6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
54 |
|
#include "brains/SimInfo.hpp" |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
< |
#include "UseTheForce/fCutoffPolicy.h" |
57 |
< |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
58 |
< |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
59 |
< |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
60 |
< |
#include "UseTheForce/doForces_interface.h" |
61 |
< |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
62 |
< |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
> |
#include "primitives/StuntDouble.hpp" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
< |
|
61 |
> |
#include "io/ForceFieldOptions.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
70 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
< |
namespace oopse { |
69 |
< |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
74 |
< |
std::map<int, std::set<int> >::iterator i = container.find(index); |
75 |
< |
std::set<int> result; |
76 |
< |
if (i != container.end()) { |
77 |
< |
result = i->second; |
78 |
< |
} |
79 |
< |
|
80 |
< |
return result; |
81 |
< |
} |
68 |
> |
using namespace std; |
69 |
> |
namespace OpenMD { |
70 |
|
|
71 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
|
forceField_(ff), simParams_(simParams), |
73 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
73 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
77 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
78 |
< |
sman_(NULL), fortranInitialized_(false) { |
79 |
< |
|
80 |
< |
MoleculeStamp* molStamp; |
81 |
< |
int nMolWithSameStamp; |
82 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
83 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
84 |
< |
CutoffGroupStamp* cgStamp; |
85 |
< |
RigidBodyStamp* rbStamp; |
86 |
< |
int nRigidAtoms = 0; |
87 |
< |
std::vector<Component*> components = simParams->getComponents(); |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
> |
|
81 |
> |
MoleculeStamp* molStamp; |
82 |
> |
int nMolWithSameStamp; |
83 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
> |
CutoffGroupStamp* cgStamp; |
86 |
> |
RigidBodyStamp* rbStamp; |
87 |
> |
int nRigidAtoms = 0; |
88 |
> |
|
89 |
> |
vector<Component*> components = simParams->getComponents(); |
90 |
> |
|
91 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 |
> |
molStamp = (*i)->getMoleculeStamp(); |
93 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
94 |
|
|
95 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
96 |
< |
molStamp = (*i)->getMoleculeStamp(); |
97 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
98 |
< |
|
99 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
100 |
< |
|
101 |
< |
//calculate atoms in molecules |
102 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
103 |
< |
|
104 |
< |
//calculate atoms in cutoff groups |
105 |
< |
int nAtomsInGroups = 0; |
106 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
113 |
< |
|
114 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
115 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
116 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
117 |
< |
} |
118 |
< |
|
119 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
120 |
< |
|
121 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
122 |
< |
|
123 |
< |
//calculate atoms in rigid bodies |
124 |
< |
int nAtomsInRigidBodies = 0; |
125 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
126 |
< |
|
127 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
128 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
129 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
130 |
< |
} |
131 |
< |
|
132 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
133 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
134 |
< |
|
95 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 |
> |
|
97 |
> |
//calculate atoms in molecules |
98 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 |
> |
|
100 |
> |
//calculate atoms in cutoff groups |
101 |
> |
int nAtomsInGroups = 0; |
102 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
103 |
> |
|
104 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
105 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
106 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
107 |
|
} |
108 |
< |
|
109 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
110 |
< |
//group therefore the total number of cutoff groups in the system is |
111 |
< |
//equal to the total number of atoms minus number of atoms belong to |
112 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
113 |
< |
//groups defined in meta-data file |
114 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
115 |
< |
|
116 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
117 |
< |
//integrable object therefore the total number of integrable objects |
118 |
< |
//in the system is equal to the total number of atoms minus number of |
119 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
120 |
< |
//of rigid bodies defined in meta-data file |
121 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
122 |
< |
+ nGlobalRigidBodies_; |
123 |
< |
|
124 |
< |
nGlobalMols_ = molStampIds_.size(); |
153 |
< |
|
154 |
< |
#ifdef IS_MPI |
155 |
< |
molToProcMap_.resize(nGlobalMols_); |
156 |
< |
#endif |
157 |
< |
|
108 |
> |
|
109 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
110 |
> |
|
111 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
112 |
> |
|
113 |
> |
//calculate atoms in rigid bodies |
114 |
> |
int nAtomsInRigidBodies = 0; |
115 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
116 |
> |
|
117 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
119 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 |
> |
} |
121 |
> |
|
122 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 |
> |
|
125 |
|
} |
126 |
+ |
|
127 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
128 |
+ |
//group therefore the total number of cutoff groups in the system is |
129 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
130 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
+ |
//groups defined in meta-data file |
132 |
|
|
133 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 |
+ |
|
135 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
136 |
+ |
//integrable object therefore the total number of integrable objects |
137 |
+ |
//in the system is equal to the total number of atoms minus number of |
138 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
139 |
+ |
//of rigid bodies defined in meta-data file |
140 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 |
+ |
+ nGlobalRigidBodies_; |
142 |
+ |
|
143 |
+ |
nGlobalMols_ = molStampIds_.size(); |
144 |
+ |
molToProcMap_.resize(nGlobalMols_); |
145 |
+ |
} |
146 |
+ |
|
147 |
|
SimInfo::~SimInfo() { |
148 |
< |
std::map<int, Molecule*>::iterator i; |
148 |
> |
map<int, Molecule*>::iterator i; |
149 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
150 |
|
delete i->second; |
151 |
|
} |
156 |
|
delete forceField_; |
157 |
|
} |
158 |
|
|
172 |
– |
int SimInfo::getNGlobalConstraints() { |
173 |
– |
int nGlobalConstraints; |
174 |
– |
#ifdef IS_MPI |
175 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
176 |
– |
MPI_COMM_WORLD); |
177 |
– |
#else |
178 |
– |
nGlobalConstraints = nConstraints_; |
179 |
– |
#endif |
180 |
– |
return nGlobalConstraints; |
181 |
– |
} |
159 |
|
|
160 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
161 |
|
MoleculeIterator i; |
162 |
< |
|
162 |
> |
|
163 |
|
i = molecules_.find(mol->getGlobalIndex()); |
164 |
|
if (i == molecules_.end() ) { |
165 |
< |
|
166 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
167 |
< |
|
165 |
> |
|
166 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
167 |
> |
|
168 |
|
nAtoms_ += mol->getNAtoms(); |
169 |
|
nBonds_ += mol->getNBonds(); |
170 |
|
nBends_ += mol->getNBends(); |
171 |
|
nTorsions_ += mol->getNTorsions(); |
172 |
+ |
nInversions_ += mol->getNInversions(); |
173 |
|
nRigidBodies_ += mol->getNRigidBodies(); |
174 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
175 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
176 |
|
nConstraints_ += mol->getNConstraintPairs(); |
177 |
< |
|
178 |
< |
addExcludePairs(mol); |
179 |
< |
|
177 |
> |
|
178 |
> |
addInteractionPairs(mol); |
179 |
> |
|
180 |
|
return true; |
181 |
|
} else { |
182 |
|
return false; |
183 |
|
} |
184 |
|
} |
185 |
< |
|
185 |
> |
|
186 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
187 |
|
MoleculeIterator i; |
188 |
|
i = molecules_.find(mol->getGlobalIndex()); |
195 |
|
nBonds_ -= mol->getNBonds(); |
196 |
|
nBends_ -= mol->getNBends(); |
197 |
|
nTorsions_ -= mol->getNTorsions(); |
198 |
+ |
nInversions_ -= mol->getNInversions(); |
199 |
|
nRigidBodies_ -= mol->getNRigidBodies(); |
200 |
|
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
201 |
|
nCutoffGroups_ -= mol->getNCutoffGroups(); |
202 |
|
nConstraints_ -= mol->getNConstraintPairs(); |
203 |
|
|
204 |
< |
removeExcludePairs(mol); |
204 |
> |
removeInteractionPairs(mol); |
205 |
|
molecules_.erase(mol->getGlobalIndex()); |
206 |
|
|
207 |
|
delete mol; |
210 |
|
} else { |
211 |
|
return false; |
212 |
|
} |
234 |
– |
|
235 |
– |
|
213 |
|
} |
214 |
|
|
215 |
|
|
225 |
|
|
226 |
|
|
227 |
|
void SimInfo::calcNdf() { |
228 |
< |
int ndf_local; |
228 |
> |
int ndf_local, nfq_local; |
229 |
|
MoleculeIterator i; |
230 |
< |
std::vector<StuntDouble*>::iterator j; |
230 |
> |
vector<StuntDouble*>::iterator j; |
231 |
> |
vector<Atom*>::iterator k; |
232 |
> |
|
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
+ |
Atom* atom; |
236 |
|
|
237 |
|
ndf_local = 0; |
238 |
+ |
nfq_local = 0; |
239 |
|
|
240 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
250 |
|
ndf_local += 3; |
251 |
|
} |
252 |
|
} |
272 |
– |
|
253 |
|
} |
254 |
+ |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 |
+ |
atom = mol->nextFluctuatingCharge(k)) { |
256 |
+ |
if (atom->isFluctuatingCharge()) { |
257 |
+ |
nfq_local++; |
258 |
+ |
} |
259 |
+ |
} |
260 |
|
} |
261 |
|
|
262 |
+ |
ndfLocal_ = ndf_local; |
263 |
+ |
cerr << "ndfLocal_ = " << ndfLocal_ << "\n"; |
264 |
+ |
|
265 |
|
// n_constraints is local, so subtract them on each processor |
266 |
|
ndf_local -= nConstraints_; |
267 |
|
|
268 |
|
#ifdef IS_MPI |
269 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
270 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
271 |
|
#else |
272 |
|
ndf_ = ndf_local; |
273 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
274 |
|
#endif |
275 |
|
|
276 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
279 |
|
|
280 |
|
} |
281 |
|
|
282 |
+ |
int SimInfo::getFdf() { |
283 |
+ |
#ifdef IS_MPI |
284 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
285 |
+ |
#else |
286 |
+ |
fdf_ = fdf_local; |
287 |
+ |
#endif |
288 |
+ |
return fdf_; |
289 |
+ |
} |
290 |
+ |
|
291 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
292 |
+ |
int nLocalCutoffAtoms = 0; |
293 |
+ |
Molecule* mol; |
294 |
+ |
MoleculeIterator mi; |
295 |
+ |
CutoffGroup* cg; |
296 |
+ |
Molecule::CutoffGroupIterator ci; |
297 |
+ |
|
298 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
299 |
+ |
|
300 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
301 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
302 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
303 |
+ |
|
304 |
+ |
} |
305 |
+ |
} |
306 |
+ |
|
307 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
308 |
+ |
} |
309 |
+ |
|
310 |
|
void SimInfo::calcNdfRaw() { |
311 |
|
int ndfRaw_local; |
312 |
|
|
313 |
|
MoleculeIterator i; |
314 |
< |
std::vector<StuntDouble*>::iterator j; |
314 |
> |
vector<StuntDouble*>::iterator j; |
315 |
|
Molecule* mol; |
316 |
|
StuntDouble* integrableObject; |
317 |
|
|
358 |
|
|
359 |
|
} |
360 |
|
|
361 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
362 |
< |
std::vector<Bond*>::iterator bondIter; |
363 |
< |
std::vector<Bend*>::iterator bendIter; |
364 |
< |
std::vector<Torsion*>::iterator torsionIter; |
361 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
362 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
363 |
> |
vector<Bond*>::iterator bondIter; |
364 |
> |
vector<Bend*>::iterator bendIter; |
365 |
> |
vector<Torsion*>::iterator torsionIter; |
366 |
> |
vector<Inversion*>::iterator inversionIter; |
367 |
|
Bond* bond; |
368 |
|
Bend* bend; |
369 |
|
Torsion* torsion; |
370 |
+ |
Inversion* inversion; |
371 |
|
int a; |
372 |
|
int b; |
373 |
|
int c; |
374 |
|
int d; |
375 |
|
|
376 |
< |
std::map<int, std::set<int> > atomGroups; |
376 |
> |
// atomGroups can be used to add special interaction maps between |
377 |
> |
// groups of atoms that are in two separate rigid bodies. |
378 |
> |
// However, most site-site interactions between two rigid bodies |
379 |
> |
// are probably not special, just the ones between the physically |
380 |
> |
// bonded atoms. Interactions *within* a single rigid body should |
381 |
> |
// always be excluded. These are done at the bottom of this |
382 |
> |
// function. |
383 |
|
|
384 |
+ |
map<int, set<int> > atomGroups; |
385 |
|
Molecule::RigidBodyIterator rbIter; |
386 |
|
RigidBody* rb; |
387 |
|
Molecule::IntegrableObjectIterator ii; |
388 |
|
StuntDouble* integrableObject; |
389 |
|
|
390 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
391 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
392 |
< |
|
390 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
391 |
> |
integrableObject != NULL; |
392 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
393 |
> |
|
394 |
|
if (integrableObject->isRigidBody()) { |
395 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
396 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
397 |
< |
std::set<int> rigidAtoms; |
398 |
< |
for (int i = 0; i < atoms.size(); ++i) { |
399 |
< |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
400 |
< |
} |
401 |
< |
for (int i = 0; i < atoms.size(); ++i) { |
402 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
403 |
< |
} |
395 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
396 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
397 |
> |
set<int> rigidAtoms; |
398 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
399 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
400 |
> |
} |
401 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
402 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
403 |
> |
} |
404 |
|
} else { |
405 |
< |
std::set<int> oneAtomSet; |
405 |
> |
set<int> oneAtomSet; |
406 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
407 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
407 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
408 |
|
} |
409 |
|
} |
410 |
+ |
|
411 |
+ |
for (bond= mol->beginBond(bondIter); bond != NULL; |
412 |
+ |
bond = mol->nextBond(bondIter)) { |
413 |
|
|
381 |
– |
|
382 |
– |
|
383 |
– |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
414 |
|
a = bond->getAtomA()->getGlobalIndex(); |
415 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
416 |
< |
exclude_.addPair(a, b); |
415 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
416 |
> |
|
417 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
418 |
> |
oneTwoInteractions_.addPair(a, b); |
419 |
> |
} else { |
420 |
> |
excludedInteractions_.addPair(a, b); |
421 |
> |
} |
422 |
|
} |
423 |
|
|
424 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
424 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
425 |
> |
bend = mol->nextBend(bendIter)) { |
426 |
> |
|
427 |
|
a = bend->getAtomA()->getGlobalIndex(); |
428 |
|
b = bend->getAtomB()->getGlobalIndex(); |
429 |
|
c = bend->getAtomC()->getGlobalIndex(); |
393 |
– |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
394 |
– |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
395 |
– |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
396 |
– |
|
397 |
– |
exclude_.addPairs(rigidSetA, rigidSetB); |
398 |
– |
exclude_.addPairs(rigidSetA, rigidSetC); |
399 |
– |
exclude_.addPairs(rigidSetB, rigidSetC); |
430 |
|
|
431 |
< |
//exclude_.addPair(a, b); |
432 |
< |
//exclude_.addPair(a, c); |
433 |
< |
//exclude_.addPair(b, c); |
431 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
432 |
> |
oneTwoInteractions_.addPair(a, b); |
433 |
> |
oneTwoInteractions_.addPair(b, c); |
434 |
> |
} else { |
435 |
> |
excludedInteractions_.addPair(a, b); |
436 |
> |
excludedInteractions_.addPair(b, c); |
437 |
> |
} |
438 |
> |
|
439 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
440 |
> |
oneThreeInteractions_.addPair(a, c); |
441 |
> |
} else { |
442 |
> |
excludedInteractions_.addPair(a, c); |
443 |
> |
} |
444 |
|
} |
445 |
|
|
446 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
446 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
447 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
448 |
> |
|
449 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
450 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
451 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
452 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
411 |
< |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
412 |
< |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
413 |
< |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
414 |
< |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
452 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
453 |
|
|
454 |
< |
exclude_.addPairs(rigidSetA, rigidSetB); |
455 |
< |
exclude_.addPairs(rigidSetA, rigidSetC); |
456 |
< |
exclude_.addPairs(rigidSetA, rigidSetD); |
457 |
< |
exclude_.addPairs(rigidSetB, rigidSetC); |
458 |
< |
exclude_.addPairs(rigidSetB, rigidSetD); |
459 |
< |
exclude_.addPairs(rigidSetC, rigidSetD); |
454 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
455 |
> |
oneTwoInteractions_.addPair(a, b); |
456 |
> |
oneTwoInteractions_.addPair(b, c); |
457 |
> |
oneTwoInteractions_.addPair(c, d); |
458 |
> |
} else { |
459 |
> |
excludedInteractions_.addPair(a, b); |
460 |
> |
excludedInteractions_.addPair(b, c); |
461 |
> |
excludedInteractions_.addPair(c, d); |
462 |
> |
} |
463 |
|
|
464 |
< |
/* |
465 |
< |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
466 |
< |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
467 |
< |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
468 |
< |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
469 |
< |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
470 |
< |
exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
471 |
< |
|
472 |
< |
|
473 |
< |
exclude_.addPair(a, b); |
474 |
< |
exclude_.addPair(a, c); |
475 |
< |
exclude_.addPair(a, d); |
476 |
< |
exclude_.addPair(b, c); |
436 |
< |
exclude_.addPair(b, d); |
437 |
< |
exclude_.addPair(c, d); |
438 |
< |
*/ |
464 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
465 |
> |
oneThreeInteractions_.addPair(a, c); |
466 |
> |
oneThreeInteractions_.addPair(b, d); |
467 |
> |
} else { |
468 |
> |
excludedInteractions_.addPair(a, c); |
469 |
> |
excludedInteractions_.addPair(b, d); |
470 |
> |
} |
471 |
> |
|
472 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
473 |
> |
oneFourInteractions_.addPair(a, d); |
474 |
> |
} else { |
475 |
> |
excludedInteractions_.addPair(a, d); |
476 |
> |
} |
477 |
|
} |
478 |
|
|
479 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
480 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
481 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
482 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
479 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
480 |
> |
inversion = mol->nextInversion(inversionIter)) { |
481 |
> |
|
482 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
483 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
484 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
485 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
486 |
> |
|
487 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
488 |
> |
oneTwoInteractions_.addPair(a, b); |
489 |
> |
oneTwoInteractions_.addPair(a, c); |
490 |
> |
oneTwoInteractions_.addPair(a, d); |
491 |
> |
} else { |
492 |
> |
excludedInteractions_.addPair(a, b); |
493 |
> |
excludedInteractions_.addPair(a, c); |
494 |
> |
excludedInteractions_.addPair(a, d); |
495 |
> |
} |
496 |
> |
|
497 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
498 |
> |
oneThreeInteractions_.addPair(b, c); |
499 |
> |
oneThreeInteractions_.addPair(b, d); |
500 |
> |
oneThreeInteractions_.addPair(c, d); |
501 |
> |
} else { |
502 |
> |
excludedInteractions_.addPair(b, c); |
503 |
> |
excludedInteractions_.addPair(b, d); |
504 |
> |
excludedInteractions_.addPair(c, d); |
505 |
> |
} |
506 |
> |
} |
507 |
> |
|
508 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
509 |
> |
rb = mol->nextRigidBody(rbIter)) { |
510 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
511 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
512 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
513 |
|
a = atoms[i]->getGlobalIndex(); |
514 |
|
b = atoms[j]->getGlobalIndex(); |
515 |
< |
exclude_.addPair(a, b); |
515 |
> |
excludedInteractions_.addPair(a, b); |
516 |
|
} |
517 |
|
} |
518 |
|
} |
519 |
|
|
520 |
|
} |
521 |
|
|
522 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
523 |
< |
std::vector<Bond*>::iterator bondIter; |
524 |
< |
std::vector<Bend*>::iterator bendIter; |
525 |
< |
std::vector<Torsion*>::iterator torsionIter; |
522 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
523 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
524 |
> |
vector<Bond*>::iterator bondIter; |
525 |
> |
vector<Bend*>::iterator bendIter; |
526 |
> |
vector<Torsion*>::iterator torsionIter; |
527 |
> |
vector<Inversion*>::iterator inversionIter; |
528 |
|
Bond* bond; |
529 |
|
Bend* bend; |
530 |
|
Torsion* torsion; |
531 |
+ |
Inversion* inversion; |
532 |
|
int a; |
533 |
|
int b; |
534 |
|
int c; |
535 |
|
int d; |
536 |
|
|
537 |
< |
std::map<int, std::set<int> > atomGroups; |
467 |
< |
|
537 |
> |
map<int, set<int> > atomGroups; |
538 |
|
Molecule::RigidBodyIterator rbIter; |
539 |
|
RigidBody* rb; |
540 |
|
Molecule::IntegrableObjectIterator ii; |
541 |
|
StuntDouble* integrableObject; |
542 |
|
|
543 |
< |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
544 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
545 |
< |
|
543 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
544 |
> |
integrableObject != NULL; |
545 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
546 |
> |
|
547 |
|
if (integrableObject->isRigidBody()) { |
548 |
< |
rb = static_cast<RigidBody*>(integrableObject); |
549 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
550 |
< |
std::set<int> rigidAtoms; |
551 |
< |
for (int i = 0; i < atoms.size(); ++i) { |
552 |
< |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
553 |
< |
} |
554 |
< |
for (int i = 0; i < atoms.size(); ++i) { |
555 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
556 |
< |
} |
548 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
549 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
550 |
> |
set<int> rigidAtoms; |
551 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
552 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
553 |
> |
} |
554 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
555 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
556 |
> |
} |
557 |
|
} else { |
558 |
< |
std::set<int> oneAtomSet; |
558 |
> |
set<int> oneAtomSet; |
559 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
560 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
560 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
561 |
|
} |
562 |
|
} |
563 |
|
|
564 |
< |
|
565 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
564 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
565 |
> |
bond = mol->nextBond(bondIter)) { |
566 |
> |
|
567 |
|
a = bond->getAtomA()->getGlobalIndex(); |
568 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
569 |
< |
exclude_.removePair(a, b); |
568 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
569 |
> |
|
570 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
571 |
> |
oneTwoInteractions_.removePair(a, b); |
572 |
> |
} else { |
573 |
> |
excludedInteractions_.removePair(a, b); |
574 |
> |
} |
575 |
|
} |
576 |
|
|
577 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
577 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
578 |
> |
bend = mol->nextBend(bendIter)) { |
579 |
> |
|
580 |
|
a = bend->getAtomA()->getGlobalIndex(); |
581 |
|
b = bend->getAtomB()->getGlobalIndex(); |
582 |
|
c = bend->getAtomC()->getGlobalIndex(); |
504 |
– |
|
505 |
– |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
506 |
– |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
507 |
– |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
508 |
– |
|
509 |
– |
exclude_.removePairs(rigidSetA, rigidSetB); |
510 |
– |
exclude_.removePairs(rigidSetA, rigidSetC); |
511 |
– |
exclude_.removePairs(rigidSetB, rigidSetC); |
583 |
|
|
584 |
< |
//exclude_.removePair(a, b); |
585 |
< |
//exclude_.removePair(a, c); |
586 |
< |
//exclude_.removePair(b, c); |
584 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
585 |
> |
oneTwoInteractions_.removePair(a, b); |
586 |
> |
oneTwoInteractions_.removePair(b, c); |
587 |
> |
} else { |
588 |
> |
excludedInteractions_.removePair(a, b); |
589 |
> |
excludedInteractions_.removePair(b, c); |
590 |
> |
} |
591 |
> |
|
592 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
593 |
> |
oneThreeInteractions_.removePair(a, c); |
594 |
> |
} else { |
595 |
> |
excludedInteractions_.removePair(a, c); |
596 |
> |
} |
597 |
|
} |
598 |
|
|
599 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
599 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
600 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
601 |
> |
|
602 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
603 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
604 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
605 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
605 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
606 |
> |
|
607 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
608 |
> |
oneTwoInteractions_.removePair(a, b); |
609 |
> |
oneTwoInteractions_.removePair(b, c); |
610 |
> |
oneTwoInteractions_.removePair(c, d); |
611 |
> |
} else { |
612 |
> |
excludedInteractions_.removePair(a, b); |
613 |
> |
excludedInteractions_.removePair(b, c); |
614 |
> |
excludedInteractions_.removePair(c, d); |
615 |
> |
} |
616 |
|
|
617 |
< |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
618 |
< |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
619 |
< |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
620 |
< |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
617 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
618 |
> |
oneThreeInteractions_.removePair(a, c); |
619 |
> |
oneThreeInteractions_.removePair(b, d); |
620 |
> |
} else { |
621 |
> |
excludedInteractions_.removePair(a, c); |
622 |
> |
excludedInteractions_.removePair(b, d); |
623 |
> |
} |
624 |
|
|
625 |
< |
exclude_.removePairs(rigidSetA, rigidSetB); |
626 |
< |
exclude_.removePairs(rigidSetA, rigidSetC); |
627 |
< |
exclude_.removePairs(rigidSetA, rigidSetD); |
628 |
< |
exclude_.removePairs(rigidSetB, rigidSetC); |
629 |
< |
exclude_.removePairs(rigidSetB, rigidSetD); |
630 |
< |
exclude_.removePairs(rigidSetC, rigidSetD); |
625 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
626 |
> |
oneFourInteractions_.removePair(a, d); |
627 |
> |
} else { |
628 |
> |
excludedInteractions_.removePair(a, d); |
629 |
> |
} |
630 |
> |
} |
631 |
|
|
632 |
< |
/* |
633 |
< |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
538 |
< |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
539 |
< |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
540 |
< |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
541 |
< |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
542 |
< |
exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
632 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
633 |
> |
inversion = mol->nextInversion(inversionIter)) { |
634 |
|
|
635 |
< |
|
636 |
< |
exclude_.removePair(a, b); |
637 |
< |
exclude_.removePair(a, c); |
638 |
< |
exclude_.removePair(a, d); |
639 |
< |
exclude_.removePair(b, c); |
640 |
< |
exclude_.removePair(b, d); |
641 |
< |
exclude_.removePair(c, d); |
642 |
< |
*/ |
635 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
636 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
637 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
638 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
639 |
> |
|
640 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
641 |
> |
oneTwoInteractions_.removePair(a, b); |
642 |
> |
oneTwoInteractions_.removePair(a, c); |
643 |
> |
oneTwoInteractions_.removePair(a, d); |
644 |
> |
} else { |
645 |
> |
excludedInteractions_.removePair(a, b); |
646 |
> |
excludedInteractions_.removePair(a, c); |
647 |
> |
excludedInteractions_.removePair(a, d); |
648 |
> |
} |
649 |
> |
|
650 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
651 |
> |
oneThreeInteractions_.removePair(b, c); |
652 |
> |
oneThreeInteractions_.removePair(b, d); |
653 |
> |
oneThreeInteractions_.removePair(c, d); |
654 |
> |
} else { |
655 |
> |
excludedInteractions_.removePair(b, c); |
656 |
> |
excludedInteractions_.removePair(b, d); |
657 |
> |
excludedInteractions_.removePair(c, d); |
658 |
> |
} |
659 |
|
} |
660 |
|
|
661 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
662 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
663 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
664 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
661 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
662 |
> |
rb = mol->nextRigidBody(rbIter)) { |
663 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
664 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
665 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
666 |
|
a = atoms[i]->getGlobalIndex(); |
667 |
|
b = atoms[j]->getGlobalIndex(); |
668 |
< |
exclude_.removePair(a, b); |
668 |
> |
excludedInteractions_.removePair(a, b); |
669 |
|
} |
670 |
|
} |
671 |
|
} |
672 |
< |
|
672 |
> |
|
673 |
|
} |
674 |
< |
|
675 |
< |
|
674 |
> |
|
675 |
> |
|
676 |
|
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
677 |
|
int curStampId; |
678 |
< |
|
678 |
> |
|
679 |
|
//index from 0 |
680 |
|
curStampId = moleculeStamps_.size(); |
681 |
|
|
683 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
684 |
|
} |
685 |
|
|
578 |
– |
void SimInfo::update() { |
686 |
|
|
687 |
< |
setupSimType(); |
688 |
< |
|
689 |
< |
#ifdef IS_MPI |
690 |
< |
setupFortranParallel(); |
691 |
< |
#endif |
692 |
< |
|
693 |
< |
setupFortranSim(); |
694 |
< |
|
695 |
< |
//setup fortran force field |
589 |
< |
/** @deprecate */ |
590 |
< |
int isError = 0; |
591 |
< |
|
592 |
< |
setupElectrostaticSummationMethod( isError ); |
593 |
< |
setupSwitchingFunction(); |
594 |
< |
|
595 |
< |
if(isError){ |
596 |
< |
sprintf( painCave.errMsg, |
597 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
598 |
< |
painCave.isFatal = 1; |
599 |
< |
simError(); |
600 |
< |
} |
601 |
< |
|
602 |
< |
|
603 |
< |
setupCutoff(); |
604 |
< |
|
687 |
> |
/** |
688 |
> |
* update |
689 |
> |
* |
690 |
> |
* Performs the global checks and variable settings after the |
691 |
> |
* objects have been created. |
692 |
> |
* |
693 |
> |
*/ |
694 |
> |
void SimInfo::update() { |
695 |
> |
setupSimVariables(); |
696 |
|
calcNdf(); |
697 |
|
calcNdfRaw(); |
698 |
|
calcNdfTrans(); |
608 |
– |
|
609 |
– |
fortranInitialized_ = true; |
699 |
|
} |
700 |
< |
|
701 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
700 |
> |
|
701 |
> |
/** |
702 |
> |
* getSimulatedAtomTypes |
703 |
> |
* |
704 |
> |
* Returns an STL set of AtomType* that are actually present in this |
705 |
> |
* simulation. Must query all processors to assemble this information. |
706 |
> |
* |
707 |
> |
*/ |
708 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
709 |
|
SimInfo::MoleculeIterator mi; |
710 |
|
Molecule* mol; |
711 |
|
Molecule::AtomIterator ai; |
712 |
|
Atom* atom; |
713 |
< |
std::set<AtomType*> atomTypes; |
714 |
< |
|
713 |
> |
set<AtomType*> atomTypes; |
714 |
> |
|
715 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
716 |
< |
|
717 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
716 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
717 |
> |
atom = mol->nextAtom(ai)) { |
718 |
|
atomTypes.insert(atom->getAtomType()); |
719 |
< |
} |
720 |
< |
|
719 |
> |
} |
720 |
> |
} |
721 |
> |
|
722 |
> |
#ifdef IS_MPI |
723 |
> |
|
724 |
> |
// loop over the found atom types on this processor, and add their |
725 |
> |
// numerical idents to a vector: |
726 |
> |
|
727 |
> |
vector<int> foundTypes; |
728 |
> |
set<AtomType*>::iterator i; |
729 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
730 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
731 |
> |
|
732 |
> |
// count_local holds the number of found types on this processor |
733 |
> |
int count_local = foundTypes.size(); |
734 |
> |
|
735 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
736 |
> |
|
737 |
> |
// we need arrays to hold the counts and displacement vectors for |
738 |
> |
// all processors |
739 |
> |
vector<int> counts(nproc, 0); |
740 |
> |
vector<int> disps(nproc, 0); |
741 |
> |
|
742 |
> |
// fill the counts array |
743 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
744 |
> |
1, MPI::INT); |
745 |
> |
|
746 |
> |
// use the processor counts to compute the displacement array |
747 |
> |
disps[0] = 0; |
748 |
> |
int totalCount = counts[0]; |
749 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
750 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
751 |
> |
totalCount += counts[iproc]; |
752 |
|
} |
753 |
+ |
|
754 |
+ |
// we need a (possibly redundant) set of all found types: |
755 |
+ |
vector<int> ftGlobal(totalCount); |
756 |
+ |
|
757 |
+ |
// now spray out the foundTypes to all the other processors: |
758 |
+ |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
759 |
+ |
&ftGlobal[0], &counts[0], &disps[0], |
760 |
+ |
MPI::INT); |
761 |
|
|
762 |
< |
return atomTypes; |
628 |
< |
} |
762 |
> |
vector<int>::iterator j; |
763 |
|
|
764 |
< |
void SimInfo::setupSimType() { |
765 |
< |
std::set<AtomType*>::iterator i; |
766 |
< |
std::set<AtomType*> atomTypes; |
767 |
< |
atomTypes = getUniqueAtomTypes(); |
764 |
> |
// foundIdents is a stl set, so inserting an already found ident |
765 |
> |
// will have no effect. |
766 |
> |
set<int> foundIdents; |
767 |
> |
|
768 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
769 |
> |
foundIdents.insert((*j)); |
770 |
|
|
771 |
< |
int useLennardJones = 0; |
772 |
< |
int useElectrostatic = 0; |
773 |
< |
int useEAM = 0; |
774 |
< |
int useSC = 0; |
775 |
< |
int useCharge = 0; |
776 |
< |
int useDirectional = 0; |
777 |
< |
int useDipole = 0; |
642 |
< |
int useGayBerne = 0; |
643 |
< |
int useSticky = 0; |
644 |
< |
int useStickyPower = 0; |
645 |
< |
int useShape = 0; |
646 |
< |
int useFLARB = 0; //it is not in AtomType yet |
647 |
< |
int useDirectionalAtom = 0; |
648 |
< |
int useElectrostatics = 0; |
649 |
< |
//usePBC and useRF are from simParams |
650 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
651 |
< |
int useRF; |
652 |
< |
int useSF; |
653 |
< |
std::string myMethod; |
771 |
> |
// now iterate over the foundIdents and get the actual atom types |
772 |
> |
// that correspond to these: |
773 |
> |
set<int>::iterator it; |
774 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
775 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
776 |
> |
|
777 |
> |
#endif |
778 |
|
|
779 |
< |
// set the useRF logical |
780 |
< |
useRF = 0; |
657 |
< |
useSF = 0; |
779 |
> |
return atomTypes; |
780 |
> |
} |
781 |
|
|
782 |
< |
|
783 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
784 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
785 |
< |
toUpper(myMethod); |
786 |
< |
if (myMethod == "REACTION_FIELD") { |
787 |
< |
useRF=1; |
788 |
< |
} else { |
666 |
< |
if (myMethod == "SHIFTED_FORCE") { |
667 |
< |
useSF = 1; |
668 |
< |
} |
782 |
> |
void SimInfo::setupSimVariables() { |
783 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
784 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
785 |
> |
calcBoxDipole_ = false; |
786 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
787 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
788 |
> |
calcBoxDipole_ = true; |
789 |
|
} |
790 |
< |
} |
791 |
< |
|
790 |
> |
|
791 |
> |
set<AtomType*>::iterator i; |
792 |
> |
set<AtomType*> atomTypes; |
793 |
> |
atomTypes = getSimulatedAtomTypes(); |
794 |
> |
int usesElectrostatic = 0; |
795 |
> |
int usesMetallic = 0; |
796 |
> |
int usesDirectional = 0; |
797 |
> |
int usesFluctuatingCharges = 0; |
798 |
|
//loop over all of the atom types |
799 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
800 |
< |
useLennardJones |= (*i)->isLennardJones(); |
801 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
802 |
< |
useEAM |= (*i)->isEAM(); |
803 |
< |
useSC |= (*i)->isSC(); |
678 |
< |
useCharge |= (*i)->isCharge(); |
679 |
< |
useDirectional |= (*i)->isDirectional(); |
680 |
< |
useDipole |= (*i)->isDipole(); |
681 |
< |
useGayBerne |= (*i)->isGayBerne(); |
682 |
< |
useSticky |= (*i)->isSticky(); |
683 |
< |
useStickyPower |= (*i)->isStickyPower(); |
684 |
< |
useShape |= (*i)->isShape(); |
800 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
801 |
> |
usesMetallic |= (*i)->isMetal(); |
802 |
> |
usesDirectional |= (*i)->isDirectional(); |
803 |
> |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
804 |
|
} |
805 |
< |
|
687 |
< |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
688 |
< |
useDirectionalAtom = 1; |
689 |
< |
} |
690 |
< |
|
691 |
< |
if (useCharge || useDipole) { |
692 |
< |
useElectrostatics = 1; |
693 |
< |
} |
694 |
< |
|
805 |
> |
|
806 |
|
#ifdef IS_MPI |
807 |
|
int temp; |
808 |
+ |
temp = usesDirectional; |
809 |
+ |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 |
+ |
|
811 |
+ |
temp = usesMetallic; |
812 |
+ |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
+ |
|
814 |
+ |
temp = usesElectrostatic; |
815 |
+ |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
|
|
817 |
< |
temp = usePBC; |
818 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
817 |
> |
temp = usesFluctuatingCharges; |
818 |
> |
MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
819 |
> |
#else |
820 |
|
|
821 |
< |
temp = useDirectionalAtom; |
822 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
821 |
> |
usesDirectionalAtoms_ = usesDirectional; |
822 |
> |
usesMetallicAtoms_ = usesMetallic; |
823 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
824 |
> |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
825 |
|
|
826 |
< |
temp = useLennardJones; |
827 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
826 |
> |
#endif |
827 |
> |
|
828 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
829 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
830 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
831 |
> |
} |
832 |
|
|
707 |
– |
temp = useElectrostatics; |
708 |
– |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 |
|
|
834 |
< |
temp = useCharge; |
835 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
834 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
835 |
> |
SimInfo::MoleculeIterator mi; |
836 |
> |
Molecule* mol; |
837 |
> |
Molecule::AtomIterator ai; |
838 |
> |
Atom* atom; |
839 |
|
|
840 |
< |
temp = useDipole; |
714 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
715 |
< |
|
716 |
< |
temp = useSticky; |
717 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
718 |
< |
|
719 |
< |
temp = useStickyPower; |
720 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
840 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
841 |
|
|
842 |
< |
temp = useGayBerne; |
843 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
843 |
> |
|
844 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
845 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
846 |
> |
} |
847 |
> |
} |
848 |
> |
return GlobalAtomIndices; |
849 |
> |
} |
850 |
|
|
725 |
– |
temp = useEAM; |
726 |
– |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
851 |
|
|
852 |
< |
temp = useSC; |
853 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
854 |
< |
|
855 |
< |
temp = useShape; |
856 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
852 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
853 |
> |
SimInfo::MoleculeIterator mi; |
854 |
> |
Molecule* mol; |
855 |
> |
Molecule::CutoffGroupIterator ci; |
856 |
> |
CutoffGroup* cg; |
857 |
|
|
858 |
< |
temp = useFLARB; |
859 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 |
< |
|
737 |
< |
temp = useRF; |
738 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
739 |
< |
|
740 |
< |
temp = useSF; |
741 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
742 |
< |
|
743 |
< |
#endif |
744 |
< |
|
745 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
746 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
747 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
748 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
749 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
750 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
751 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
752 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
753 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
754 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
755 |
< |
fInfo_.SIM_uses_SC = useSC; |
756 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
757 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
758 |
< |
fInfo_.SIM_uses_RF = useRF; |
759 |
< |
fInfo_.SIM_uses_SF = useSF; |
760 |
< |
|
761 |
< |
if( myMethod == "REACTION_FIELD") { |
858 |
> |
vector<int> GlobalGroupIndices; |
859 |
> |
|
860 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
861 |
|
|
862 |
< |
if (simParams_->haveDielectric()) { |
863 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
864 |
< |
} else { |
865 |
< |
sprintf(painCave.errMsg, |
866 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
867 |
< |
"\tYou are trying to use Reaction Field without" |
769 |
< |
"\tsetting a dielectric constant!\n"); |
770 |
< |
painCave.isFatal = 1; |
771 |
< |
simError(); |
772 |
< |
} |
862 |
> |
//local index of cutoff group is trivial, it only depends on the |
863 |
> |
//order of travesing |
864 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
865 |
> |
cg = mol->nextCutoffGroup(ci)) { |
866 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
867 |
> |
} |
868 |
|
} |
869 |
< |
|
869 |
> |
return GlobalGroupIndices; |
870 |
|
} |
871 |
|
|
777 |
– |
void SimInfo::setupFortranSim() { |
778 |
– |
int isError; |
779 |
– |
int nExclude; |
780 |
– |
std::vector<int> fortranGlobalGroupMembership; |
781 |
– |
|
782 |
– |
nExclude = exclude_.getSize(); |
783 |
– |
isError = 0; |
872 |
|
|
873 |
< |
//globalGroupMembership_ is filled by SimCreator |
874 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
787 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
788 |
< |
} |
873 |
> |
void SimInfo::prepareTopology() { |
874 |
> |
int nExclude, nOneTwo, nOneThree, nOneFour; |
875 |
|
|
876 |
|
//calculate mass ratio of cutoff group |
791 |
– |
std::vector<double> mfact; |
877 |
|
SimInfo::MoleculeIterator mi; |
878 |
|
Molecule* mol; |
879 |
|
Molecule::CutoffGroupIterator ci; |
880 |
|
CutoffGroup* cg; |
881 |
|
Molecule::AtomIterator ai; |
882 |
|
Atom* atom; |
883 |
< |
double totalMass; |
883 |
> |
RealType totalMass; |
884 |
|
|
885 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
886 |
< |
mfact.reserve(getNCutoffGroups()); |
885 |
> |
/** |
886 |
> |
* The mass factor is the relative mass of an atom to the total |
887 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
888 |
> |
* are their own cutoff groups, and therefore have mass factors of |
889 |
> |
* 1. We need some special handling for massless atoms, which |
890 |
> |
* will be treated as carrying the entire mass of the cutoff |
891 |
> |
* group. |
892 |
> |
*/ |
893 |
> |
massFactors_.clear(); |
894 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
895 |
|
|
896 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
897 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
897 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
898 |
> |
cg = mol->nextCutoffGroup(ci)) { |
899 |
|
|
900 |
|
totalMass = cg->getMass(); |
901 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
902 |
|
// Check for massless groups - set mfact to 1 if true |
903 |
< |
if (totalMass != 0) |
904 |
< |
mfact.push_back(atom->getMass()/totalMass); |
903 |
> |
if (totalMass != 0) |
904 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
905 |
|
else |
906 |
< |
mfact.push_back( 1.0 ); |
906 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
907 |
|
} |
814 |
– |
|
908 |
|
} |
909 |
|
} |
910 |
|
|
911 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
819 |
< |
std::vector<int> identArray; |
911 |
> |
// Build the identArray_ |
912 |
|
|
913 |
< |
//to avoid memory reallocation, reserve enough space identArray |
914 |
< |
identArray.reserve(getNAtoms()); |
823 |
< |
|
913 |
> |
identArray_.clear(); |
914 |
> |
identArray_.reserve(getNAtoms()); |
915 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
916 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
917 |
< |
identArray.push_back(atom->getIdent()); |
917 |
> |
identArray_.push_back(atom->getIdent()); |
918 |
|
} |
919 |
|
} |
829 |
– |
|
830 |
– |
//fill molMembershipArray |
831 |
– |
//molMembershipArray is filled by SimCreator |
832 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
833 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
834 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
835 |
– |
} |
920 |
|
|
921 |
< |
//setup fortran simulation |
838 |
< |
int nGlobalExcludes = 0; |
839 |
< |
int* globalExcludes = NULL; |
840 |
< |
int* excludeList = exclude_.getExcludeList(); |
841 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
842 |
< |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
843 |
< |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
921 |
> |
//scan topology |
922 |
|
|
923 |
< |
if( isError ){ |
923 |
> |
nExclude = excludedInteractions_.getSize(); |
924 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
925 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
926 |
> |
nOneFour = oneFourInteractions_.getSize(); |
927 |
|
|
928 |
< |
sprintf( painCave.errMsg, |
929 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
930 |
< |
painCave.isFatal = 1; |
931 |
< |
painCave.severity = OOPSE_ERROR; |
851 |
< |
simError(); |
852 |
< |
} |
853 |
< |
|
854 |
< |
#ifdef IS_MPI |
855 |
< |
sprintf( checkPointMsg, |
856 |
< |
"succesfully sent the simulation information to fortran.\n"); |
857 |
< |
MPIcheckPoint(); |
858 |
< |
#endif // is_mpi |
859 |
< |
} |
860 |
< |
|
861 |
< |
|
862 |
< |
#ifdef IS_MPI |
863 |
< |
void SimInfo::setupFortranParallel() { |
864 |
< |
|
865 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
866 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
867 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
868 |
< |
SimInfo::MoleculeIterator mi; |
869 |
< |
Molecule::AtomIterator ai; |
870 |
< |
Molecule::CutoffGroupIterator ci; |
871 |
< |
Molecule* mol; |
872 |
< |
Atom* atom; |
873 |
< |
CutoffGroup* cg; |
874 |
< |
mpiSimData parallelData; |
875 |
< |
int isError; |
876 |
< |
|
877 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
878 |
< |
|
879 |
< |
//local index(index in DataStorge) of atom is important |
880 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
881 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
882 |
< |
} |
883 |
< |
|
884 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
885 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
886 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
887 |
< |
} |
888 |
< |
|
889 |
< |
} |
890 |
< |
|
891 |
< |
//fill up mpiSimData struct |
892 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
893 |
< |
parallelData.nMolLocal = getNMolecules(); |
894 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
895 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
896 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
897 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
898 |
< |
parallelData.myNode = worldRank; |
899 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
900 |
< |
|
901 |
< |
//pass mpiSimData struct and index arrays to fortran |
902 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
903 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
904 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
905 |
< |
|
906 |
< |
if (isError) { |
907 |
< |
sprintf(painCave.errMsg, |
908 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
909 |
< |
painCave.isFatal = 1; |
910 |
< |
simError(); |
911 |
< |
} |
912 |
< |
|
913 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
914 |
< |
MPIcheckPoint(); |
915 |
< |
|
916 |
< |
|
917 |
< |
} |
918 |
< |
|
919 |
< |
#endif |
920 |
< |
|
921 |
< |
void SimInfo::setupCutoff() { |
922 |
< |
|
923 |
< |
// Check the cutoff policy |
924 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; |
925 |
< |
if (simParams_->haveCutoffPolicy()) { |
926 |
< |
std::string myPolicy = simParams_->getCutoffPolicy(); |
927 |
< |
toUpper(myPolicy); |
928 |
< |
if (myPolicy == "MIX") { |
929 |
< |
cp = MIX_CUTOFF_POLICY; |
930 |
< |
} else { |
931 |
< |
if (myPolicy == "MAX") { |
932 |
< |
cp = MAX_CUTOFF_POLICY; |
933 |
< |
} else { |
934 |
< |
if (myPolicy == "TRADITIONAL") { |
935 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
936 |
< |
} else { |
937 |
< |
// throw error |
938 |
< |
sprintf( painCave.errMsg, |
939 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
940 |
< |
painCave.isFatal = 1; |
941 |
< |
simError(); |
942 |
< |
} |
943 |
< |
} |
944 |
< |
} |
945 |
< |
} |
946 |
< |
notifyFortranCutoffPolicy(&cp); |
947 |
< |
|
948 |
< |
// Check the Skin Thickness for neighborlists |
949 |
< |
double skin; |
950 |
< |
if (simParams_->haveSkinThickness()) { |
951 |
< |
skin = simParams_->getSkinThickness(); |
952 |
< |
notifyFortranSkinThickness(&skin); |
953 |
< |
} |
954 |
< |
|
955 |
< |
// Check if the cutoff was set explicitly: |
956 |
< |
if (simParams_->haveCutoffRadius()) { |
957 |
< |
rcut_ = simParams_->getCutoffRadius(); |
958 |
< |
if (simParams_->haveSwitchingRadius()) { |
959 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
960 |
< |
} else { |
961 |
< |
rsw_ = rcut_; |
962 |
< |
} |
963 |
< |
notifyFortranCutoffs(&rcut_, &rsw_); |
964 |
< |
|
965 |
< |
} else { |
966 |
< |
|
967 |
< |
// For electrostatic atoms, we'll assume a large safe value: |
968 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
969 |
< |
sprintf(painCave.errMsg, |
970 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
971 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
972 |
< |
"\tfor the cutoffRadius.\n"); |
973 |
< |
painCave.isFatal = 0; |
974 |
< |
simError(); |
975 |
< |
rcut_ = 15.0; |
976 |
< |
|
977 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
978 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
979 |
< |
toUpper(myMethod); |
980 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
981 |
< |
if (simParams_->haveSwitchingRadius()){ |
982 |
< |
sprintf(painCave.errMsg, |
983 |
< |
"SimInfo Warning: A value was set for the switchingRadius\n" |
984 |
< |
"\teven though the electrostaticSummationMethod was\n" |
985 |
< |
"\tset to %s\n", myMethod.c_str()); |
986 |
< |
painCave.isFatal = 1; |
987 |
< |
simError(); |
988 |
< |
} |
989 |
< |
} |
990 |
< |
} |
991 |
< |
|
992 |
< |
if (simParams_->haveSwitchingRadius()){ |
993 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
994 |
< |
} else { |
995 |
< |
sprintf(painCave.errMsg, |
996 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
997 |
< |
"\tOOPSE will use a default value of\n" |
998 |
< |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
999 |
< |
painCave.isFatal = 0; |
1000 |
< |
simError(); |
1001 |
< |
rsw_ = 0.85 * rcut_; |
1002 |
< |
} |
1003 |
< |
notifyFortranCutoffs(&rcut_, &rsw_); |
1004 |
< |
} else { |
1005 |
< |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1006 |
< |
// We'll punt and let fortran figure out the cutoffs later. |
1007 |
< |
|
1008 |
< |
notifyFortranYouAreOnYourOwn(); |
1009 |
< |
|
1010 |
< |
} |
1011 |
< |
} |
1012 |
< |
} |
1013 |
< |
|
1014 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1015 |
< |
|
1016 |
< |
int errorOut; |
1017 |
< |
int esm = NONE; |
1018 |
< |
int sm = UNDAMPED; |
1019 |
< |
double alphaVal; |
1020 |
< |
double dielectric; |
1021 |
< |
|
1022 |
< |
errorOut = isError; |
1023 |
< |
alphaVal = simParams_->getDampingAlpha(); |
1024 |
< |
dielectric = simParams_->getDielectric(); |
1025 |
< |
|
1026 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1027 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1028 |
< |
toUpper(myMethod); |
1029 |
< |
if (myMethod == "NONE") { |
1030 |
< |
esm = NONE; |
1031 |
< |
} else { |
1032 |
< |
if (myMethod == "SWITCHING_FUNCTION") { |
1033 |
< |
esm = SWITCHING_FUNCTION; |
1034 |
< |
} else { |
1035 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1036 |
< |
esm = SHIFTED_POTENTIAL; |
1037 |
< |
} else { |
1038 |
< |
if (myMethod == "SHIFTED_FORCE") { |
1039 |
< |
esm = SHIFTED_FORCE; |
1040 |
< |
} else { |
1041 |
< |
if (myMethod == "REACTION_FIELD") { |
1042 |
< |
esm = REACTION_FIELD; |
1043 |
< |
} else { |
1044 |
< |
// throw error |
1045 |
< |
sprintf( painCave.errMsg, |
1046 |
< |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1047 |
< |
"\t(Input file specified %s .)\n" |
1048 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1049 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1050 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1051 |
< |
painCave.isFatal = 1; |
1052 |
< |
simError(); |
1053 |
< |
} |
1054 |
< |
} |
1055 |
< |
} |
1056 |
< |
} |
1057 |
< |
} |
1058 |
< |
} |
1059 |
< |
|
1060 |
< |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1061 |
< |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1062 |
< |
toUpper(myScreen); |
1063 |
< |
if (myScreen == "UNDAMPED") { |
1064 |
< |
sm = UNDAMPED; |
1065 |
< |
} else { |
1066 |
< |
if (myScreen == "DAMPED") { |
1067 |
< |
sm = DAMPED; |
1068 |
< |
if (!simParams_->haveDampingAlpha()) { |
1069 |
< |
//throw error |
1070 |
< |
sprintf( painCave.errMsg, |
1071 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1072 |
< |
"\tA default value of %f (1/ang) will be used.\n", alphaVal); |
1073 |
< |
painCave.isFatal = 0; |
1074 |
< |
simError(); |
1075 |
< |
} |
1076 |
< |
} else { |
1077 |
< |
// throw error |
1078 |
< |
sprintf( painCave.errMsg, |
1079 |
< |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1080 |
< |
"\t(Input file specified %s .)\n" |
1081 |
< |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1082 |
< |
"or \"damped\".\n", myScreen.c_str() ); |
1083 |
< |
painCave.isFatal = 1; |
1084 |
< |
simError(); |
1085 |
< |
} |
1086 |
< |
} |
1087 |
< |
} |
1088 |
< |
|
1089 |
< |
// let's pass some summation method variables to fortran |
1090 |
< |
setElectrostaticSumMethod( &esm ); |
1091 |
< |
setFortranElectrostaticMethod( &esm ); |
1092 |
< |
setScreeningMethod( &sm ); |
1093 |
< |
setDampingAlpha( &alphaVal ); |
1094 |
< |
setReactionFieldDielectric( &dielectric ); |
1095 |
< |
initFortranFF( &errorOut ); |
1096 |
< |
} |
928 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
929 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
930 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
931 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
932 |
|
|
933 |
< |
void SimInfo::setupSwitchingFunction() { |
1099 |
< |
int ft = CUBIC; |
1100 |
< |
|
1101 |
< |
if (simParams_->haveSwitchingFunctionType()) { |
1102 |
< |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1103 |
< |
toUpper(funcType); |
1104 |
< |
if (funcType == "CUBIC") { |
1105 |
< |
ft = CUBIC; |
1106 |
< |
} else { |
1107 |
< |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1108 |
< |
ft = FIFTH_ORDER_POLY; |
1109 |
< |
} else { |
1110 |
< |
// throw error |
1111 |
< |
sprintf( painCave.errMsg, |
1112 |
< |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1113 |
< |
painCave.isFatal = 1; |
1114 |
< |
simError(); |
1115 |
< |
} |
1116 |
< |
} |
1117 |
< |
} |
1118 |
< |
|
1119 |
< |
// send switching function notification to switcheroo |
1120 |
< |
setFunctionType(&ft); |
1121 |
< |
|
933 |
> |
topologyDone_ = true; |
934 |
|
} |
935 |
|
|
936 |
|
void SimInfo::addProperty(GenericData* genData) { |
937 |
|
properties_.addProperty(genData); |
938 |
|
} |
939 |
|
|
940 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
940 |
> |
void SimInfo::removeProperty(const string& propName) { |
941 |
|
properties_.removeProperty(propName); |
942 |
|
} |
943 |
|
|
945 |
|
properties_.clearProperties(); |
946 |
|
} |
947 |
|
|
948 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
948 |
> |
vector<string> SimInfo::getPropertyNames() { |
949 |
|
return properties_.getPropertyNames(); |
950 |
|
} |
951 |
|
|
952 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
952 |
> |
vector<GenericData*> SimInfo::getProperties() { |
953 |
|
return properties_.getProperties(); |
954 |
|
} |
955 |
|
|
956 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
956 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
957 |
|
return properties_.getPropertyByName(propName); |
958 |
|
} |
959 |
|
|
967 |
|
Molecule* mol; |
968 |
|
RigidBody* rb; |
969 |
|
Atom* atom; |
970 |
+ |
CutoffGroup* cg; |
971 |
|
SimInfo::MoleculeIterator mi; |
972 |
|
Molecule::RigidBodyIterator rbIter; |
973 |
< |
Molecule::AtomIterator atomIter;; |
973 |
> |
Molecule::AtomIterator atomIter; |
974 |
> |
Molecule::CutoffGroupIterator cgIter; |
975 |
|
|
976 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
977 |
|
|
982 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
983 |
|
rb->setSnapshotManager(sman_); |
984 |
|
} |
985 |
+ |
|
986 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
987 |
+ |
cg->setSnapshotManager(sman_); |
988 |
+ |
} |
989 |
|
} |
990 |
|
|
991 |
|
} |
995 |
|
Molecule* mol; |
996 |
|
|
997 |
|
Vector3d comVel(0.0); |
998 |
< |
double totalMass = 0.0; |
998 |
> |
RealType totalMass = 0.0; |
999 |
|
|
1000 |
|
|
1001 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1002 |
< |
double mass = mol->getMass(); |
1002 |
> |
RealType mass = mol->getMass(); |
1003 |
|
totalMass += mass; |
1004 |
|
comVel += mass * mol->getComVel(); |
1005 |
|
} |
1006 |
|
|
1007 |
|
#ifdef IS_MPI |
1008 |
< |
double tmpMass = totalMass; |
1008 |
> |
RealType tmpMass = totalMass; |
1009 |
|
Vector3d tmpComVel(comVel); |
1010 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1011 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1010 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1011 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1012 |
|
#endif |
1013 |
|
|
1014 |
|
comVel /= totalMass; |
1021 |
|
Molecule* mol; |
1022 |
|
|
1023 |
|
Vector3d com(0.0); |
1024 |
< |
double totalMass = 0.0; |
1024 |
> |
RealType totalMass = 0.0; |
1025 |
|
|
1026 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1027 |
< |
double mass = mol->getMass(); |
1027 |
> |
RealType mass = mol->getMass(); |
1028 |
|
totalMass += mass; |
1029 |
|
com += mass * mol->getCom(); |
1030 |
|
} |
1031 |
|
|
1032 |
|
#ifdef IS_MPI |
1033 |
< |
double tmpMass = totalMass; |
1033 |
> |
RealType tmpMass = totalMass; |
1034 |
|
Vector3d tmpCom(com); |
1035 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1036 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1035 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1036 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1037 |
|
#endif |
1038 |
|
|
1039 |
|
com /= totalMass; |
1042 |
|
|
1043 |
|
} |
1044 |
|
|
1045 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1045 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1046 |
|
|
1047 |
|
return o; |
1048 |
|
} |
1057 |
|
Molecule* mol; |
1058 |
|
|
1059 |
|
|
1060 |
< |
double totalMass = 0.0; |
1060 |
> |
RealType totalMass = 0.0; |
1061 |
|
|
1062 |
|
|
1063 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1064 |
< |
double mass = mol->getMass(); |
1064 |
> |
RealType mass = mol->getMass(); |
1065 |
|
totalMass += mass; |
1066 |
|
com += mass * mol->getCom(); |
1067 |
|
comVel += mass * mol->getComVel(); |
1068 |
|
} |
1069 |
|
|
1070 |
|
#ifdef IS_MPI |
1071 |
< |
double tmpMass = totalMass; |
1071 |
> |
RealType tmpMass = totalMass; |
1072 |
|
Vector3d tmpCom(com); |
1073 |
|
Vector3d tmpComVel(comVel); |
1074 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1075 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1076 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1074 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1075 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1076 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1077 |
|
#endif |
1078 |
|
|
1079 |
|
com /= totalMass; |
1085 |
|
|
1086 |
|
|
1087 |
|
[ Ixx -Ixy -Ixz ] |
1088 |
< |
J =| -Iyx Iyy -Iyz | |
1088 |
> |
J =| -Iyx Iyy -Iyz | |
1089 |
|
[ -Izx -Iyz Izz ] |
1090 |
|
*/ |
1091 |
|
|
1092 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1093 |
|
|
1094 |
|
|
1095 |
< |
double xx = 0.0; |
1096 |
< |
double yy = 0.0; |
1097 |
< |
double zz = 0.0; |
1098 |
< |
double xy = 0.0; |
1099 |
< |
double xz = 0.0; |
1100 |
< |
double yz = 0.0; |
1095 |
> |
RealType xx = 0.0; |
1096 |
> |
RealType yy = 0.0; |
1097 |
> |
RealType zz = 0.0; |
1098 |
> |
RealType xy = 0.0; |
1099 |
> |
RealType xz = 0.0; |
1100 |
> |
RealType yz = 0.0; |
1101 |
|
Vector3d com(0.0); |
1102 |
|
Vector3d comVel(0.0); |
1103 |
|
|
1109 |
|
Vector3d thisq(0.0); |
1110 |
|
Vector3d thisv(0.0); |
1111 |
|
|
1112 |
< |
double thisMass = 0.0; |
1112 |
> |
RealType thisMass = 0.0; |
1113 |
|
|
1114 |
|
|
1115 |
|
|
1147 |
|
#ifdef IS_MPI |
1148 |
|
Mat3x3d tmpI(inertiaTensor); |
1149 |
|
Vector3d tmpAngMom; |
1150 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1151 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1150 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1151 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1152 |
|
#endif |
1153 |
|
|
1154 |
|
return; |
1169 |
|
Vector3d thisr(0.0); |
1170 |
|
Vector3d thisp(0.0); |
1171 |
|
|
1172 |
< |
double thisMass; |
1172 |
> |
RealType thisMass; |
1173 |
|
|
1174 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1175 |
|
thisMass = mol->getMass(); |
1182 |
|
|
1183 |
|
#ifdef IS_MPI |
1184 |
|
Vector3d tmpAngMom; |
1185 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1185 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1186 |
|
#endif |
1187 |
|
|
1188 |
|
return angularMomentum; |
1189 |
|
} |
1190 |
|
|
1191 |
< |
|
1192 |
< |
}//end namespace oopse |
1191 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1192 |
> |
return IOIndexToIntegrableObject.at(index); |
1193 |
> |
} |
1194 |
> |
|
1195 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1196 |
> |
IOIndexToIntegrableObject= v; |
1197 |
> |
} |
1198 |
|
|
1199 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1200 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1201 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1202 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1203 |
+ |
*/ |
1204 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1205 |
+ |
Mat3x3d intTensor; |
1206 |
+ |
RealType det; |
1207 |
+ |
Vector3d dummyAngMom; |
1208 |
+ |
RealType sysconstants; |
1209 |
+ |
RealType geomCnst; |
1210 |
+ |
|
1211 |
+ |
geomCnst = 3.0/2.0; |
1212 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1213 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1214 |
+ |
|
1215 |
+ |
det = intTensor.determinant(); |
1216 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1217 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1218 |
+ |
return; |
1219 |
+ |
} |
1220 |
+ |
|
1221 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1222 |
+ |
Mat3x3d intTensor; |
1223 |
+ |
Vector3d dummyAngMom; |
1224 |
+ |
RealType sysconstants; |
1225 |
+ |
RealType geomCnst; |
1226 |
+ |
|
1227 |
+ |
geomCnst = 3.0/2.0; |
1228 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1229 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1230 |
+ |
|
1231 |
+ |
detI = intTensor.determinant(); |
1232 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1233 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1234 |
+ |
return; |
1235 |
+ |
} |
1236 |
+ |
/* |
1237 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1238 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1239 |
+ |
sdByGlobalIndex_ = v; |
1240 |
+ |
} |
1241 |
+ |
|
1242 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1243 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1244 |
+ |
return sdByGlobalIndex_.at(index); |
1245 |
+ |
} |
1246 |
+ |
*/ |
1247 |
+ |
int SimInfo::getNGlobalConstraints() { |
1248 |
+ |
int nGlobalConstraints; |
1249 |
+ |
#ifdef IS_MPI |
1250 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1251 |
+ |
MPI_COMM_WORLD); |
1252 |
+ |
#else |
1253 |
+ |
nGlobalConstraints = nConstraints_; |
1254 |
+ |
#endif |
1255 |
+ |
return nGlobalConstraints; |
1256 |
+ |
} |
1257 |
+ |
|
1258 |
+ |
}//end namespace OpenMD |
1259 |
+ |
|