >      exclude_.addPair(a, b);
444 >      exclude_.addPair(a, c);
445 >      exclude_.addPair(a, d);
446 >      exclude_.addPair(b, c);
447 >      exclude_.addPair(b, d);
448 >      exclude_.addPair(c, d);        
449 >      */
450      }
451  
452 <    
453 < }
452 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 >      std::vector<Atom*> atoms = rb->getAtoms();
454 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 >        for (int j = i + 1; j < atoms.size(); ++j) {
456 >          a = atoms[i]->getGlobalIndex();
457 >          b = atoms[j]->getGlobalIndex();
458 >          exclude_.addPair(a, b);
459 >        }
460 >      }
461 >    }        
462  
463 < void SimInfo::removeExcludePairs(Molecule* mol) {
463 >  }
464 >
465 >  void SimInfo::removeExcludePairs(Molecule* mol) {
466      std::vector<Bond*>::iterator bondIter;
467      std::vector<Bend*>::iterator bendIter;
468      std::vector<Torsion*>::iterator torsionIter;
# Line 380 | Line 473 | void SimInfo::removeExcludePairs(Molecule* mol) {
473      int b;
474      int c;
475      int d;
476 +
477 +    std::map<int, std::set<int> > atomGroups;
478 +
479 +    Molecule::RigidBodyIterator rbIter;
480 +    RigidBody* rb;
481 +    Molecule::IntegrableObjectIterator ii;
482 +    StuntDouble* integrableObject;
483      
484 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 +           integrableObject = mol->nextIntegrableObject(ii)) {
486 +
487 +      if (integrableObject->isRigidBody()) {
488 +          rb = static_cast<RigidBody*>(integrableObject);
489 +          std::vector<Atom*> atoms = rb->getAtoms();
490 +          std::set<int> rigidAtoms;
491 +          for (int i = 0; i < atoms.size(); ++i) {
492 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 +          }
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 +          }      
497 +      } else {
498 +        std::set<int> oneAtomSet;
499 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 +      }
502 +    }  
503 +
504 +    
505      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 <        a = bond->getAtomA()->getGlobalIndex();
507 <        b = bond->getAtomB()->getGlobalIndex();        
508 <        exclude_.removePair(a, b);
506 >      a = bond->getAtomA()->getGlobalIndex();
507 >      b = bond->getAtomB()->getGlobalIndex();        
508 >      exclude_.removePair(a, b);
509      }
510  
511      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 <        a = bend->getAtomA()->getGlobalIndex();
513 <        b = bend->getAtomB()->getGlobalIndex();        
514 <        c = bend->getAtomC()->getGlobalIndex();
512 >      a = bend->getAtomA()->getGlobalIndex();
513 >      b = bend->getAtomB()->getGlobalIndex();        
514 >      c = bend->getAtomC()->getGlobalIndex();
515  
516 <        exclude_.removePair(a, b);
517 <        exclude_.removePair(a, c);
518 <        exclude_.removePair(b, c);        
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519 >
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527      }
528  
529      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 <        a = torsion->getAtomA()->getGlobalIndex();
531 <        b = torsion->getAtomB()->getGlobalIndex();        
532 <        c = torsion->getAtomC()->getGlobalIndex();        
533 <        d = torsion->getAtomD()->getGlobalIndex();        
530 >      a = torsion->getAtomA()->getGlobalIndex();
531 >      b = torsion->getAtomB()->getGlobalIndex();        
532 >      c = torsion->getAtomC()->getGlobalIndex();        
533 >      d = torsion->getAtomD()->getGlobalIndex();        
534  
535 <        exclude_.removePair(a, b);
536 <        exclude_.removePair(a, c);
537 <        exclude_.removePair(a, d);
538 <        exclude_.removePair(b, c);
539 <        exclude_.removePair(b, d);
540 <        exclude_.removePair(c, d);        
535 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539 >
540 >      exclude_.removePairs(rigidSetA, rigidSetB);
541 >      exclude_.removePairs(rigidSetA, rigidSetC);
542 >      exclude_.removePairs(rigidSetA, rigidSetD);
543 >      exclude_.removePairs(rigidSetB, rigidSetC);
544 >      exclude_.removePairs(rigidSetB, rigidSetD);
545 >      exclude_.removePairs(rigidSetC, rigidSetD);
546 >
547 >      /*
548 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 >
555 >      
556 >      exclude_.removePair(a, b);
557 >      exclude_.removePair(a, c);
558 >      exclude_.removePair(a, d);
559 >      exclude_.removePair(b, c);
560 >      exclude_.removePair(b, d);
561 >      exclude_.removePair(c, d);        
562 >      */
563      }
564  
565 < }
565 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 >      std::vector<Atom*> atoms = rb->getAtoms();
567 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
568 >        for (int j = i + 1; j < atoms.size(); ++j) {
569 >          a = atoms[i]->getGlobalIndex();
570 >          b = atoms[j]->getGlobalIndex();
571 >          exclude_.removePair(a, b);
572 >        }
573 >      }
574 >    }        
575  
576 +  }
577  
578 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
578 >
579 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580      int curStampId;
581  
582      //index from 0
# Line 422 | Line 584 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
584  
585      moleculeStamps_.push_back(molStamp);
586      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 < }
587 >  }
588  
589 < void SimInfo::update() {
589 >  void SimInfo::update() {
590  
591      setupSimType();
592  
# Line 437 | Line 599 | void SimInfo::update() {
599      //setup fortran force field
600      /** @deprecate */    
601      int isError = 0;
602 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
602 >    
603 >    setupElectrostaticSummationMethod( isError );
604 >    setupSwitchingFunction();
605 >    setupAccumulateBoxDipole();
606 >
607      if(isError){
608 <        sprintf( painCave.errMsg,
609 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
610 <        painCave.isFatal = 1;
611 <        simError();
608 >      sprintf( painCave.errMsg,
609 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
610 >      painCave.isFatal = 1;
611 >      simError();
612      }
613    
614      
# Line 453 | Line 619 | void SimInfo::update() {
619      calcNdfTrans();
620  
621      fortranInitialized_ = true;
622 < }
622 >  }
623  
624 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625      SimInfo::MoleculeIterator mi;
626      Molecule* mol;
627      Molecule::AtomIterator ai;
# Line 464 | Line 630 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
630  
631      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632  
633 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 <            atomTypes.insert(atom->getAtomType());
635 <        }
633 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 >        atomTypes.insert(atom->getAtomType());
635 >      }
636          
637      }
638  
639      return atomTypes;        
640 < }
640 >  }
641  
642 < void SimInfo::setupSimType() {
642 >  void SimInfo::setupSimType() {
643      std::set<AtomType*>::iterator i;
644      std::set<AtomType*> atomTypes;
645      atomTypes = getUniqueAtomTypes();
# Line 481 | Line 647 | void SimInfo::setupSimType() {
647      int useLennardJones = 0;
648      int useElectrostatic = 0;
649      int useEAM = 0;
650 +    int useSC = 0;
651      int useCharge = 0;
652      int useDirectional = 0;
653      int useDipole = 0;
654      int useGayBerne = 0;
655      int useSticky = 0;
656 +    int useStickyPower = 0;
657      int useShape = 0;
658      int useFLARB = 0; //it is not in AtomType yet
659      int useDirectionalAtom = 0;    
660      int useElectrostatics = 0;
661      //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getPBC();
663 <    int useRF = simParams_->getUseRF();
662 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 >    int useRF;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667 >    std::string myMethod;
668  
669 +    // set the useRF logical
670 +    useRF = 0;
671 +    useSF = 0;
672 +
673 +
674 +    if (simParams_->haveElectrostaticSummationMethod()) {
675 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 +      toUpper(myMethod);
677 +      if (myMethod == "REACTION_FIELD"){
678 +        useRF=1;
679 +      } else if (myMethod == "SHIFTED_FORCE"){
680 +        useSF = 1;
681 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 +        useSP = 1;
683 +      }
684 +    }
685 +    
686 +    if (simParams_->haveAccumulateBoxDipole())
687 +      if (simParams_->getAccumulateBoxDipole())
688 +        useBoxDipole = 1;
689 +
690      //loop over all of the atom types
691      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 <        useLennardJones |= (*i)->isLennardJones();
693 <        useElectrostatic |= (*i)->isElectrostatic();
694 <        useEAM |= (*i)->isEAM();
695 <        useCharge |= (*i)->isCharge();
696 <        useDirectional |= (*i)->isDirectional();
697 <        useDipole |= (*i)->isDipole();
698 <        useGayBerne |= (*i)->isGayBerne();
699 <        useSticky |= (*i)->isSticky();
700 <        useShape |= (*i)->isShape();
692 >      useLennardJones |= (*i)->isLennardJones();
693 >      useElectrostatic |= (*i)->isElectrostatic();
694 >      useEAM |= (*i)->isEAM();
695 >      useSC |= (*i)->isSC();
696 >      useCharge |= (*i)->isCharge();
697 >      useDirectional |= (*i)->isDirectional();
698 >      useDipole |= (*i)->isDipole();
699 >      useGayBerne |= (*i)->isGayBerne();
700 >      useSticky |= (*i)->isSticky();
701 >      useStickyPower |= (*i)->isStickyPower();
702 >      useShape |= (*i)->isShape();
703      }
704  
705 <    if (useSticky || useDipole || useGayBerne || useShape) {
706 <        useDirectionalAtom = 1;
705 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 >      useDirectionalAtom = 1;
707      }
708  
709      if (useCharge || useDipole) {
710 <        useElectrostatics = 1;
710 >      useElectrostatics = 1;
711      }
712  
713   #ifdef IS_MPI    
# Line 539 | Line 734 | void SimInfo::setupSimType() {
734      temp = useSticky;
735      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736  
737 +    temp = useStickyPower;
738 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 +    
740      temp = useGayBerne;
741      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742  
743      temp = useEAM;
744      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746 +    temp = useSC;
747 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 +    
749      temp = useShape;
750      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751  
# Line 553 | Line 754 | void SimInfo::setupSimType() {
754  
755      temp = useRF;
756      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <    
757 >
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 >
761 >    temp = useSP;
762 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 >
764 >    temp = useBoxDipole;
765 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767   #endif
768  
769      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 773 | void SimInfo::setupSimType() {
773      fInfo_.SIM_uses_Charges = useCharge;
774      fInfo_.SIM_uses_Dipoles = useDipole;
775      fInfo_.SIM_uses_Sticky = useSticky;
776 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
777      fInfo_.SIM_uses_GayBerne = useGayBerne;
778      fInfo_.SIM_uses_EAM = useEAM;
779 +    fInfo_.SIM_uses_SC = useSC;
780      fInfo_.SIM_uses_Shapes = useShape;
781      fInfo_.SIM_uses_FLARB = useFLARB;
782      fInfo_.SIM_uses_RF = useRF;
783 +    fInfo_.SIM_uses_SF = useSF;
784 +    fInfo_.SIM_uses_SP = useSP;
785 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786  
787 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
788 <
789 <        if (simParams_->haveDielectric()) {
790 <            fInfo_.dielect = simParams_->getDielectric();
791 <        } else {
792 <            sprintf(painCave.errMsg,
793 <                    "SimSetup Error: No Dielectric constant was set.\n"
794 <                    "\tYou are trying to use Reaction Field without"
795 <                    "\tsetting a dielectric constant!\n");
796 <            painCave.isFatal = 1;
797 <            simError();
798 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
787 >    if( myMethod == "REACTION_FIELD") {
788 >      
789 >      if (simParams_->haveDielectric()) {
790 >        fInfo_.dielect = simParams_->getDielectric();
791 >      } else {
792 >        sprintf(painCave.errMsg,
793 >                "SimSetup Error: No Dielectric constant was set.\n"
794 >                "\tYou are trying to use Reaction Field without"
795 >                "\tsetting a dielectric constant!\n");
796 >        painCave.isFatal = 1;
797 >        simError();
798 >      }      
799      }
800  
801 < }
801 >  }
802  
803 < void SimInfo::setupFortranSim() {
803 >  void SimInfo::setupFortranSim() {
804      int isError;
805      int nExclude;
806      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 810 | void SimInfo::setupFortranSim() {
810  
811      //globalGroupMembership_ is filled by SimCreator    
812      for (int i = 0; i < nGlobalAtoms_; i++) {
813 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
813 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814      }
815  
816      //calculate mass ratio of cutoff group
817 <    std::vector<double> mfact;
817 >    std::vector<RealType> mfact;
818      SimInfo::MoleculeIterator mi;
819      Molecule* mol;
820      Molecule::CutoffGroupIterator ci;
821      CutoffGroup* cg;
822      Molecule::AtomIterator ai;
823      Atom* atom;
824 <    double totalMass;
824 >    RealType totalMass;
825  
826      //to avoid memory reallocation, reserve enough space for mfact
827      mfact.reserve(getNCutoffGroups());
828      
829      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
830 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
830 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
831  
832 <            totalMass = cg->getMass();
833 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 <                        mfact.push_back(atom->getMass()/totalMass);
835 <            }
832 >        totalMass = cg->getMass();
833 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 >          // Check for massless groups - set mfact to 1 if true
835 >          if (totalMass != 0)
836 >            mfact.push_back(atom->getMass()/totalMass);
837 >          else
838 >            mfact.push_back( 1.0 );
839 >        }
840  
841 <        }      
841 >      }      
842      }
843  
844      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 848 | void SimInfo::setupFortranSim() {
848      identArray.reserve(getNAtoms());
849      
850      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
851 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 <            identArray.push_back(atom->getIdent());
853 <        }
851 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 >        identArray.push_back(atom->getIdent());
853 >      }
854      }    
855  
856      //fill molMembershipArray
857      //molMembershipArray is filled by SimCreator    
858      std::vector<int> molMembershipArray(nGlobalAtoms_);
859      for (int i = 0; i < nGlobalAtoms_; i++) {
860 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
860 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
861      }
862      
863      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
864      int nGlobalExcludes = 0;
865      int* globalExcludes = NULL;
866      int* excludeList = exclude_.getExcludeList();
867      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
868 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870  
871      if( isError ){
872  
873 <        sprintf( painCave.errMsg,
874 <                 "There was an error setting the simulation information in fortran.\n" );
875 <        painCave.isFatal = 1;
876 <        painCave.severity = OOPSE_ERROR;
877 <        simError();
873 >      sprintf( painCave.errMsg,
874 >               "There was an error setting the simulation information in fortran.\n" );
875 >      painCave.isFatal = 1;
876 >      painCave.severity = OOPSE_ERROR;
877 >      simError();
878      }
879  
880   #ifdef IS_MPI
881      sprintf( checkPointMsg,
882 <       "succesfully sent the simulation information to fortran.\n");
882 >             "succesfully sent the simulation information to fortran.\n");
883      MPIcheckPoint();
884   #endif // is_mpi
885 < }
885 >  }
886  
887  
888   #ifdef IS_MPI
889 < void SimInfo::setupFortranParallel() {
889 >  void SimInfo::setupFortranParallel() {
890      
891      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 689 | Line 902 | void SimInfo::setupFortranParallel() {
902  
903      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904  
905 <        //local index(index in DataStorge) of atom is important
906 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 <        }
905 >      //local index(index in DataStorge) of atom is important
906 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 >      }
909  
910 <        //local index of cutoff group is trivial, it only depends on the order of travesing
911 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 <        }        
910 >      //local index of cutoff group is trivial, it only depends on the order of travesing
911 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 >      }        
914          
915      }
916  
# Line 717 | Line 930 | void SimInfo::setupFortranParallel() {
930                      &localToGlobalCutoffGroupIndex[0], &isError);
931  
932      if (isError) {
933 <        sprintf(painCave.errMsg,
934 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 <        painCave.isFatal = 1;
936 <        simError();
933 >      sprintf(painCave.errMsg,
934 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 >      painCave.isFatal = 1;
936 >      simError();
937      }
938  
939      sprintf(checkPointMsg, " mpiRefresh successful.\n");
940      MPIcheckPoint();
941  
942  
943 < }
943 >  }
944  
945   #endif
946  
947 < double SimInfo::calcMaxCutoffRadius() {
947 >  void SimInfo::setupCutoff() {          
948 >    
949 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950  
951 +    // Check the cutoff policy
952 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953  
954 <    std::set<AtomType*> atomTypes;
955 <    std::set<AtomType*>::iterator i;
956 <    std::vector<double> cutoffRadius;
957 <
958 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
954 >    std::string myPolicy;
955 >    if (forceFieldOptions_.haveCutoffPolicy()){
956 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 >    }else if (simParams_->haveCutoffPolicy()) {
958 >      myPolicy = simParams_->getCutoffPolicy();
959      }
960  
961 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
962 < #ifdef IS_MPI
963 <    //pick the max cutoff radius among the processors
964 < #endif
961 >    if (!myPolicy.empty()){
962 >      toUpper(myPolicy);
963 >      if (myPolicy == "MIX") {
964 >        cp = MIX_CUTOFF_POLICY;
965 >      } else {
966 >        if (myPolicy == "MAX") {
967 >          cp = MAX_CUTOFF_POLICY;
968 >        } else {
969 >          if (myPolicy == "TRADITIONAL") {            
970 >            cp = TRADITIONAL_CUTOFF_POLICY;
971 >          } else {
972 >            // throw error        
973 >            sprintf( painCave.errMsg,
974 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 >            painCave.isFatal = 1;
976 >            simError();
977 >          }    
978 >        }          
979 >      }
980 >    }          
981 >    notifyFortranCutoffPolicy(&cp);
982  
983 <    return maxCutoffRadius;
984 < }
985 <
986 < void SimInfo::getCutoff(double& rcut, double& rsw) {
987 <    
988 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
983 >    // Check the Skin Thickness for neighborlists
984 >    RealType skin;
985 >    if (simParams_->haveSkinThickness()) {
986 >      skin = simParams_->getSkinThickness();
987 >      notifyFortranSkinThickness(&skin);
988 >    }            
989          
990 <        if (!simParams_->haveRcut()){
991 <            sprintf(painCave.errMsg,
990 >    // Check if the cutoff was set explicitly:
991 >    if (simParams_->haveCutoffRadius()) {
992 >      rcut_ = simParams_->getCutoffRadius();
993 >      if (simParams_->haveSwitchingRadius()) {
994 >        rsw_  = simParams_->getSwitchingRadius();
995 >      } else {
996 >        if (fInfo_.SIM_uses_Charges |
997 >            fInfo_.SIM_uses_Dipoles |
998 >            fInfo_.SIM_uses_RF) {
999 >          
1000 >          rsw_ = 0.85 * rcut_;
1001 >          sprintf(painCave.errMsg,
1002 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 >        painCave.isFatal = 0;
1006 >        simError();
1007 >        } else {
1008 >          rsw_ = rcut_;
1009 >          sprintf(painCave.errMsg,
1010 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 >          painCave.isFatal = 0;
1014 >          simError();
1015 >        }
1016 >      }
1017 >      
1018 >      notifyFortranCutoffs(&rcut_, &rsw_);
1019 >      
1020 >    } else {
1021 >      
1022 >      // For electrostatic atoms, we'll assume a large safe value:
1023 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 >        sprintf(painCave.errMsg,
1025                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026                  "\tOOPSE will use a default value of 15.0 angstroms"
1027                  "\tfor the cutoffRadius.\n");
1028 <            painCave.isFatal = 0;
1029 <            simError();
1030 <            rcut_ = 15.0;
1031 <        } else{
1032 <            rcut_ = simParams_->getRcut();
1028 >        painCave.isFatal = 0;
1029 >        simError();
1030 >        rcut_ = 15.0;
1031 >      
1032 >        if (simParams_->haveElectrostaticSummationMethod()) {
1033 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 >          toUpper(myMethod);
1035 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 >            if (simParams_->haveSwitchingRadius()){
1037 >              sprintf(painCave.errMsg,
1038 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 >                      "\teven though the electrostaticSummationMethod was\n"
1040 >                      "\tset to %s\n", myMethod.c_str());
1041 >              painCave.isFatal = 1;
1042 >              simError();            
1043 >            }
1044 >          }
1045          }
1046 <
1047 <        if (!simParams_->haveRsw()){
1048 <            sprintf(painCave.errMsg,
1049 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1050 <                "\tOOPSE will use a default value of\n"
1051 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1052 <            painCave.isFatal = 0;
1053 <            simError();
1054 <            rsw_ = 0.95 * rcut_;
1055 <        } else{
1056 <            rsw_ = simParams_->getRsw();
1046 >      
1047 >        if (simParams_->haveSwitchingRadius()){
1048 >          rsw_ = simParams_->getSwitchingRadius();
1049 >        } else {        
1050 >          sprintf(painCave.errMsg,
1051 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 >                  "\tOOPSE will use a default value of\n"
1053 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 >          painCave.isFatal = 0;
1055 >          simError();
1056 >          rsw_ = 0.85 * rcut_;
1057          }
1058 <
1059 <    } else {
1060 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1061 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1058 >        notifyFortranCutoffs(&rcut_, &rsw_);
1059 >      } else {
1060 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 >        // We'll punt and let fortran figure out the cutoffs later.
1062          
1063 <        if (simParams_->haveRcut()) {
790 <            rcut_ = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut_ = calcMaxCutoffRadius();
794 <        }
1063 >        notifyFortranYouAreOnYourOwn();
1064  
1065 <        if (simParams_->haveRsw()) {
797 <            rsw_  = simParams_->getRsw();
798 <        } else {
799 <            rsw_ = rcut_;
800 <        }
801 <    
1065 >      }
1066      }
1067 < }
1067 >  }
1068  
1069 < void SimInfo::setupCutoff() {
1070 <    getCutoff(rcut_, rsw_);    
1071 <    double rnblist = rcut_ + 1; // skin of neighbor list
1069 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070 >    
1071 >    int errorOut;
1072 >    int esm =  NONE;
1073 >    int sm = UNDAMPED;
1074 >    RealType alphaVal;
1075 >    RealType dielectric;
1076  
1077 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1078 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1079 < }
1077 >    errorOut = isError;
1078 >    alphaVal = simParams_->getDampingAlpha();
1079 >    dielectric = simParams_->getDielectric();
1080  
1081 < void SimInfo::addProperty(GenericData* genData) {
1082 <    properties_.addProperty(genData);  
1083 < }
1084 <
1085 < void SimInfo::removeProperty(const std::string& propName) {
1086 <    properties_.removeProperty(propName);  
1087 < }
1088 <
1089 < void SimInfo::clearProperties() {
1090 <    properties_.clearProperties();
1091 < }
1092 <
1093 < std::vector<std::string> SimInfo::getPropertyNames() {
1094 <    return properties_.getPropertyNames();  
1095 < }
1096 <      
1097 < std::vector<GenericData*> SimInfo::getProperties() {
1098 <    return properties_.getProperties();
1099 < }
1100 <
1101 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1102 <    return properties_.getPropertyByName(propName);
1103 < }
1081 >    if (simParams_->haveElectrostaticSummationMethod()) {
1082 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1083 >      toUpper(myMethod);
1084 >      if (myMethod == "NONE") {
1085 >        esm = NONE;
1086 >      } else {
1087 >        if (myMethod == "SWITCHING_FUNCTION") {
1088 >          esm = SWITCHING_FUNCTION;
1089 >        } else {
1090 >          if (myMethod == "SHIFTED_POTENTIAL") {
1091 >            esm = SHIFTED_POTENTIAL;
1092 >          } else {
1093 >            if (myMethod == "SHIFTED_FORCE") {            
1094 >              esm = SHIFTED_FORCE;
1095 >            } else {
1096 >              if (myMethod == "REACTION_FIELD") {            
1097 >                esm = REACTION_FIELD;
1098 >              } else {
1099 >                // throw error        
1100 >                sprintf( painCave.errMsg,
1101 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1102 >                         "\t(Input file specified %s .)\n"
1103 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1104 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1105 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1106 >                painCave.isFatal = 1;
1107 >                simError();
1108 >              }    
1109 >            }          
1110 >          }
1111 >        }
1112 >      }
1113 >    }
1114 >    
1115 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1116 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1117 >      toUpper(myScreen);
1118 >      if (myScreen == "UNDAMPED") {
1119 >        sm = UNDAMPED;
1120 >      } else {
1121 >        if (myScreen == "DAMPED") {
1122 >          sm = DAMPED;
1123 >          if (!simParams_->haveDampingAlpha()) {
1124 >            //throw error
1125 >            sprintf( painCave.errMsg,
1126 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1127 >                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1128 >            painCave.isFatal = 0;
1129 >            simError();
1130 >          }
1131 >        } else {
1132 >          // throw error        
1133 >          sprintf( painCave.errMsg,
1134 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1135 >                   "\t(Input file specified %s .)\n"
1136 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1137 >                   "or \"damped\".\n", myScreen.c_str() );
1138 >          painCave.isFatal = 1;
1139 >          simError();
1140 >        }
1141 >      }
1142 >    }
1143 >    
1144 >    // let's pass some summation method variables to fortran
1145 >    setElectrostaticSummationMethod( &esm );
1146 >    setFortranElectrostaticMethod( &esm );
1147 >    setScreeningMethod( &sm );
1148 >    setDampingAlpha( &alphaVal );
1149 >    setReactionFieldDielectric( &dielectric );
1150 >    initFortranFF( &errorOut );
1151 >  }
1152  
1153 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1153 >  void SimInfo::setupSwitchingFunction() {    
1154 >    int ft = CUBIC;
1155 >
1156 >    if (simParams_->haveSwitchingFunctionType()) {
1157 >      std::string funcType = simParams_->getSwitchingFunctionType();
1158 >      toUpper(funcType);
1159 >      if (funcType == "CUBIC") {
1160 >        ft = CUBIC;
1161 >      } else {
1162 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1163 >          ft = FIFTH_ORDER_POLY;
1164 >        } else {
1165 >          // throw error        
1166 >          sprintf( painCave.errMsg,
1167 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1168 >          painCave.isFatal = 1;
1169 >          simError();
1170 >        }          
1171 >      }
1172 >    }
1173 >
1174 >    // send switching function notification to switcheroo
1175 >    setFunctionType(&ft);
1176 >
1177 >  }
1178 >
1179 >  void SimInfo::setupAccumulateBoxDipole() {    
1180 >
1181 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1182 >    if ( simParams_->haveAccumulateBoxDipole() )
1183 >      if ( simParams_->getAccumulateBoxDipole() ) {
1184 >        setAccumulateBoxDipole();
1185 >        calcBoxDipole_ = true;
1186 >      }
1187 >
1188 >  }
1189 >
1190 >  void SimInfo::addProperty(GenericData* genData) {
1191 >    properties_.addProperty(genData);  
1192 >  }
1193 >
1194 >  void SimInfo::removeProperty(const std::string& propName) {
1195 >    properties_.removeProperty(propName);  
1196 >  }
1197 >
1198 >  void SimInfo::clearProperties() {
1199 >    properties_.clearProperties();
1200 >  }
1201 >
1202 >  std::vector<std::string> SimInfo::getPropertyNames() {
1203 >    return properties_.getPropertyNames();  
1204 >  }
1205 >      
1206 >  std::vector<GenericData*> SimInfo::getProperties() {
1207 >    return properties_.getProperties();
1208 >  }
1209 >
1210 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1211 >    return properties_.getPropertyByName(propName);
1212 >  }
1213 >
1214 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1215 >    if (sman_ == sman) {
1216 >      return;
1217 >    }    
1218 >    delete sman_;
1219      sman_ = sman;
1220  
1221      Molecule* mol;
# Line 846 | Line 1227 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1227  
1228      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1229          
1230 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1231 <            atom->setSnapshotManager(sman_);
1232 <        }
1230 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1231 >        atom->setSnapshotManager(sman_);
1232 >      }
1233          
1234 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1235 <            rb->setSnapshotManager(sman_);
1236 <        }
1234 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1235 >        rb->setSnapshotManager(sman_);
1236 >      }
1237      }    
1238      
1239 < }
1239 >  }
1240  
1241 < Vector3d SimInfo::getComVel(){
1241 >  Vector3d SimInfo::getComVel(){
1242      SimInfo::MoleculeIterator i;
1243      Molecule* mol;
1244  
1245      Vector3d comVel(0.0);
1246 <    double totalMass = 0.0;
1246 >    RealType totalMass = 0.0;
1247      
1248  
1249      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1250 <        double mass = mol->getMass();
1251 <        totalMass += mass;
1252 <        comVel += mass * mol->getComVel();
1250 >      RealType mass = mol->getMass();
1251 >      totalMass += mass;
1252 >      comVel += mass * mol->getComVel();
1253      }  
1254  
1255   #ifdef IS_MPI
1256 <    double tmpMass = totalMass;
1256 >    RealType tmpMass = totalMass;
1257      Vector3d tmpComVel(comVel);    
1258 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1259 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1258 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1259 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1260   #endif
1261  
1262      comVel /= totalMass;
1263  
1264      return comVel;
1265 < }
1265 >  }
1266  
1267 < Vector3d SimInfo::getCom(){
1267 >  Vector3d SimInfo::getCom(){
1268      SimInfo::MoleculeIterator i;
1269      Molecule* mol;
1270  
1271      Vector3d com(0.0);
1272 <    double totalMass = 0.0;
1272 >    RealType totalMass = 0.0;
1273      
1274      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1275 <        double mass = mol->getMass();
1276 <        totalMass += mass;
1277 <        com += mass * mol->getCom();
1275 >      RealType mass = mol->getMass();
1276 >      totalMass += mass;
1277 >      com += mass * mol->getCom();
1278      }  
1279  
1280   #ifdef IS_MPI
1281 <    double tmpMass = totalMass;
1281 >    RealType tmpMass = totalMass;
1282      Vector3d tmpCom(com);    
1283 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1284 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1283 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1284 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1285   #endif
1286  
1287      com /= totalMass;
1288  
1289      return com;
1290  
1291 < }        
1291 >  }        
1292  
1293 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1293 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1294  
1295      return o;
1296 < }
1296 >  }
1297 >  
1298 >  
1299 >   /*
1300 >   Returns center of mass and center of mass velocity in one function call.
1301 >   */
1302 >  
1303 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1304 >      SimInfo::MoleculeIterator i;
1305 >      Molecule* mol;
1306 >      
1307 >    
1308 >      RealType totalMass = 0.0;
1309 >    
1310  
1311 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1312 +         RealType mass = mol->getMass();
1313 +         totalMass += mass;
1314 +         com += mass * mol->getCom();
1315 +         comVel += mass * mol->getComVel();          
1316 +      }  
1317 +      
1318 + #ifdef IS_MPI
1319 +      RealType tmpMass = totalMass;
1320 +      Vector3d tmpCom(com);  
1321 +      Vector3d tmpComVel(comVel);
1322 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1325 + #endif
1326 +      
1327 +      com /= totalMass;
1328 +      comVel /= totalMass;
1329 +   }        
1330 +  
1331 +   /*
1332 +   Return intertia tensor for entire system and angular momentum Vector.
1333 +
1334 +
1335 +       [  Ixx -Ixy  -Ixz ]
1336 +  J =| -Iyx  Iyy  -Iyz |
1337 +       [ -Izx -Iyz   Izz ]
1338 +    */
1339 +
1340 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1341 +      
1342 +
1343 +      RealType xx = 0.0;
1344 +      RealType yy = 0.0;
1345 +      RealType zz = 0.0;
1346 +      RealType xy = 0.0;
1347 +      RealType xz = 0.0;
1348 +      RealType yz = 0.0;
1349 +      Vector3d com(0.0);
1350 +      Vector3d comVel(0.0);
1351 +      
1352 +      getComAll(com, comVel);
1353 +      
1354 +      SimInfo::MoleculeIterator i;
1355 +      Molecule* mol;
1356 +      
1357 +      Vector3d thisq(0.0);
1358 +      Vector3d thisv(0.0);
1359 +
1360 +      RealType thisMass = 0.0;
1361 +    
1362 +      
1363 +      
1364 +  
1365 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1366 +        
1367 +         thisq = mol->getCom()-com;
1368 +         thisv = mol->getComVel()-comVel;
1369 +         thisMass = mol->getMass();
1370 +         // Compute moment of intertia coefficients.
1371 +         xx += thisq[0]*thisq[0]*thisMass;
1372 +         yy += thisq[1]*thisq[1]*thisMass;
1373 +         zz += thisq[2]*thisq[2]*thisMass;
1374 +        
1375 +         // compute products of intertia
1376 +         xy += thisq[0]*thisq[1]*thisMass;
1377 +         xz += thisq[0]*thisq[2]*thisMass;
1378 +         yz += thisq[1]*thisq[2]*thisMass;
1379 +            
1380 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1381 +            
1382 +      }  
1383 +      
1384 +      
1385 +      inertiaTensor(0,0) = yy + zz;
1386 +      inertiaTensor(0,1) = -xy;
1387 +      inertiaTensor(0,2) = -xz;
1388 +      inertiaTensor(1,0) = -xy;
1389 +      inertiaTensor(1,1) = xx + zz;
1390 +      inertiaTensor(1,2) = -yz;
1391 +      inertiaTensor(2,0) = -xz;
1392 +      inertiaTensor(2,1) = -yz;
1393 +      inertiaTensor(2,2) = xx + yy;
1394 +      
1395 + #ifdef IS_MPI
1396 +      Mat3x3d tmpI(inertiaTensor);
1397 +      Vector3d tmpAngMom;
1398 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1400 + #endif
1401 +              
1402 +      return;
1403 +   }
1404 +
1405 +   //Returns the angular momentum of the system
1406 +   Vector3d SimInfo::getAngularMomentum(){
1407 +      
1408 +      Vector3d com(0.0);
1409 +      Vector3d comVel(0.0);
1410 +      Vector3d angularMomentum(0.0);
1411 +      
1412 +      getComAll(com,comVel);
1413 +      
1414 +      SimInfo::MoleculeIterator i;
1415 +      Molecule* mol;
1416 +      
1417 +      Vector3d thisr(0.0);
1418 +      Vector3d thisp(0.0);
1419 +      
1420 +      RealType thisMass;
1421 +      
1422 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1423 +        thisMass = mol->getMass();
1424 +        thisr = mol->getCom()-com;
1425 +        thisp = (mol->getComVel()-comVel)*thisMass;
1426 +        
1427 +        angularMomentum += cross( thisr, thisp );
1428 +        
1429 +      }  
1430 +      
1431 + #ifdef IS_MPI
1432 +      Vector3d tmpAngMom;
1433 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1434 + #endif
1435 +      
1436 +      return angularMomentum;
1437 +   }
1438 +  
1439 +  
1440   }//end namespace oopse
1441  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines