ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 834 by chuckv, Fri Dec 30 23:15:59 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 53 | Line 54
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
68 > using namespace std;
69 > namespace OpenMD {
70    
71    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72      forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
87 <      std::vector<Component*> components = simParams->getComponents();
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94        
95 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
96 <        molStamp = (*i)->getMoleculeStamp();
97 <        nMolWithSameStamp = (*i)->getNMol();
98 <        
99 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
100 <
101 <        //calculate atoms in molecules
102 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 <
104 <        //calculate atoms in cutoff groups
105 <        int nAtomsInGroups = 0;
106 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 <        
116 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroupStamp(j);
118 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
110 <      //group therefore the total number of cutoff groups in the system is
111 <      //equal to the total number of atoms minus number of atoms belong to
112 <      //cutoff group defined in meta-data file plus the number of cutoff
113 <      //groups defined in meta-data file
114 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
115 <
116 <      //every free atom (atom does not belong to rigid bodies) is an
117 <      //integrable object therefore the total number of integrable objects
118 <      //in the system is equal to the total number of atoms minus number of
119 <      //atoms belong to rigid body defined in meta-data file plus the number
120 <      //of rigid bodies defined in meta-data file
121 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
122 <                                                + nGlobalRigidBodies_;
123 <  
124 <      nGlobalMols_ = molStampIds_.size();
155 <
156 < #ifdef IS_MPI    
157 <      molToProcMap_.resize(nGlobalMols_);
158 < #endif
159 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
# Line 171 | Line 156 | namespace oopse {
156      delete forceField_;
157    }
158  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 233 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
236
237
213    }    
214  
215          
# Line 250 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 271 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
274            
253        }
254 +      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 +           atom = mol->nextFluctuatingCharge(k)) {
256 +        if (atom->isFluctuatingCharge()) {
257 +          nfq_local++;
258 +        }
259 +      }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +    cerr << "ndfLocal_ = " << ndfLocal_ << "\n";
264 +
265      // n_constraints is local, so subtract them on each processor
266      ndf_local -= nConstraints_;
267  
268   #ifdef IS_MPI
269      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
271   #else
272      ndf_ = ndf_local;
273 +    nGlobalFluctuatingCharges_ = nfq_local;
274   #endif
275  
276      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 290 | Line 279 | namespace oopse {
279  
280    }
281  
282 +  int SimInfo::getFdf() {
283 + #ifdef IS_MPI
284 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 + #else
286 +    fdf_ = fdf_local;
287 + #endif
288 +    return fdf_;
289 +  }
290 +  
291 +  unsigned int SimInfo::getNLocalCutoffGroups(){
292 +    int nLocalCutoffAtoms = 0;
293 +    Molecule* mol;
294 +    MoleculeIterator mi;
295 +    CutoffGroup* cg;
296 +    Molecule::CutoffGroupIterator ci;
297 +    
298 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
299 +      
300 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
301 +           cg = mol->nextCutoffGroup(ci)) {
302 +        nLocalCutoffAtoms += cg->getNumAtom();
303 +        
304 +      }        
305 +    }
306 +    
307 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
308 +  }
309 +    
310    void SimInfo::calcNdfRaw() {
311      int ndfRaw_local;
312  
313      MoleculeIterator i;
314 <    std::vector<StuntDouble*>::iterator j;
314 >    vector<StuntDouble*>::iterator j;
315      Molecule* mol;
316      StuntDouble* integrableObject;
317  
# Line 341 | Line 358 | namespace oopse {
358  
359    }
360  
361 <  void SimInfo::addExcludePairs(Molecule* mol) {
362 <    std::vector<Bond*>::iterator bondIter;
363 <    std::vector<Bend*>::iterator bendIter;
364 <    std::vector<Torsion*>::iterator torsionIter;
361 >  void SimInfo::addInteractionPairs(Molecule* mol) {
362 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
363 >    vector<Bond*>::iterator bondIter;
364 >    vector<Bend*>::iterator bendIter;
365 >    vector<Torsion*>::iterator torsionIter;
366 >    vector<Inversion*>::iterator inversionIter;
367      Bond* bond;
368      Bend* bend;
369      Torsion* torsion;
370 +    Inversion* inversion;
371      int a;
372      int b;
373      int c;
374      int d;
375  
376 <    std::map<int, std::set<int> > atomGroups;
376 >    // atomGroups can be used to add special interaction maps between
377 >    // groups of atoms that are in two separate rigid bodies.
378 >    // However, most site-site interactions between two rigid bodies
379 >    // are probably not special, just the ones between the physically
380 >    // bonded atoms.  Interactions *within* a single rigid body should
381 >    // always be excluded.  These are done at the bottom of this
382 >    // function.
383  
384 +    map<int, set<int> > atomGroups;
385      Molecule::RigidBodyIterator rbIter;
386      RigidBody* rb;
387      Molecule::IntegrableObjectIterator ii;
388      StuntDouble* integrableObject;
389      
390 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
391 <           integrableObject = mol->nextIntegrableObject(ii)) {
392 <
390 >    for (integrableObject = mol->beginIntegrableObject(ii);
391 >         integrableObject != NULL;
392 >         integrableObject = mol->nextIntegrableObject(ii)) {
393 >      
394        if (integrableObject->isRigidBody()) {
395 <          rb = static_cast<RigidBody*>(integrableObject);
396 <          std::vector<Atom*> atoms = rb->getAtoms();
397 <          std::set<int> rigidAtoms;
398 <          for (int i = 0; i < atoms.size(); ++i) {
399 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
400 <          }
401 <          for (int i = 0; i < atoms.size(); ++i) {
402 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
403 <          }      
395 >        rb = static_cast<RigidBody*>(integrableObject);
396 >        vector<Atom*> atoms = rb->getAtoms();
397 >        set<int> rigidAtoms;
398 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
399 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
400 >        }
401 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
402 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
403 >        }      
404        } else {
405 <        std::set<int> oneAtomSet;
405 >        set<int> oneAtomSet;
406          oneAtomSet.insert(integrableObject->getGlobalIndex());
407 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
407 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
408        }
409      }  
410 +          
411 +    for (bond= mol->beginBond(bondIter); bond != NULL;
412 +         bond = mol->nextBond(bondIter)) {
413  
383    
384    
385    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
414        a = bond->getAtomA()->getGlobalIndex();
415 <      b = bond->getAtomB()->getGlobalIndex();        
416 <      exclude_.addPair(a, b);
415 >      b = bond->getAtomB()->getGlobalIndex();  
416 >    
417 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 >        oneTwoInteractions_.addPair(a, b);
419 >      } else {
420 >        excludedInteractions_.addPair(a, b);
421 >      }
422      }
423  
424 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
424 >    for (bend= mol->beginBend(bendIter); bend != NULL;
425 >         bend = mol->nextBend(bendIter)) {
426 >
427        a = bend->getAtomA()->getGlobalIndex();
428        b = bend->getAtomB()->getGlobalIndex();        
429        c = bend->getAtomC()->getGlobalIndex();
395      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
396      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
397      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398
399      exclude_.addPairs(rigidSetA, rigidSetB);
400      exclude_.addPairs(rigidSetA, rigidSetC);
401      exclude_.addPairs(rigidSetB, rigidSetC);
430        
431 <      //exclude_.addPair(a, b);
432 <      //exclude_.addPair(a, c);
433 <      //exclude_.addPair(b, c);        
431 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 >        oneTwoInteractions_.addPair(a, b);      
433 >        oneTwoInteractions_.addPair(b, c);
434 >      } else {
435 >        excludedInteractions_.addPair(a, b);
436 >        excludedInteractions_.addPair(b, c);
437 >      }
438 >
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >      } else {
442 >        excludedInteractions_.addPair(a, c);
443 >      }
444      }
445  
446 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
446 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
447 >         torsion = mol->nextTorsion(torsionIter)) {
448 >
449        a = torsion->getAtomA()->getGlobalIndex();
450        b = torsion->getAtomB()->getGlobalIndex();        
451        c = torsion->getAtomC()->getGlobalIndex();        
452 <      d = torsion->getAtomD()->getGlobalIndex();        
413 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
452 >      d = torsion->getAtomD()->getGlobalIndex();      
453  
454 <      exclude_.addPairs(rigidSetA, rigidSetB);
455 <      exclude_.addPairs(rigidSetA, rigidSetC);
456 <      exclude_.addPairs(rigidSetA, rigidSetD);
457 <      exclude_.addPairs(rigidSetB, rigidSetC);
458 <      exclude_.addPairs(rigidSetB, rigidSetD);
459 <      exclude_.addPairs(rigidSetC, rigidSetD);
454 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
455 >        oneTwoInteractions_.addPair(a, b);      
456 >        oneTwoInteractions_.addPair(b, c);
457 >        oneTwoInteractions_.addPair(c, d);
458 >      } else {
459 >        excludedInteractions_.addPair(a, b);
460 >        excludedInteractions_.addPair(b, c);
461 >        excludedInteractions_.addPair(c, d);
462 >      }
463  
464 <      /*
465 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
466 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
467 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
468 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
469 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
470 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
471 <        
472 <      
473 <      exclude_.addPair(a, b);
474 <      exclude_.addPair(a, c);
475 <      exclude_.addPair(a, d);
476 <      exclude_.addPair(b, c);
438 <      exclude_.addPair(b, d);
439 <      exclude_.addPair(c, d);        
440 <      */
464 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
465 >        oneThreeInteractions_.addPair(a, c);      
466 >        oneThreeInteractions_.addPair(b, d);      
467 >      } else {
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(b, d);
470 >      }
471 >
472 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
473 >        oneFourInteractions_.addPair(a, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(a, d);
476 >      }
477      }
478  
479 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
480 <      std::vector<Atom*> atoms = rb->getAtoms();
481 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
482 <        for (int j = i + 1; j < atoms.size(); ++j) {
479 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
480 >         inversion = mol->nextInversion(inversionIter)) {
481 >
482 >      a = inversion->getAtomA()->getGlobalIndex();
483 >      b = inversion->getAtomB()->getGlobalIndex();        
484 >      c = inversion->getAtomC()->getGlobalIndex();        
485 >      d = inversion->getAtomD()->getGlobalIndex();        
486 >
487 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
488 >        oneTwoInteractions_.addPair(a, b);      
489 >        oneTwoInteractions_.addPair(a, c);
490 >        oneTwoInteractions_.addPair(a, d);
491 >      } else {
492 >        excludedInteractions_.addPair(a, b);
493 >        excludedInteractions_.addPair(a, c);
494 >        excludedInteractions_.addPair(a, d);
495 >      }
496 >
497 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
498 >        oneThreeInteractions_.addPair(b, c);    
499 >        oneThreeInteractions_.addPair(b, d);    
500 >        oneThreeInteractions_.addPair(c, d);      
501 >      } else {
502 >        excludedInteractions_.addPair(b, c);
503 >        excludedInteractions_.addPair(b, d);
504 >        excludedInteractions_.addPair(c, d);
505 >      }
506 >    }
507 >
508 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
509 >         rb = mol->nextRigidBody(rbIter)) {
510 >      vector<Atom*> atoms = rb->getAtoms();
511 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
512 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
513            a = atoms[i]->getGlobalIndex();
514            b = atoms[j]->getGlobalIndex();
515 <          exclude_.addPair(a, b);
515 >          excludedInteractions_.addPair(a, b);
516          }
517        }
518      }        
519  
520    }
521  
522 <  void SimInfo::removeExcludePairs(Molecule* mol) {
523 <    std::vector<Bond*>::iterator bondIter;
524 <    std::vector<Bend*>::iterator bendIter;
525 <    std::vector<Torsion*>::iterator torsionIter;
522 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
523 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
524 >    vector<Bond*>::iterator bondIter;
525 >    vector<Bend*>::iterator bendIter;
526 >    vector<Torsion*>::iterator torsionIter;
527 >    vector<Inversion*>::iterator inversionIter;
528      Bond* bond;
529      Bend* bend;
530      Torsion* torsion;
531 +    Inversion* inversion;
532      int a;
533      int b;
534      int c;
535      int d;
536  
537 <    std::map<int, std::set<int> > atomGroups;
469 <
537 >    map<int, set<int> > atomGroups;
538      Molecule::RigidBodyIterator rbIter;
539      RigidBody* rb;
540      Molecule::IntegrableObjectIterator ii;
541      StuntDouble* integrableObject;
542      
543 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
544 <           integrableObject = mol->nextIntegrableObject(ii)) {
545 <
543 >    for (integrableObject = mol->beginIntegrableObject(ii);
544 >         integrableObject != NULL;
545 >         integrableObject = mol->nextIntegrableObject(ii)) {
546 >      
547        if (integrableObject->isRigidBody()) {
548 <          rb = static_cast<RigidBody*>(integrableObject);
549 <          std::vector<Atom*> atoms = rb->getAtoms();
550 <          std::set<int> rigidAtoms;
551 <          for (int i = 0; i < atoms.size(); ++i) {
552 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 <          }
554 <          for (int i = 0; i < atoms.size(); ++i) {
555 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 <          }      
548 >        rb = static_cast<RigidBody*>(integrableObject);
549 >        vector<Atom*> atoms = rb->getAtoms();
550 >        set<int> rigidAtoms;
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 >        }
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 >        }      
557        } else {
558 <        std::set<int> oneAtomSet;
558 >        set<int> oneAtomSet;
559          oneAtomSet.insert(integrableObject->getGlobalIndex());
560 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
560 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
561        }
562      }  
563  
564 <    
565 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
564 >    for (bond= mol->beginBond(bondIter); bond != NULL;
565 >         bond = mol->nextBond(bondIter)) {
566 >      
567        a = bond->getAtomA()->getGlobalIndex();
568 <      b = bond->getAtomB()->getGlobalIndex();        
569 <      exclude_.removePair(a, b);
568 >      b = bond->getAtomB()->getGlobalIndex();  
569 >    
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >      }
575      }
576  
577 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
577 >    for (bend= mol->beginBend(bendIter); bend != NULL;
578 >         bend = mol->nextBend(bendIter)) {
579 >
580        a = bend->getAtomA()->getGlobalIndex();
581        b = bend->getAtomB()->getGlobalIndex();        
582        c = bend->getAtomC()->getGlobalIndex();
506
507      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510
511      exclude_.removePairs(rigidSetA, rigidSetB);
512      exclude_.removePairs(rigidSetA, rigidSetC);
513      exclude_.removePairs(rigidSetB, rigidSetC);
583        
584 <      //exclude_.removePair(a, b);
585 <      //exclude_.removePair(a, c);
586 <      //exclude_.removePair(b, c);        
584 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 >        oneTwoInteractions_.removePair(a, b);      
586 >        oneTwoInteractions_.removePair(b, c);
587 >      } else {
588 >        excludedInteractions_.removePair(a, b);
589 >        excludedInteractions_.removePair(b, c);
590 >      }
591 >
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >      } else {
595 >        excludedInteractions_.removePair(a, c);
596 >      }
597      }
598  
599 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
599 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 >         torsion = mol->nextTorsion(torsionIter)) {
601 >
602        a = torsion->getAtomA()->getGlobalIndex();
603        b = torsion->getAtomB()->getGlobalIndex();        
604        c = torsion->getAtomC()->getGlobalIndex();        
605 <      d = torsion->getAtomD()->getGlobalIndex();        
605 >      d = torsion->getAtomD()->getGlobalIndex();      
606 >  
607 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 >        oneTwoInteractions_.removePair(a, b);      
609 >        oneTwoInteractions_.removePair(b, c);
610 >        oneTwoInteractions_.removePair(c, d);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >        excludedInteractions_.removePair(c, d);
615 >      }
616  
617 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
618 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
619 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
620 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
617 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 >        oneThreeInteractions_.removePair(a, c);      
619 >        oneThreeInteractions_.removePair(b, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(b, d);
623 >      }
624  
625 <      exclude_.removePairs(rigidSetA, rigidSetB);
626 <      exclude_.removePairs(rigidSetA, rigidSetC);
627 <      exclude_.removePairs(rigidSetA, rigidSetD);
628 <      exclude_.removePairs(rigidSetB, rigidSetC);
629 <      exclude_.removePairs(rigidSetB, rigidSetD);
630 <      exclude_.removePairs(rigidSetC, rigidSetD);
625 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 >        oneFourInteractions_.removePair(a, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(a, d);
629 >      }
630 >    }
631  
632 <      /*
633 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
632 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 >         inversion = mol->nextInversion(inversionIter)) {
634  
635 <      
636 <      exclude_.removePair(a, b);
637 <      exclude_.removePair(a, c);
638 <      exclude_.removePair(a, d);
639 <      exclude_.removePair(b, c);
640 <      exclude_.removePair(b, d);
641 <      exclude_.removePair(c, d);        
642 <      */
635 >      a = inversion->getAtomA()->getGlobalIndex();
636 >      b = inversion->getAtomB()->getGlobalIndex();        
637 >      c = inversion->getAtomC()->getGlobalIndex();        
638 >      d = inversion->getAtomD()->getGlobalIndex();        
639 >
640 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 >        oneTwoInteractions_.removePair(a, b);      
642 >        oneTwoInteractions_.removePair(a, c);
643 >        oneTwoInteractions_.removePair(a, d);
644 >      } else {
645 >        excludedInteractions_.removePair(a, b);
646 >        excludedInteractions_.removePair(a, c);
647 >        excludedInteractions_.removePair(a, d);
648 >      }
649 >
650 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 >        oneThreeInteractions_.removePair(b, c);    
652 >        oneThreeInteractions_.removePair(b, d);    
653 >        oneThreeInteractions_.removePair(c, d);      
654 >      } else {
655 >        excludedInteractions_.removePair(b, c);
656 >        excludedInteractions_.removePair(b, d);
657 >        excludedInteractions_.removePair(c, d);
658 >      }
659      }
660  
661 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
662 <      std::vector<Atom*> atoms = rb->getAtoms();
663 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
664 <        for (int j = i + 1; j < atoms.size(); ++j) {
661 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 >         rb = mol->nextRigidBody(rbIter)) {
663 >      vector<Atom*> atoms = rb->getAtoms();
664 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666            a = atoms[i]->getGlobalIndex();
667            b = atoms[j]->getGlobalIndex();
668 <          exclude_.removePair(a, b);
668 >          excludedInteractions_.removePair(a, b);
669          }
670        }
671      }        
672 <
672 >    
673    }
674 <
675 <
674 >  
675 >  
676    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677      int curStampId;
678 <
678 >    
679      //index from 0
680      curStampId = moleculeStamps_.size();
681  
# Line 577 | Line 683 | namespace oopse {
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684    }
685  
580  void SimInfo::update() {
686  
687 <    setupSimType();
688 <
689 < #ifdef IS_MPI
690 <    setupFortranParallel();
691 < #endif
692 <
693 <    setupFortranSim();
694 <
695 <    //setup fortran force field
591 <    /** @deprecate */    
592 <    int isError = 0;
593 <    
594 <    setupElectrostaticSummationMethod( isError );
595 <    setupSwitchingFunction();
596 <
597 <    if(isError){
598 <      sprintf( painCave.errMsg,
599 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 <      painCave.isFatal = 1;
601 <      simError();
602 <    }
603 <  
604 <    
605 <    setupCutoff();
606 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
610
611    fortranInitialized_ = true;
699    }
700 <
701 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
700 >  
701 >  /**
702 >   * getSimulatedAtomTypes
703 >   *
704 >   * Returns an STL set of AtomType* that are actually present in this
705 >   * simulation.  Must query all processors to assemble this information.
706 >   *
707 >   */
708 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
711      Molecule::AtomIterator ai;
712      Atom* atom;
713 <    std::set<AtomType*> atomTypes;
714 <
713 >    set<AtomType*> atomTypes;
714 >    
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 <
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719 <      }
720 <        
721 <    }
719 >      }      
720 >    }    
721 >    
722 > #ifdef IS_MPI
723  
724 <    return atomTypes;        
725 <  }
631 <
632 <  void SimInfo::setupSimType() {
633 <    std::set<AtomType*>::iterator i;
634 <    std::set<AtomType*> atomTypes;
635 <    atomTypes = getUniqueAtomTypes();
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726      
727 <    int useLennardJones = 0;
728 <    int useElectrostatic = 0;
729 <    int useEAM = 0;
730 <    int useSC = 0;
641 <    int useCharge = 0;
642 <    int useDirectional = 0;
643 <    int useDipole = 0;
644 <    int useGayBerne = 0;
645 <    int useSticky = 0;
646 <    int useStickyPower = 0;
647 <    int useShape = 0;
648 <    int useFLARB = 0; //it is not in AtomType yet
649 <    int useDirectionalAtom = 0;    
650 <    int useElectrostatics = 0;
651 <    //usePBC and useRF are from simParams
652 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 <    int useRF;
654 <    int useSF;
655 <    std::string myMethod;
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    // set the useRF logical
733 <    useRF = 0;
659 <    useSF = 0;
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734  
735 +    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 <    if (simParams_->haveElectrostaticSummationMethod()) {
738 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
739 <      toUpper(myMethod);
740 <      if (myMethod == "REACTION_FIELD") {
666 <        useRF=1;
667 <      } else {
668 <        if (myMethod == "SHIFTED_FORCE") {
669 <          useSF = 1;
670 <        }
671 <      }
672 <    }
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741  
742 <    //loop over all of the atom types
743 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
744 <      useLennardJones |= (*i)->isLennardJones();
745 <      useElectrostatic |= (*i)->isElectrostatic();
746 <      useEAM |= (*i)->isEAM();
747 <      useSC |= (*i)->isSC();
748 <      useCharge |= (*i)->isCharge();
749 <      useDirectional |= (*i)->isDirectional();
750 <      useDipole |= (*i)->isDipole();
751 <      useGayBerne |= (*i)->isGayBerne();
684 <      useSticky |= (*i)->isSticky();
685 <      useStickyPower |= (*i)->isStickyPower();
686 <      useShape |= (*i)->isShape();
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753  
754 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
755 <      useDirectionalAtom = 1;
756 <    }
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756 >    
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 <    if (useCharge || useDipole) {
694 <      useElectrostatics = 1;
695 <    }
762 >    vector<int>::iterator j;
763  
764 < #ifdef IS_MPI    
765 <    int temp;
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767  
768 <    temp = usePBC;
769 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770 >    
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778  
779 <    temp = useDirectionalAtom;
780 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
779 >    return atomTypes;        
780 >  }
781  
782 <    temp = useLennardJones;
783 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790 >    
791 >    set<AtomType*>::iterator i;
792 >    set<AtomType*> atomTypes;
793 >    atomTypes = getSimulatedAtomTypes();    
794 >    int usesElectrostatic = 0;
795 >    int usesMetallic = 0;
796 >    int usesDirectional = 0;
797 >    int usesFluctuatingCharges =  0;
798 >    //loop over all of the atom types
799 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 >      usesElectrostatic |= (*i)->isElectrostatic();
801 >      usesMetallic |= (*i)->isMetal();
802 >      usesDirectional |= (*i)->isDirectional();
803 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804 >    }
805 >    
806 > #ifdef IS_MPI    
807 >    int temp;
808 >    temp = usesDirectional;
809 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >    
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 >    
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816  
817 <    temp = useElectrostatics;
818 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817 >    temp = usesFluctuatingCharges;
818 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 > #else
820  
821 <    temp = useCharge;
822 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 >    usesDirectionalAtoms_ = usesDirectional;
822 >    usesMetallicAtoms_ = usesMetallic;
823 >    usesElectrostaticAtoms_ = usesElectrostatic;
824 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
825  
826 <    temp = useDipole;
716 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 <
718 <    temp = useSticky;
719 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 <
721 <    temp = useStickyPower;
722 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 > #endif
827      
828 <    temp = useGayBerne;
829 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
829 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
830 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
831 >  }
832  
727    temp = useEAM;
728    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833  
834 <    temp = useSC;
835 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
834 >  vector<int> SimInfo::getGlobalAtomIndices() {
835 >    SimInfo::MoleculeIterator mi;
836 >    Molecule* mol;
837 >    Molecule::AtomIterator ai;
838 >    Atom* atom;
839 >
840 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
841      
842 <    temp = useShape;
843 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
842 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
843 >      
844 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
845 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
846 >      }
847 >    }
848 >    return GlobalAtomIndices;
849 >  }
850  
736    temp = useFLARB;
737    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851  
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
852 >  vector<int> SimInfo::getGlobalGroupIndices() {
853 >    SimInfo::MoleculeIterator mi;
854 >    Molecule* mol;
855 >    Molecule::CutoffGroupIterator ci;
856 >    CutoffGroup* cg;
857  
858 <    temp = useSF;
859 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
860 <
745 < #endif
746 <
747 <    fInfo_.SIM_uses_PBC = usePBC;    
748 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 <    fInfo_.SIM_uses_Charges = useCharge;
752 <    fInfo_.SIM_uses_Dipoles = useDipole;
753 <    fInfo_.SIM_uses_Sticky = useSticky;
754 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
755 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
756 <    fInfo_.SIM_uses_EAM = useEAM;
757 <    fInfo_.SIM_uses_SC = useSC;
758 <    fInfo_.SIM_uses_Shapes = useShape;
759 <    fInfo_.SIM_uses_FLARB = useFLARB;
760 <    fInfo_.SIM_uses_RF = useRF;
761 <    fInfo_.SIM_uses_SF = useSF;
762 <
763 <    if( myMethod == "REACTION_FIELD") {
858 >    vector<int> GlobalGroupIndices;
859 >    
860 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
861        
862 <      if (simParams_->haveDielectric()) {
863 <        fInfo_.dielect = simParams_->getDielectric();
864 <      } else {
865 <        sprintf(painCave.errMsg,
866 <                "SimSetup Error: No Dielectric constant was set.\n"
867 <                "\tYou are trying to use Reaction Field without"
771 <                "\tsetting a dielectric constant!\n");
772 <        painCave.isFatal = 1;
773 <        simError();
774 <      }      
862 >      //local index of cutoff group is trivial, it only depends on the
863 >      //order of travesing
864 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 >           cg = mol->nextCutoffGroup(ci)) {
866 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
867 >      }        
868      }
869 <
869 >    return GlobalGroupIndices;
870    }
871  
779  void SimInfo::setupFortranSim() {
780    int isError;
781    int nExclude;
782    std::vector<int> fortranGlobalGroupMembership;
783    
784    nExclude = exclude_.getSize();
785    isError = 0;
872  
873 <    //globalGroupMembership_ is filled by SimCreator    
874 <    for (int i = 0; i < nGlobalAtoms_; i++) {
789 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
790 <    }
873 >  void SimInfo::prepareTopology() {
874 >    int nExclude, nOneTwo, nOneThree, nOneFour;
875  
876      //calculate mass ratio of cutoff group
793    std::vector<double> mfact;
877      SimInfo::MoleculeIterator mi;
878      Molecule* mol;
879      Molecule::CutoffGroupIterator ci;
880      CutoffGroup* cg;
881      Molecule::AtomIterator ai;
882      Atom* atom;
883 <    double totalMass;
883 >    RealType totalMass;
884  
885 <    //to avoid memory reallocation, reserve enough space for mfact
886 <    mfact.reserve(getNCutoffGroups());
885 >    /**
886 >     * The mass factor is the relative mass of an atom to the total
887 >     * mass of the cutoff group it belongs to.  By default, all atoms
888 >     * are their own cutoff groups, and therefore have mass factors of
889 >     * 1.  We need some special handling for massless atoms, which
890 >     * will be treated as carrying the entire mass of the cutoff
891 >     * group.
892 >     */
893 >    massFactors_.clear();
894 >    massFactors_.resize(getNAtoms(), 1.0);
895      
896      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
897 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
898 >           cg = mol->nextCutoffGroup(ci)) {
899  
900          totalMass = cg->getMass();
901          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902            // Check for massless groups - set mfact to 1 if true
903 <          if (totalMass != 0)
904 <            mfact.push_back(atom->getMass()/totalMass);
903 >          if (totalMass != 0)
904 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
905            else
906 <            mfact.push_back( 1.0 );
906 >            massFactors_[atom->getLocalIndex()] = 1.0;
907          }
816
908        }      
909      }
910  
911 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
911 >    // Build the identArray_
912  
913 <    //to avoid memory reallocation, reserve enough space identArray
914 <    identArray.reserve(getNAtoms());
825 <    
913 >    identArray_.clear();
914 >    identArray_.reserve(getNAtoms());    
915      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
916        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
917 <        identArray.push_back(atom->getIdent());
917 >        identArray_.push_back(atom->getIdent());
918        }
919      }    
831
832    //fill molMembershipArray
833    //molMembershipArray is filled by SimCreator    
834    std::vector<int> molMembershipArray(nGlobalAtoms_);
835    for (int i = 0; i < nGlobalAtoms_; i++) {
836      molMembershipArray[i] = globalMolMembership_[i] + 1;
837    }
920      
921 <    //setup fortran simulation
840 <    int nGlobalExcludes = 0;
841 <    int* globalExcludes = NULL;
842 <    int* excludeList = exclude_.getExcludeList();
843 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
921 >    //scan topology
922  
923 <    if( isError ){
923 >    nExclude = excludedInteractions_.getSize();
924 >    nOneTwo = oneTwoInteractions_.getSize();
925 >    nOneThree = oneThreeInteractions_.getSize();
926 >    nOneFour = oneFourInteractions_.getSize();
927  
928 <      sprintf( painCave.errMsg,
929 <               "There was an error setting the simulation information in fortran.\n" );
930 <      painCave.isFatal = 1;
931 <      painCave.severity = OOPSE_ERROR;
853 <      simError();
854 <    }
855 <
856 < #ifdef IS_MPI
857 <    sprintf( checkPointMsg,
858 <             "succesfully sent the simulation information to fortran.\n");
859 <    MPIcheckPoint();
860 < #endif // is_mpi
861 <  }
862 <
863 <
864 < #ifdef IS_MPI
865 <  void SimInfo::setupFortranParallel() {
866 <    
867 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
868 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
869 <    std::vector<int> localToGlobalCutoffGroupIndex;
870 <    SimInfo::MoleculeIterator mi;
871 <    Molecule::AtomIterator ai;
872 <    Molecule::CutoffGroupIterator ci;
873 <    Molecule* mol;
874 <    Atom* atom;
875 <    CutoffGroup* cg;
876 <    mpiSimData parallelData;
877 <    int isError;
878 <
879 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
880 <
881 <      //local index(index in DataStorge) of atom is important
882 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884 <      }
885 <
886 <      //local index of cutoff group is trivial, it only depends on the order of travesing
887 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889 <      }        
890 <        
891 <    }
892 <
893 <    //fill up mpiSimData struct
894 <    parallelData.nMolGlobal = getNGlobalMolecules();
895 <    parallelData.nMolLocal = getNMolecules();
896 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
897 <    parallelData.nAtomsLocal = getNAtoms();
898 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
899 <    parallelData.nGroupsLocal = getNCutoffGroups();
900 <    parallelData.myNode = worldRank;
901 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
902 <
903 <    //pass mpiSimData struct and index arrays to fortran
904 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
905 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
906 <                    &localToGlobalCutoffGroupIndex[0], &isError);
907 <
908 <    if (isError) {
909 <      sprintf(painCave.errMsg,
910 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
911 <      painCave.isFatal = 1;
912 <      simError();
913 <    }
914 <
915 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
916 <    MPIcheckPoint();
917 <
918 <
919 <  }
920 <
921 < #endif
922 <
923 <  void SimInfo::setupCutoff() {          
924 <    
925 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
926 <
927 <    // Check the cutoff policy
928 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
928 >    int* excludeList = excludedInteractions_.getPairList();
929 >    int* oneTwoList = oneTwoInteractions_.getPairList();
930 >    int* oneThreeList = oneThreeInteractions_.getPairList();
931 >    int* oneFourList = oneFourInteractions_.getPairList();
932  
933 <    std::string myPolicy;
931 <    if (forceFieldOptions_.haveCutoffPolicy()){
932 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 <    }else if (simParams_->haveCutoffPolicy()) {
934 <      myPolicy = simParams_->getCutoffPolicy();
935 <    }
936 <
937 <    if (!myPolicy.empty()){
938 <      toUpper(myPolicy);
939 <      if (myPolicy == "MIX") {
940 <        cp = MIX_CUTOFF_POLICY;
941 <      } else {
942 <        if (myPolicy == "MAX") {
943 <          cp = MAX_CUTOFF_POLICY;
944 <        } else {
945 <          if (myPolicy == "TRADITIONAL") {            
946 <            cp = TRADITIONAL_CUTOFF_POLICY;
947 <          } else {
948 <            // throw error        
949 <            sprintf( painCave.errMsg,
950 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 <            painCave.isFatal = 1;
952 <            simError();
953 <          }    
954 <        }          
955 <      }
956 <    }          
957 <    notifyFortranCutoffPolicy(&cp);
958 <
959 <    // Check the Skin Thickness for neighborlists
960 <    double skin;
961 <    if (simParams_->haveSkinThickness()) {
962 <      skin = simParams_->getSkinThickness();
963 <      notifyFortranSkinThickness(&skin);
964 <    }            
965 <        
966 <    // Check if the cutoff was set explicitly:
967 <    if (simParams_->haveCutoffRadius()) {
968 <      rcut_ = simParams_->getCutoffRadius();
969 <      if (simParams_->haveSwitchingRadius()) {
970 <        rsw_  = simParams_->getSwitchingRadius();
971 <      } else {
972 <        rsw_ = rcut_;
973 <      }
974 <      notifyFortranCutoffs(&rcut_, &rsw_);
975 <      
976 <    } else {
977 <      
978 <      // For electrostatic atoms, we'll assume a large safe value:
979 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
980 <        sprintf(painCave.errMsg,
981 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
982 <                "\tOOPSE will use a default value of 15.0 angstroms"
983 <                "\tfor the cutoffRadius.\n");
984 <        painCave.isFatal = 0;
985 <        simError();
986 <        rcut_ = 15.0;
987 <      
988 <        if (simParams_->haveElectrostaticSummationMethod()) {
989 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
990 <          toUpper(myMethod);
991 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
992 <            if (simParams_->haveSwitchingRadius()){
993 <              sprintf(painCave.errMsg,
994 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
995 <                      "\teven though the electrostaticSummationMethod was\n"
996 <                      "\tset to %s\n", myMethod.c_str());
997 <              painCave.isFatal = 1;
998 <              simError();            
999 <            }
1000 <          }
1001 <        }
1002 <      
1003 <        if (simParams_->haveSwitchingRadius()){
1004 <          rsw_ = simParams_->getSwitchingRadius();
1005 <        } else {        
1006 <          sprintf(painCave.errMsg,
1007 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1008 <                  "\tOOPSE will use a default value of\n"
1009 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1010 <          painCave.isFatal = 0;
1011 <          simError();
1012 <          rsw_ = 0.85 * rcut_;
1013 <        }
1014 <        notifyFortranCutoffs(&rcut_, &rsw_);
1015 <      } else {
1016 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1017 <        // We'll punt and let fortran figure out the cutoffs later.
1018 <        
1019 <        notifyFortranYouAreOnYourOwn();
1020 <
1021 <      }
1022 <    }
1023 <  }
1024 <
1025 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1026 <    
1027 <    int errorOut;
1028 <    int esm =  NONE;
1029 <    int sm = UNDAMPED;
1030 <    double alphaVal;
1031 <    double dielectric;
1032 <
1033 <    errorOut = isError;
1034 <    alphaVal = simParams_->getDampingAlpha();
1035 <    dielectric = simParams_->getDielectric();
1036 <
1037 <    if (simParams_->haveElectrostaticSummationMethod()) {
1038 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1039 <      toUpper(myMethod);
1040 <      if (myMethod == "NONE") {
1041 <        esm = NONE;
1042 <      } else {
1043 <        if (myMethod == "SWITCHING_FUNCTION") {
1044 <          esm = SWITCHING_FUNCTION;
1045 <        } else {
1046 <          if (myMethod == "SHIFTED_POTENTIAL") {
1047 <            esm = SHIFTED_POTENTIAL;
1048 <          } else {
1049 <            if (myMethod == "SHIFTED_FORCE") {            
1050 <              esm = SHIFTED_FORCE;
1051 <            } else {
1052 <              if (myMethod == "REACTION_FIELD") {            
1053 <                esm = REACTION_FIELD;
1054 <              } else {
1055 <                // throw error        
1056 <                sprintf( painCave.errMsg,
1057 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1058 <                         "\t(Input file specified %s .)\n"
1059 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1060 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1061 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1062 <                painCave.isFatal = 1;
1063 <                simError();
1064 <              }    
1065 <            }          
1066 <          }
1067 <        }
1068 <      }
1069 <    }
1070 <    
1071 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1072 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1073 <      toUpper(myScreen);
1074 <      if (myScreen == "UNDAMPED") {
1075 <        sm = UNDAMPED;
1076 <      } else {
1077 <        if (myScreen == "DAMPED") {
1078 <          sm = DAMPED;
1079 <          if (!simParams_->haveDampingAlpha()) {
1080 <            //throw error
1081 <            sprintf( painCave.errMsg,
1082 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1083 <                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1084 <            painCave.isFatal = 0;
1085 <            simError();
1086 <          }
1087 <        } else {
1088 <          // throw error        
1089 <          sprintf( painCave.errMsg,
1090 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1091 <                   "\t(Input file specified %s .)\n"
1092 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1093 <                   "or \"damped\".\n", myScreen.c_str() );
1094 <          painCave.isFatal = 1;
1095 <          simError();
1096 <        }
1097 <      }
1098 <    }
1099 <    
1100 <    // let's pass some summation method variables to fortran
1101 <    setElectrostaticSumMethod( &esm );
1102 <    setFortranElectrostaticMethod( &esm );
1103 <    setScreeningMethod( &sm );
1104 <    setDampingAlpha( &alphaVal );
1105 <    setReactionFieldDielectric( &dielectric );
1106 <    initFortranFF( &errorOut );
933 >    topologyDone_ = true;
934    }
935  
1109  void SimInfo::setupSwitchingFunction() {    
1110    int ft = CUBIC;
1111
1112    if (simParams_->haveSwitchingFunctionType()) {
1113      std::string funcType = simParams_->getSwitchingFunctionType();
1114      toUpper(funcType);
1115      if (funcType == "CUBIC") {
1116        ft = CUBIC;
1117      } else {
1118        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1119          ft = FIFTH_ORDER_POLY;
1120        } else {
1121          // throw error        
1122          sprintf( painCave.errMsg,
1123                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1124          painCave.isFatal = 1;
1125          simError();
1126        }          
1127      }
1128    }
1129
1130    // send switching function notification to switcheroo
1131    setFunctionType(&ft);
1132
1133  }
1134
936    void SimInfo::addProperty(GenericData* genData) {
937      properties_.addProperty(genData);  
938    }
939  
940 <  void SimInfo::removeProperty(const std::string& propName) {
940 >  void SimInfo::removeProperty(const string& propName) {
941      properties_.removeProperty(propName);  
942    }
943  
# Line 1144 | Line 945 | namespace oopse {
945      properties_.clearProperties();
946    }
947  
948 <  std::vector<std::string> SimInfo::getPropertyNames() {
948 >  vector<string> SimInfo::getPropertyNames() {
949      return properties_.getPropertyNames();  
950    }
951        
952 <  std::vector<GenericData*> SimInfo::getProperties() {
952 >  vector<GenericData*> SimInfo::getProperties() {
953      return properties_.getProperties();
954    }
955  
956 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
956 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
957      return properties_.getPropertyByName(propName);
958    }
959  
# Line 1166 | Line 967 | namespace oopse {
967      Molecule* mol;
968      RigidBody* rb;
969      Atom* atom;
970 +    CutoffGroup* cg;
971      SimInfo::MoleculeIterator mi;
972      Molecule::RigidBodyIterator rbIter;
973 <    Molecule::AtomIterator atomIter;;
973 >    Molecule::AtomIterator atomIter;
974 >    Molecule::CutoffGroupIterator cgIter;
975  
976      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
977          
# Line 1179 | Line 982 | namespace oopse {
982        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
983          rb->setSnapshotManager(sman_);
984        }
985 +
986 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
987 +        cg->setSnapshotManager(sman_);
988 +      }
989      }    
990      
991    }
# Line 1188 | Line 995 | namespace oopse {
995      Molecule* mol;
996  
997      Vector3d comVel(0.0);
998 <    double totalMass = 0.0;
998 >    RealType totalMass = 0.0;
999      
1000  
1001      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1002 <      double mass = mol->getMass();
1002 >      RealType mass = mol->getMass();
1003        totalMass += mass;
1004        comVel += mass * mol->getComVel();
1005      }  
1006  
1007   #ifdef IS_MPI
1008 <    double tmpMass = totalMass;
1008 >    RealType tmpMass = totalMass;
1009      Vector3d tmpComVel(comVel);    
1010 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1012   #endif
1013  
1014      comVel /= totalMass;
# Line 1214 | Line 1021 | namespace oopse {
1021      Molecule* mol;
1022  
1023      Vector3d com(0.0);
1024 <    double totalMass = 0.0;
1024 >    RealType totalMass = 0.0;
1025      
1026      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1027 <      double mass = mol->getMass();
1027 >      RealType mass = mol->getMass();
1028        totalMass += mass;
1029        com += mass * mol->getCom();
1030      }  
1031  
1032   #ifdef IS_MPI
1033 <    double tmpMass = totalMass;
1033 >    RealType tmpMass = totalMass;
1034      Vector3d tmpCom(com);    
1035 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1036 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1035 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1037   #endif
1038  
1039      com /= totalMass;
# Line 1235 | Line 1042 | namespace oopse {
1042  
1043    }        
1044  
1045 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1045 >  ostream& operator <<(ostream& o, SimInfo& info) {
1046  
1047      return o;
1048    }
# Line 1250 | Line 1057 | namespace oopse {
1057        Molecule* mol;
1058        
1059      
1060 <      double totalMass = 0.0;
1060 >      RealType totalMass = 0.0;
1061      
1062  
1063        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1064 <         double mass = mol->getMass();
1064 >         RealType mass = mol->getMass();
1065           totalMass += mass;
1066           com += mass * mol->getCom();
1067           comVel += mass * mol->getComVel();          
1068        }  
1069        
1070   #ifdef IS_MPI
1071 <      double tmpMass = totalMass;
1071 >      RealType tmpMass = totalMass;
1072        Vector3d tmpCom(com);  
1073        Vector3d tmpComVel(comVel);
1074 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1076 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1077   #endif
1078        
1079        com /= totalMass;
# Line 1278 | Line 1085 | namespace oopse {
1085  
1086  
1087         [  Ixx -Ixy  -Ixz ]
1088 <  J =| -Iyx  Iyy  -Iyz |
1088 >    J =| -Iyx  Iyy  -Iyz |
1089         [ -Izx -Iyz   Izz ]
1090      */
1091  
1092     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1093        
1094  
1095 <      double xx = 0.0;
1096 <      double yy = 0.0;
1097 <      double zz = 0.0;
1098 <      double xy = 0.0;
1099 <      double xz = 0.0;
1100 <      double yz = 0.0;
1095 >      RealType xx = 0.0;
1096 >      RealType yy = 0.0;
1097 >      RealType zz = 0.0;
1098 >      RealType xy = 0.0;
1099 >      RealType xz = 0.0;
1100 >      RealType yz = 0.0;
1101        Vector3d com(0.0);
1102        Vector3d comVel(0.0);
1103        
# Line 1302 | Line 1109 | namespace oopse {
1109        Vector3d thisq(0.0);
1110        Vector3d thisv(0.0);
1111  
1112 <      double thisMass = 0.0;
1112 >      RealType thisMass = 0.0;
1113      
1114        
1115        
# Line 1340 | Line 1147 | namespace oopse {
1147   #ifdef IS_MPI
1148        Mat3x3d tmpI(inertiaTensor);
1149        Vector3d tmpAngMom;
1150 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1151 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1152   #endif
1153                
1154        return;
# Line 1362 | Line 1169 | namespace oopse {
1169        Vector3d thisr(0.0);
1170        Vector3d thisp(0.0);
1171        
1172 <      double thisMass;
1172 >      RealType thisMass;
1173        
1174        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1175          thisMass = mol->getMass();
# Line 1375 | Line 1182 | namespace oopse {
1182        
1183   #ifdef IS_MPI
1184        Vector3d tmpAngMom;
1185 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1185 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1186   #endif
1187        
1188        return angularMomentum;
1189     }
1190    
1191 <  
1192 < }//end namespace oopse
1191 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1192 >    return IOIndexToIntegrableObject.at(index);
1193 >  }
1194 >  
1195 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1196 >    IOIndexToIntegrableObject= v;
1197 >  }
1198  
1199 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1200 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1201 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1202 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1203 +  */
1204 +  void SimInfo::getGyrationalVolume(RealType &volume){
1205 +    Mat3x3d intTensor;
1206 +    RealType det;
1207 +    Vector3d dummyAngMom;
1208 +    RealType sysconstants;
1209 +    RealType geomCnst;
1210 +
1211 +    geomCnst = 3.0/2.0;
1212 +    /* Get the inertial tensor and angular momentum for free*/
1213 +    getInertiaTensor(intTensor,dummyAngMom);
1214 +    
1215 +    det = intTensor.determinant();
1216 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1217 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1218 +    return;
1219 +  }
1220 +
1221 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1222 +    Mat3x3d intTensor;
1223 +    Vector3d dummyAngMom;
1224 +    RealType sysconstants;
1225 +    RealType geomCnst;
1226 +
1227 +    geomCnst = 3.0/2.0;
1228 +    /* Get the inertial tensor and angular momentum for free*/
1229 +    getInertiaTensor(intTensor,dummyAngMom);
1230 +    
1231 +    detI = intTensor.determinant();
1232 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1233 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1234 +    return;
1235 +  }
1236 + /*
1237 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1238 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1239 +      sdByGlobalIndex_ = v;
1240 +    }
1241 +
1242 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1243 +      //assert(index < nAtoms_ + nRigidBodies_);
1244 +      return sdByGlobalIndex_.at(index);
1245 +    }  
1246 + */  
1247 +  int SimInfo::getNGlobalConstraints() {
1248 +    int nGlobalConstraints;
1249 + #ifdef IS_MPI
1250 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1251 +                  MPI_COMM_WORLD);    
1252 + #else
1253 +    nGlobalConstraints =  nConstraints_;
1254 + #endif
1255 +    return nGlobalConstraints;
1256 +  }
1257 +
1258 + }//end namespace OpenMD
1259 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 834 by chuckv, Fri Dec 30 23:15:59 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines