ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 734 by chuckv, Tue Nov 15 16:05:38 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 < #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
70 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                   ForceField* ff, Globals* simParams) :
72 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
73 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <    sman_(NULL), fortranInitialized_(false) {
79 <
84 <            
85 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <      MoleculeStamp* molStamp;
87 <      int nMolWithSameStamp;
88 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 <      CutoffGroupStamp* cgStamp;    
91 <      RigidBodyStamp* rbStamp;
92 <      int nRigidAtoms = 0;
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
82 <        molStamp = i->first;
83 <        nMolWithSameStamp = i->second;
84 <        
85 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
86 <
87 <        //calculate atoms in molecules
88 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
89 <
90 <
91 <        //calculate atoms in cutoff groups
92 <        int nAtomsInGroups = 0;
93 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
94 <        
95 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
96 <          cgStamp = molStamp->getCutoffGroup(j);
97 <          nAtomsInGroups += cgStamp->getNMembers();
98 <        }
99 <
100 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
101 <
102 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
103 <
104 <        //calculate atoms in rigid bodies
105 <        int nAtomsInRigidBodies = 0;
106 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <          rbStamp = molStamp->getRigidBody(j);
123 <          nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
81 >    MoleculeStamp* molStamp;
82 >    int nMolWithSameStamp;
83 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85 >    CutoffGroupStamp* cgStamp;    
86 >    RigidBodyStamp* rbStamp;
87 >    int nRigidAtoms = 0;
88 >    
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107        }
108 <
109 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
110 <      //group therefore the total number of cutoff groups in the system is
111 <      //equal to the total number of atoms minus number of atoms belong to
112 <      //cutoff group defined in meta-data file plus the number of cutoff
113 <      //groups defined in meta-data file
114 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
115 <
116 <      //every free atom (atom does not belong to rigid bodies) is an
117 <      //integrable object therefore the total number of integrable objects
118 <      //in the system is equal to the total number of atoms minus number of
119 <      //atoms belong to rigid body defined in meta-data file plus the number
120 <      //of rigid bodies defined in meta-data file
121 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
122 <                                                + nGlobalRigidBodies_;
123 <  
124 <      nGlobalMols_ = molStampIds_.size();
147 <
148 < #ifdef IS_MPI    
149 <      molToProcMap_.resize(nGlobalMols_);
150 < #endif
151 <
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
133 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 +    
135 +    //every free atom (atom does not belong to rigid bodies) is an
136 +    //integrable object therefore the total number of integrable objects
137 +    //in the system is equal to the total number of atoms minus number of
138 +    //atoms belong to rigid body defined in meta-data file plus the number
139 +    //of rigid bodies defined in meta-data file
140 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 +      + nGlobalRigidBodies_;
142 +    
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147    SimInfo::~SimInfo() {
148 <    std::map<int, Molecule*>::iterator i;
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150        delete i->second;
151      }
152      molecules_.clear();
153        
161    delete stamps_;
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157    }
158  
167  int SimInfo::getNGlobalConstraints() {
168    int nGlobalConstraints;
169 #ifdef IS_MPI
170    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171                  MPI_COMM_WORLD);    
172 #else
173    nGlobalConstraints =  nConstraints_;
174 #endif
175    return nGlobalConstraints;
176  }
159  
160    bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168        nAtoms_ += mol->getNAtoms();
169        nBonds_ += mol->getNBonds();
170        nBends_ += mol->getNBends();
171        nTorsions_ += mol->getNTorsions();
172 +      nInversions_ += mol->getNInversions();
173        nRigidBodies_ += mol->getNRigidBodies();
174        nIntegrableObjects_ += mol->getNIntegrableObjects();
175        nCutoffGroups_ += mol->getNCutoffGroups();
176        nConstraints_ += mol->getNConstraintPairs();
177 <
178 <      addExcludePairs(mol);
179 <        
177 >      
178 >      addInteractionPairs(mol);
179 >      
180        return true;
181      } else {
182        return false;
183      }
184    }
185 <
185 >  
186    bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
# Line 212 | Line 195 | namespace oopse {
195        nBonds_ -= mol->getNBonds();
196        nBends_ -= mol->getNBends();
197        nTorsions_ -= mol->getNTorsions();
198 +      nInversions_ -= mol->getNInversions();
199        nRigidBodies_ -= mol->getNRigidBodies();
200        nIntegrableObjects_ -= mol->getNIntegrableObjects();
201        nCutoffGroups_ -= mol->getNCutoffGroups();
202        nConstraints_ -= mol->getNConstraintPairs();
203  
204 <      removeExcludePairs(mol);
204 >      removeInteractionPairs(mol);
205        molecules_.erase(mol->getGlobalIndex());
206  
207        delete mol;
# Line 226 | Line 210 | namespace oopse {
210      } else {
211        return false;
212      }
229
230
213    }    
214  
215          
# Line 243 | Line 225 | namespace oopse {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 264 | Line 250 | namespace oopse {
250              ndf_local += 3;
251            }
252          }
253 <            
254 <      }//end for (integrableObject)
255 <    }// end for (mol)
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261      
262 +    ndfLocal_ = ndf_local;
263 +    cerr << "ndfLocal_ = " << ndfLocal_ << "\n";
264 +
265      // n_constraints is local, so subtract them on each processor
266      ndf_local -= nConstraints_;
267  
268   #ifdef IS_MPI
269      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
271   #else
272      ndf_ = ndf_local;
273 +    nGlobalFluctuatingCharges_ = nfq_local;
274   #endif
275  
276      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 283 | Line 279 | namespace oopse {
279  
280    }
281  
282 +  int SimInfo::getFdf() {
283 + #ifdef IS_MPI
284 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 + #else
286 +    fdf_ = fdf_local;
287 + #endif
288 +    return fdf_;
289 +  }
290 +  
291 +  unsigned int SimInfo::getNLocalCutoffGroups(){
292 +    int nLocalCutoffAtoms = 0;
293 +    Molecule* mol;
294 +    MoleculeIterator mi;
295 +    CutoffGroup* cg;
296 +    Molecule::CutoffGroupIterator ci;
297 +    
298 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
299 +      
300 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
301 +           cg = mol->nextCutoffGroup(ci)) {
302 +        nLocalCutoffAtoms += cg->getNumAtom();
303 +        
304 +      }        
305 +    }
306 +    
307 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
308 +  }
309 +    
310    void SimInfo::calcNdfRaw() {
311      int ndfRaw_local;
312  
313      MoleculeIterator i;
314 <    std::vector<StuntDouble*>::iterator j;
314 >    vector<StuntDouble*>::iterator j;
315      Molecule* mol;
316      StuntDouble* integrableObject;
317  
# Line 334 | Line 358 | namespace oopse {
358  
359    }
360  
361 <  void SimInfo::addExcludePairs(Molecule* mol) {
362 <    std::vector<Bond*>::iterator bondIter;
363 <    std::vector<Bend*>::iterator bendIter;
364 <    std::vector<Torsion*>::iterator torsionIter;
361 >  void SimInfo::addInteractionPairs(Molecule* mol) {
362 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
363 >    vector<Bond*>::iterator bondIter;
364 >    vector<Bend*>::iterator bendIter;
365 >    vector<Torsion*>::iterator torsionIter;
366 >    vector<Inversion*>::iterator inversionIter;
367      Bond* bond;
368      Bend* bend;
369      Torsion* torsion;
370 +    Inversion* inversion;
371      int a;
372      int b;
373      int c;
374      int d;
375 +
376 +    // atomGroups can be used to add special interaction maps between
377 +    // groups of atoms that are in two separate rigid bodies.
378 +    // However, most site-site interactions between two rigid bodies
379 +    // are probably not special, just the ones between the physically
380 +    // bonded atoms.  Interactions *within* a single rigid body should
381 +    // always be excluded.  These are done at the bottom of this
382 +    // function.
383 +
384 +    map<int, set<int> > atomGroups;
385 +    Molecule::RigidBodyIterator rbIter;
386 +    RigidBody* rb;
387 +    Molecule::IntegrableObjectIterator ii;
388 +    StuntDouble* integrableObject;
389      
390 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
390 >    for (integrableObject = mol->beginIntegrableObject(ii);
391 >         integrableObject != NULL;
392 >         integrableObject = mol->nextIntegrableObject(ii)) {
393 >      
394 >      if (integrableObject->isRigidBody()) {
395 >        rb = static_cast<RigidBody*>(integrableObject);
396 >        vector<Atom*> atoms = rb->getAtoms();
397 >        set<int> rigidAtoms;
398 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
399 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
400 >        }
401 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
402 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
403 >        }      
404 >      } else {
405 >        set<int> oneAtomSet;
406 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
407 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
408 >      }
409 >    }  
410 >          
411 >    for (bond= mol->beginBond(bondIter); bond != NULL;
412 >         bond = mol->nextBond(bondIter)) {
413 >
414        a = bond->getAtomA()->getGlobalIndex();
415 <      b = bond->getAtomB()->getGlobalIndex();        
416 <      exclude_.addPair(a, b);
415 >      b = bond->getAtomB()->getGlobalIndex();  
416 >    
417 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 >        oneTwoInteractions_.addPair(a, b);
419 >      } else {
420 >        excludedInteractions_.addPair(a, b);
421 >      }
422      }
423  
424 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
424 >    for (bend= mol->beginBend(bendIter); bend != NULL;
425 >         bend = mol->nextBend(bendIter)) {
426 >
427        a = bend->getAtomA()->getGlobalIndex();
428        b = bend->getAtomB()->getGlobalIndex();        
429        c = bend->getAtomC()->getGlobalIndex();
430 +      
431 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 +        oneTwoInteractions_.addPair(a, b);      
433 +        oneTwoInteractions_.addPair(b, c);
434 +      } else {
435 +        excludedInteractions_.addPair(a, b);
436 +        excludedInteractions_.addPair(b, c);
437 +      }
438  
439 <      exclude_.addPair(a, b);
440 <      exclude_.addPair(a, c);
441 <      exclude_.addPair(b, c);        
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >      } else {
442 >        excludedInteractions_.addPair(a, c);
443 >      }
444      }
445  
446 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
446 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
447 >         torsion = mol->nextTorsion(torsionIter)) {
448 >
449        a = torsion->getAtomA()->getGlobalIndex();
450        b = torsion->getAtomB()->getGlobalIndex();        
451        c = torsion->getAtomC()->getGlobalIndex();        
452 <      d = torsion->getAtomD()->getGlobalIndex();        
452 >      d = torsion->getAtomD()->getGlobalIndex();      
453  
454 <      exclude_.addPair(a, b);
455 <      exclude_.addPair(a, c);
456 <      exclude_.addPair(a, d);
457 <      exclude_.addPair(b, c);
458 <      exclude_.addPair(b, d);
459 <      exclude_.addPair(c, d);        
454 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
455 >        oneTwoInteractions_.addPair(a, b);      
456 >        oneTwoInteractions_.addPair(b, c);
457 >        oneTwoInteractions_.addPair(c, d);
458 >      } else {
459 >        excludedInteractions_.addPair(a, b);
460 >        excludedInteractions_.addPair(b, c);
461 >        excludedInteractions_.addPair(c, d);
462 >      }
463 >
464 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
465 >        oneThreeInteractions_.addPair(a, c);      
466 >        oneThreeInteractions_.addPair(b, d);      
467 >      } else {
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(b, d);
470 >      }
471 >
472 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
473 >        oneFourInteractions_.addPair(a, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(a, d);
476 >      }
477      }
478  
479 <    Molecule::RigidBodyIterator rbIter;
480 <    RigidBody* rb;
481 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
482 <      std::vector<Atom*> atoms = rb->getAtoms();
483 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
484 <        for (int j = i + 1; j < atoms.size(); ++j) {
479 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
480 >         inversion = mol->nextInversion(inversionIter)) {
481 >
482 >      a = inversion->getAtomA()->getGlobalIndex();
483 >      b = inversion->getAtomB()->getGlobalIndex();        
484 >      c = inversion->getAtomC()->getGlobalIndex();        
485 >      d = inversion->getAtomD()->getGlobalIndex();        
486 >
487 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
488 >        oneTwoInteractions_.addPair(a, b);      
489 >        oneTwoInteractions_.addPair(a, c);
490 >        oneTwoInteractions_.addPair(a, d);
491 >      } else {
492 >        excludedInteractions_.addPair(a, b);
493 >        excludedInteractions_.addPair(a, c);
494 >        excludedInteractions_.addPair(a, d);
495 >      }
496 >
497 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
498 >        oneThreeInteractions_.addPair(b, c);    
499 >        oneThreeInteractions_.addPair(b, d);    
500 >        oneThreeInteractions_.addPair(c, d);      
501 >      } else {
502 >        excludedInteractions_.addPair(b, c);
503 >        excludedInteractions_.addPair(b, d);
504 >        excludedInteractions_.addPair(c, d);
505 >      }
506 >    }
507 >
508 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
509 >         rb = mol->nextRigidBody(rbIter)) {
510 >      vector<Atom*> atoms = rb->getAtoms();
511 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
512 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
513            a = atoms[i]->getGlobalIndex();
514            b = atoms[j]->getGlobalIndex();
515 <          exclude_.addPair(a, b);
515 >          excludedInteractions_.addPair(a, b);
516          }
517        }
518      }        
519  
520    }
521  
522 <  void SimInfo::removeExcludePairs(Molecule* mol) {
523 <    std::vector<Bond*>::iterator bondIter;
524 <    std::vector<Bend*>::iterator bendIter;
525 <    std::vector<Torsion*>::iterator torsionIter;
522 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
523 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
524 >    vector<Bond*>::iterator bondIter;
525 >    vector<Bend*>::iterator bendIter;
526 >    vector<Torsion*>::iterator torsionIter;
527 >    vector<Inversion*>::iterator inversionIter;
528      Bond* bond;
529      Bend* bend;
530      Torsion* torsion;
531 +    Inversion* inversion;
532      int a;
533      int b;
534      int c;
535      int d;
536 +
537 +    map<int, set<int> > atomGroups;
538 +    Molecule::RigidBodyIterator rbIter;
539 +    RigidBody* rb;
540 +    Molecule::IntegrableObjectIterator ii;
541 +    StuntDouble* integrableObject;
542      
543 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
543 >    for (integrableObject = mol->beginIntegrableObject(ii);
544 >         integrableObject != NULL;
545 >         integrableObject = mol->nextIntegrableObject(ii)) {
546 >      
547 >      if (integrableObject->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(integrableObject);
549 >        vector<Atom*> atoms = rb->getAtoms();
550 >        set<int> rigidAtoms;
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 >        }
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 >        }      
557 >      } else {
558 >        set<int> oneAtomSet;
559 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
561 >      }
562 >    }  
563 >
564 >    for (bond= mol->beginBond(bondIter); bond != NULL;
565 >         bond = mol->nextBond(bondIter)) {
566 >      
567        a = bond->getAtomA()->getGlobalIndex();
568 <      b = bond->getAtomB()->getGlobalIndex();        
569 <      exclude_.removePair(a, b);
568 >      b = bond->getAtomB()->getGlobalIndex();  
569 >    
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >      }
575      }
576  
577 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
577 >    for (bend= mol->beginBend(bendIter); bend != NULL;
578 >         bend = mol->nextBend(bendIter)) {
579 >
580        a = bend->getAtomA()->getGlobalIndex();
581        b = bend->getAtomB()->getGlobalIndex();        
582        c = bend->getAtomC()->getGlobalIndex();
583 +      
584 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 +        oneTwoInteractions_.removePair(a, b);      
586 +        oneTwoInteractions_.removePair(b, c);
587 +      } else {
588 +        excludedInteractions_.removePair(a, b);
589 +        excludedInteractions_.removePair(b, c);
590 +      }
591  
592 <      exclude_.removePair(a, b);
593 <      exclude_.removePair(a, c);
594 <      exclude_.removePair(b, c);        
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >      } else {
595 >        excludedInteractions_.removePair(a, c);
596 >      }
597      }
598  
599 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
599 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 >         torsion = mol->nextTorsion(torsionIter)) {
601 >
602        a = torsion->getAtomA()->getGlobalIndex();
603        b = torsion->getAtomB()->getGlobalIndex();        
604        c = torsion->getAtomC()->getGlobalIndex();        
605 <      d = torsion->getAtomD()->getGlobalIndex();        
605 >      d = torsion->getAtomD()->getGlobalIndex();      
606 >  
607 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 >        oneTwoInteractions_.removePair(a, b);      
609 >        oneTwoInteractions_.removePair(b, c);
610 >        oneTwoInteractions_.removePair(c, d);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >        excludedInteractions_.removePair(c, d);
615 >      }
616  
617 <      exclude_.removePair(a, b);
618 <      exclude_.removePair(a, c);
619 <      exclude_.removePair(a, d);
620 <      exclude_.removePair(b, c);
621 <      exclude_.removePair(b, d);
622 <      exclude_.removePair(c, d);        
617 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 >        oneThreeInteractions_.removePair(a, c);      
619 >        oneThreeInteractions_.removePair(b, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(b, d);
623 >      }
624 >
625 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 >        oneFourInteractions_.removePair(a, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(a, d);
629 >      }
630      }
631  
632 <    Molecule::RigidBodyIterator rbIter;
633 <    RigidBody* rb;
634 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
635 <      std::vector<Atom*> atoms = rb->getAtoms();
636 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
637 <        for (int j = i + 1; j < atoms.size(); ++j) {
632 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 >         inversion = mol->nextInversion(inversionIter)) {
634 >
635 >      a = inversion->getAtomA()->getGlobalIndex();
636 >      b = inversion->getAtomB()->getGlobalIndex();        
637 >      c = inversion->getAtomC()->getGlobalIndex();        
638 >      d = inversion->getAtomD()->getGlobalIndex();        
639 >
640 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 >        oneTwoInteractions_.removePair(a, b);      
642 >        oneTwoInteractions_.removePair(a, c);
643 >        oneTwoInteractions_.removePair(a, d);
644 >      } else {
645 >        excludedInteractions_.removePair(a, b);
646 >        excludedInteractions_.removePair(a, c);
647 >        excludedInteractions_.removePair(a, d);
648 >      }
649 >
650 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 >        oneThreeInteractions_.removePair(b, c);    
652 >        oneThreeInteractions_.removePair(b, d);    
653 >        oneThreeInteractions_.removePair(c, d);      
654 >      } else {
655 >        excludedInteractions_.removePair(b, c);
656 >        excludedInteractions_.removePair(b, d);
657 >        excludedInteractions_.removePair(c, d);
658 >      }
659 >    }
660 >
661 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 >         rb = mol->nextRigidBody(rbIter)) {
663 >      vector<Atom*> atoms = rb->getAtoms();
664 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666            a = atoms[i]->getGlobalIndex();
667            b = atoms[j]->getGlobalIndex();
668 <          exclude_.removePair(a, b);
668 >          excludedInteractions_.removePair(a, b);
669          }
670        }
671      }        
672 <
672 >    
673    }
674 <
675 <
674 >  
675 >  
676    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677      int curStampId;
678 <
678 >    
679      //index from 0
680      curStampId = moleculeStamps_.size();
681  
# Line 459 | Line 683 | namespace oopse {
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684    }
685  
462  void SimInfo::update() {
686  
687 <    setupSimType();
688 <
689 < #ifdef IS_MPI
690 <    setupFortranParallel();
691 < #endif
692 <
693 <    setupFortranSim();
694 <
695 <    //setup fortran force field
473 <    /** @deprecate */    
474 <    int isError = 0;
475 <    
476 <    setupElectrostaticSummationMethod( isError );
477 <    setupSwitchingFunction();
478 <
479 <    if(isError){
480 <      sprintf( painCave.errMsg,
481 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 <      painCave.isFatal = 1;
483 <      simError();
484 <    }
485 <  
486 <    
487 <    setupCutoff();
488 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
492
493    fortranInitialized_ = true;
699    }
700 <
701 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
700 >  
701 >  /**
702 >   * getSimulatedAtomTypes
703 >   *
704 >   * Returns an STL set of AtomType* that are actually present in this
705 >   * simulation.  Must query all processors to assemble this information.
706 >   *
707 >   */
708 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
711      Molecule::AtomIterator ai;
712      Atom* atom;
713 <    std::set<AtomType*> atomTypes;
714 <
713 >    set<AtomType*> atomTypes;
714 >    
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 <
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719 <      }
720 <        
721 <    }
719 >      }      
720 >    }    
721 >    
722 > #ifdef IS_MPI
723  
724 <    return atomTypes;        
725 <  }
513 <
514 <  void SimInfo::setupSimType() {
515 <    std::set<AtomType*>::iterator i;
516 <    std::set<AtomType*> atomTypes;
517 <    atomTypes = getUniqueAtomTypes();
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726      
727 <    int useLennardJones = 0;
728 <    int useElectrostatic = 0;
729 <    int useEAM = 0;
730 <    int useSC = 0;
523 <    int useCharge = 0;
524 <    int useDirectional = 0;
525 <    int useDipole = 0;
526 <    int useGayBerne = 0;
527 <    int useSticky = 0;
528 <    int useStickyPower = 0;
529 <    int useShape = 0;
530 <    int useFLARB = 0; //it is not in AtomType yet
531 <    int useDirectionalAtom = 0;    
532 <    int useElectrostatics = 0;
533 <    //usePBC and useRF are from simParams
534 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
535 <    int useRF;
536 <    int useSF;
537 <    std::string myMethod;
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    // set the useRF logical
733 <    useRF = 0;
541 <    useSF = 0;
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734  
735 +    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 <    if (simParams_->haveElectrostaticSummationMethod()) {
738 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
739 <      toUpper(myMethod);
740 <      if (myMethod == "REACTION_FIELD") {
741 <        useRF=1;
742 <      } else {
743 <        if (myMethod == "SHIFTED_FORCE") {
744 <          useSF = 1;
745 <        }
746 <      }
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741 >
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753  
754 <    //loop over all of the atom types
755 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
756 <      useLennardJones |= (*i)->isLennardJones();
757 <      useElectrostatic |= (*i)->isElectrostatic();
758 <      useEAM |= (*i)->isEAM();
759 <      useSC |= (*i)->isSC();
760 <      useCharge |= (*i)->isCharge();
563 <      useDirectional |= (*i)->isDirectional();
564 <      useDipole |= (*i)->isDipole();
565 <      useGayBerne |= (*i)->isGayBerne();
566 <      useSticky |= (*i)->isSticky();
567 <      useStickyPower |= (*i)->isStickyPower();
568 <      useShape |= (*i)->isShape();
569 <    }
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756 >    
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
572 <      useDirectionalAtom = 1;
573 <    }
762 >    vector<int>::iterator j;
763  
764 <    if (useCharge || useDipole) {
765 <      useElectrostatics = 1;
766 <    }
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767  
768 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 +      foundIdents.insert((*j));
770 +    
771 +    // now iterate over the foundIdents and get the actual atom types
772 +    // that correspond to these:
773 +    set<int>::iterator it;
774 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 +      atomTypes.insert( forceField_->getAtomType((*it)) );
776 +
777 + #endif
778 +
779 +    return atomTypes;        
780 +  }
781 +
782 +  void SimInfo::setupSimVariables() {
783 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 +    calcBoxDipole_ = false;
786 +    if ( simParams_->haveAccumulateBoxDipole() )
787 +      if ( simParams_->getAccumulateBoxDipole() ) {
788 +        calcBoxDipole_ = true;      
789 +      }
790 +    
791 +    set<AtomType*>::iterator i;
792 +    set<AtomType*> atomTypes;
793 +    atomTypes = getSimulatedAtomTypes();    
794 +    int usesElectrostatic = 0;
795 +    int usesMetallic = 0;
796 +    int usesDirectional = 0;
797 +    int usesFluctuatingCharges =  0;
798 +    //loop over all of the atom types
799 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 +      usesElectrostatic |= (*i)->isElectrostatic();
801 +      usesMetallic |= (*i)->isMetal();
802 +      usesDirectional |= (*i)->isDirectional();
803 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804 +    }
805 +    
806   #ifdef IS_MPI    
807      int temp;
808 +    temp = usesDirectional;
809 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 +    
811 +    temp = usesMetallic;
812 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 +    
814 +    temp = usesElectrostatic;
815 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816  
817 <    temp = usePBC;
818 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817 >    temp = usesFluctuatingCharges;
818 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 > #else
820  
821 <    temp = useDirectionalAtom;
822 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 >    usesDirectionalAtoms_ = usesDirectional;
822 >    usesMetallicAtoms_ = usesMetallic;
823 >    usesElectrostaticAtoms_ = usesElectrostatic;
824 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
825  
826 <    temp = useLennardJones;
827 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 > #endif
827 >    
828 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
829 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
830 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
831 >  }
832  
591    temp = useElectrostatics;
592    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833  
834 <    temp = useCharge;
835 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
834 >  vector<int> SimInfo::getGlobalAtomIndices() {
835 >    SimInfo::MoleculeIterator mi;
836 >    Molecule* mol;
837 >    Molecule::AtomIterator ai;
838 >    Atom* atom;
839  
840 <    temp = useDipole;
598 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
599 <
600 <    temp = useSticky;
601 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
602 <
603 <    temp = useStickyPower;
604 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
841      
842 <    temp = useGayBerne;
843 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
842 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
843 >      
844 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
845 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
846 >      }
847 >    }
848 >    return GlobalAtomIndices;
849 >  }
850  
609    temp = useEAM;
610    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851  
852 <    temp = useSC;
853 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
854 <    
855 <    temp = useShape;
856 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
852 >  vector<int> SimInfo::getGlobalGroupIndices() {
853 >    SimInfo::MoleculeIterator mi;
854 >    Molecule* mol;
855 >    Molecule::CutoffGroupIterator ci;
856 >    CutoffGroup* cg;
857  
858 <    temp = useFLARB;
859 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
860 <
621 <    temp = useRF;
622 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
623 <
624 <    temp = useSF;
625 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
626 <
627 < #endif
628 <
629 <    fInfo_.SIM_uses_PBC = usePBC;    
630 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
631 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
632 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
633 <    fInfo_.SIM_uses_Charges = useCharge;
634 <    fInfo_.SIM_uses_Dipoles = useDipole;
635 <    fInfo_.SIM_uses_Sticky = useSticky;
636 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
637 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
638 <    fInfo_.SIM_uses_EAM = useEAM;
639 <    fInfo_.SIM_uses_SC = useSC;
640 <    fInfo_.SIM_uses_Shapes = useShape;
641 <    fInfo_.SIM_uses_FLARB = useFLARB;
642 <    fInfo_.SIM_uses_RF = useRF;
643 <    fInfo_.SIM_uses_SF = useSF;
644 <
645 <    if( myMethod == "REACTION_FIELD") {
858 >    vector<int> GlobalGroupIndices;
859 >    
860 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
861        
862 <      if (simParams_->haveDielectric()) {
863 <        fInfo_.dielect = simParams_->getDielectric();
864 <      } else {
865 <        sprintf(painCave.errMsg,
866 <                "SimSetup Error: No Dielectric constant was set.\n"
867 <                "\tYou are trying to use Reaction Field without"
653 <                "\tsetting a dielectric constant!\n");
654 <        painCave.isFatal = 1;
655 <        simError();
656 <      }      
862 >      //local index of cutoff group is trivial, it only depends on the
863 >      //order of travesing
864 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 >           cg = mol->nextCutoffGroup(ci)) {
866 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
867 >      }        
868      }
869 <
869 >    return GlobalGroupIndices;
870    }
871  
661  void SimInfo::setupFortranSim() {
662    int isError;
663    int nExclude;
664    std::vector<int> fortranGlobalGroupMembership;
665    
666    nExclude = exclude_.getSize();
667    isError = 0;
872  
873 <    //globalGroupMembership_ is filled by SimCreator    
874 <    for (int i = 0; i < nGlobalAtoms_; i++) {
671 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
672 <    }
873 >  void SimInfo::prepareTopology() {
874 >    int nExclude, nOneTwo, nOneThree, nOneFour;
875  
876      //calculate mass ratio of cutoff group
675    std::vector<double> mfact;
877      SimInfo::MoleculeIterator mi;
878      Molecule* mol;
879      Molecule::CutoffGroupIterator ci;
880      CutoffGroup* cg;
881      Molecule::AtomIterator ai;
882      Atom* atom;
883 <    double totalMass;
883 >    RealType totalMass;
884  
885 <    //to avoid memory reallocation, reserve enough space for mfact
886 <    mfact.reserve(getNCutoffGroups());
885 >    /**
886 >     * The mass factor is the relative mass of an atom to the total
887 >     * mass of the cutoff group it belongs to.  By default, all atoms
888 >     * are their own cutoff groups, and therefore have mass factors of
889 >     * 1.  We need some special handling for massless atoms, which
890 >     * will be treated as carrying the entire mass of the cutoff
891 >     * group.
892 >     */
893 >    massFactors_.clear();
894 >    massFactors_.resize(getNAtoms(), 1.0);
895      
896      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
897 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
898 >           cg = mol->nextCutoffGroup(ci)) {
899  
900          totalMass = cg->getMass();
901          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902            // Check for massless groups - set mfact to 1 if true
903 <          if (totalMass != 0)
904 <            mfact.push_back(atom->getMass()/totalMass);
903 >          if (totalMass != 0)
904 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
905            else
906 <            mfact.push_back( 1.0 );
906 >            massFactors_[atom->getLocalIndex()] = 1.0;
907          }
698
908        }      
909      }
910  
911 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
703 <    std::vector<int> identArray;
911 >    // Build the identArray_
912  
913 <    //to avoid memory reallocation, reserve enough space identArray
914 <    identArray.reserve(getNAtoms());
707 <    
913 >    identArray_.clear();
914 >    identArray_.reserve(getNAtoms());    
915      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
916        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
917 <        identArray.push_back(atom->getIdent());
917 >        identArray_.push_back(atom->getIdent());
918        }
919      }    
713
714    //fill molMembershipArray
715    //molMembershipArray is filled by SimCreator    
716    std::vector<int> molMembershipArray(nGlobalAtoms_);
717    for (int i = 0; i < nGlobalAtoms_; i++) {
718      molMembershipArray[i] = globalMolMembership_[i] + 1;
719    }
920      
921 <    //setup fortran simulation
722 <    int nGlobalExcludes = 0;
723 <    int* globalExcludes = NULL;
724 <    int* excludeList = exclude_.getExcludeList();
725 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
726 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
727 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
921 >    //scan topology
922  
923 <    if( isError ){
923 >    nExclude = excludedInteractions_.getSize();
924 >    nOneTwo = oneTwoInteractions_.getSize();
925 >    nOneThree = oneThreeInteractions_.getSize();
926 >    nOneFour = oneFourInteractions_.getSize();
927  
928 <      sprintf( painCave.errMsg,
929 <               "There was an error setting the simulation information in fortran.\n" );
930 <      painCave.isFatal = 1;
931 <      painCave.severity = OOPSE_ERROR;
735 <      simError();
736 <    }
737 <
738 < #ifdef IS_MPI
739 <    sprintf( checkPointMsg,
740 <             "succesfully sent the simulation information to fortran.\n");
741 <    MPIcheckPoint();
742 < #endif // is_mpi
743 <  }
744 <
745 <
746 < #ifdef IS_MPI
747 <  void SimInfo::setupFortranParallel() {
748 <    
749 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
750 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
751 <    std::vector<int> localToGlobalCutoffGroupIndex;
752 <    SimInfo::MoleculeIterator mi;
753 <    Molecule::AtomIterator ai;
754 <    Molecule::CutoffGroupIterator ci;
755 <    Molecule* mol;
756 <    Atom* atom;
757 <    CutoffGroup* cg;
758 <    mpiSimData parallelData;
759 <    int isError;
760 <
761 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
762 <
763 <      //local index(index in DataStorge) of atom is important
764 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
765 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
766 <      }
767 <
768 <      //local index of cutoff group is trivial, it only depends on the order of travesing
769 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
770 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
771 <      }        
772 <        
773 <    }
774 <
775 <    //fill up mpiSimData struct
776 <    parallelData.nMolGlobal = getNGlobalMolecules();
777 <    parallelData.nMolLocal = getNMolecules();
778 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
779 <    parallelData.nAtomsLocal = getNAtoms();
780 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
781 <    parallelData.nGroupsLocal = getNCutoffGroups();
782 <    parallelData.myNode = worldRank;
783 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
784 <
785 <    //pass mpiSimData struct and index arrays to fortran
786 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
787 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
788 <                    &localToGlobalCutoffGroupIndex[0], &isError);
789 <
790 <    if (isError) {
791 <      sprintf(painCave.errMsg,
792 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
793 <      painCave.isFatal = 1;
794 <      simError();
795 <    }
796 <
797 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
798 <    MPIcheckPoint();
799 <
800 <
801 <  }
802 <
803 < #endif
804 <
805 <  double SimInfo::calcMaxCutoffRadius() {
806 <
807 <
808 <    std::set<AtomType*> atomTypes;
809 <    std::set<AtomType*>::iterator i;
810 <    std::vector<double> cutoffRadius;
811 <
812 <    //get the unique atom types
813 <    atomTypes = getUniqueAtomTypes();
814 <
815 <    //query the max cutoff radius among these atom types
816 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
817 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
818 <    }
928 >    int* excludeList = excludedInteractions_.getPairList();
929 >    int* oneTwoList = oneTwoInteractions_.getPairList();
930 >    int* oneThreeList = oneThreeInteractions_.getPairList();
931 >    int* oneFourList = oneFourInteractions_.getPairList();
932  
933 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
821 < #ifdef IS_MPI
822 <    //pick the max cutoff radius among the processors
823 < #endif
824 <
825 <    return maxCutoffRadius;
826 <  }
827 <
828 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
829 <    
830 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
831 <        
832 <      if (!simParams_->haveCutoffRadius()){
833 <        sprintf(painCave.errMsg,
834 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
835 <                "\tOOPSE will use a default value of 15.0 angstroms"
836 <                "\tfor the cutoffRadius.\n");
837 <        painCave.isFatal = 0;
838 <        simError();
839 <        rcut = 15.0;
840 <      } else{
841 <        rcut = simParams_->getCutoffRadius();
842 <      }
843 <
844 <      if (!simParams_->haveSwitchingRadius()){
845 <        sprintf(painCave.errMsg,
846 <                "SimCreator Warning: No value was set for switchingRadius.\n"
847 <                "\tOOPSE will use a default value of\n"
848 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
849 <        painCave.isFatal = 0;
850 <        simError();
851 <        rsw = 0.85 * rcut;
852 <      } else{
853 <        rsw = simParams_->getSwitchingRadius();
854 <      }
855 <
856 <    } else {
857 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
858 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
859 <        
860 <      if (simParams_->haveCutoffRadius()) {
861 <        rcut = simParams_->getCutoffRadius();
862 <      } else {
863 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
864 <        rcut = calcMaxCutoffRadius();
865 <      }
866 <
867 <      if (simParams_->haveSwitchingRadius()) {
868 <        rsw  = simParams_->getSwitchingRadius();
869 <      } else {
870 <        rsw = rcut;
871 <      }
872 <    
873 <    }
874 <  }
875 <
876 <  void SimInfo::setupCutoff() {    
877 <    getCutoff(rcut_, rsw_);    
878 <    double rnblist = rcut_ + 1; // skin of neighbor list
879 <
880 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
881 <    
882 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
883 <    if (simParams_->haveCutoffPolicy()) {
884 <      std::string myPolicy = simParams_->getCutoffPolicy();
885 <      toUpper(myPolicy);
886 <      if (myPolicy == "MIX") {
887 <        cp = MIX_CUTOFF_POLICY;
888 <      } else {
889 <        if (myPolicy == "MAX") {
890 <          cp = MAX_CUTOFF_POLICY;
891 <        } else {
892 <          if (myPolicy == "TRADITIONAL") {            
893 <            cp = TRADITIONAL_CUTOFF_POLICY;
894 <          } else {
895 <            // throw error        
896 <            sprintf( painCave.errMsg,
897 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
898 <            painCave.isFatal = 1;
899 <            simError();
900 <          }    
901 <        }          
902 <      }
903 <    }
904 <
905 <
906 <    if (simParams_->haveSkinThickness()) {
907 <      double skinThickness = simParams_->getSkinThickness();
908 <    }
909 <
910 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
911 <    // also send cutoff notification to electrostatics
912 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
913 <  }
914 <
915 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
916 <    
917 <    int errorOut;
918 <    int esm =  NONE;
919 <    int sm = UNDAMPED;
920 <    double alphaVal;
921 <    double dielectric;
922 <
923 <    errorOut = isError;
924 <    alphaVal = simParams_->getDampingAlpha();
925 <    dielectric = simParams_->getDielectric();
926 <
927 <    if (simParams_->haveElectrostaticSummationMethod()) {
928 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
929 <      toUpper(myMethod);
930 <      if (myMethod == "NONE") {
931 <        esm = NONE;
932 <      } else {
933 <        if (myMethod == "SWITCHING_FUNCTION") {
934 <          esm = SWITCHING_FUNCTION;
935 <        } else {
936 <          if (myMethod == "SHIFTED_POTENTIAL") {
937 <            esm = SHIFTED_POTENTIAL;
938 <          } else {
939 <            if (myMethod == "SHIFTED_FORCE") {            
940 <              esm = SHIFTED_FORCE;
941 <            } else {
942 <              if (myMethod == "REACTION_FIELD") {            
943 <                esm = REACTION_FIELD;
944 <              } else {
945 <                // throw error        
946 <                sprintf( painCave.errMsg,
947 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
948 <                painCave.isFatal = 1;
949 <                simError();
950 <              }    
951 <            }          
952 <          }
953 <        }
954 <      }
955 <    }
956 <    
957 <    if (simParams_->haveElectrostaticScreeningMethod()) {
958 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
959 <      toUpper(myScreen);
960 <      if (myScreen == "UNDAMPED") {
961 <        sm = UNDAMPED;
962 <      } else {
963 <        if (myScreen == "DAMPED") {
964 <          sm = DAMPED;
965 <          if (!simParams_->haveDampingAlpha()) {
966 <            //throw error
967 <            sprintf( painCave.errMsg,
968 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
969 <            painCave.isFatal = 0;
970 <            simError();
971 <          }
972 <        } else {
973 <          // throw error        
974 <          sprintf( painCave.errMsg,
975 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
976 <          painCave.isFatal = 1;
977 <          simError();
978 <        }
979 <      }
980 <    }
981 <    
982 <    // let's pass some summation method variables to fortran
983 <    setElectrostaticSummationMethod( &esm );
984 <    setScreeningMethod( &sm );
985 <    setDampingAlpha( &alphaVal );
986 <    setReactionFieldDielectric( &dielectric );
987 <    initFortranFF( &esm, &errorOut );
988 <  }
989 <
990 <  void SimInfo::setupSwitchingFunction() {    
991 <    int ft = CUBIC;
992 <
993 <    if (simParams_->haveSwitchingFunctionType()) {
994 <      std::string funcType = simParams_->getSwitchingFunctionType();
995 <      toUpper(funcType);
996 <      if (funcType == "CUBIC") {
997 <        ft = CUBIC;
998 <      } else {
999 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1000 <          ft = FIFTH_ORDER_POLY;
1001 <        } else {
1002 <          // throw error        
1003 <          sprintf( painCave.errMsg,
1004 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1005 <          painCave.isFatal = 1;
1006 <          simError();
1007 <        }          
1008 <      }
1009 <    }
1010 <
1011 <    // send switching function notification to switcheroo
1012 <    setFunctionType(&ft);
1013 <
933 >    topologyDone_ = true;
934    }
935  
936    void SimInfo::addProperty(GenericData* genData) {
937      properties_.addProperty(genData);  
938    }
939  
940 <  void SimInfo::removeProperty(const std::string& propName) {
940 >  void SimInfo::removeProperty(const string& propName) {
941      properties_.removeProperty(propName);  
942    }
943  
# Line 1025 | Line 945 | namespace oopse {
945      properties_.clearProperties();
946    }
947  
948 <  std::vector<std::string> SimInfo::getPropertyNames() {
948 >  vector<string> SimInfo::getPropertyNames() {
949      return properties_.getPropertyNames();  
950    }
951        
952 <  std::vector<GenericData*> SimInfo::getProperties() {
952 >  vector<GenericData*> SimInfo::getProperties() {
953      return properties_.getProperties();
954    }
955  
956 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
956 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
957      return properties_.getPropertyByName(propName);
958    }
959  
# Line 1047 | Line 967 | namespace oopse {
967      Molecule* mol;
968      RigidBody* rb;
969      Atom* atom;
970 +    CutoffGroup* cg;
971      SimInfo::MoleculeIterator mi;
972      Molecule::RigidBodyIterator rbIter;
973 <    Molecule::AtomIterator atomIter;;
973 >    Molecule::AtomIterator atomIter;
974 >    Molecule::CutoffGroupIterator cgIter;
975  
976      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
977          
# Line 1060 | Line 982 | namespace oopse {
982        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
983          rb->setSnapshotManager(sman_);
984        }
985 +
986 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
987 +        cg->setSnapshotManager(sman_);
988 +      }
989      }    
990      
991    }
# Line 1069 | Line 995 | namespace oopse {
995      Molecule* mol;
996  
997      Vector3d comVel(0.0);
998 <    double totalMass = 0.0;
998 >    RealType totalMass = 0.0;
999      
1000  
1001      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1002 <      double mass = mol->getMass();
1002 >      RealType mass = mol->getMass();
1003        totalMass += mass;
1004        comVel += mass * mol->getComVel();
1005      }  
1006  
1007   #ifdef IS_MPI
1008 <    double tmpMass = totalMass;
1008 >    RealType tmpMass = totalMass;
1009      Vector3d tmpComVel(comVel);    
1010 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1012   #endif
1013  
1014      comVel /= totalMass;
# Line 1095 | Line 1021 | namespace oopse {
1021      Molecule* mol;
1022  
1023      Vector3d com(0.0);
1024 <    double totalMass = 0.0;
1024 >    RealType totalMass = 0.0;
1025      
1026      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1027 <      double mass = mol->getMass();
1027 >      RealType mass = mol->getMass();
1028        totalMass += mass;
1029        com += mass * mol->getCom();
1030      }  
1031  
1032   #ifdef IS_MPI
1033 <    double tmpMass = totalMass;
1033 >    RealType tmpMass = totalMass;
1034      Vector3d tmpCom(com);    
1035 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1036 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1035 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1037   #endif
1038  
1039      com /= totalMass;
# Line 1116 | Line 1042 | namespace oopse {
1042  
1043    }        
1044  
1045 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1045 >  ostream& operator <<(ostream& o, SimInfo& info) {
1046  
1047      return o;
1048    }
# Line 1131 | Line 1057 | namespace oopse {
1057        Molecule* mol;
1058        
1059      
1060 <      double totalMass = 0.0;
1060 >      RealType totalMass = 0.0;
1061      
1062  
1063        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1064 <         double mass = mol->getMass();
1064 >         RealType mass = mol->getMass();
1065           totalMass += mass;
1066           com += mass * mol->getCom();
1067           comVel += mass * mol->getComVel();          
1068        }  
1069        
1070   #ifdef IS_MPI
1071 <      double tmpMass = totalMass;
1071 >      RealType tmpMass = totalMass;
1072        Vector3d tmpCom(com);  
1073        Vector3d tmpComVel(comVel);
1074 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1075 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1076 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1074 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1077   #endif
1078        
1079        com /= totalMass;
# Line 1159 | Line 1085 | namespace oopse {
1085  
1086  
1087         [  Ixx -Ixy  -Ixz ]
1088 <  J =| -Iyx  Iyy  -Iyz |
1088 >    J =| -Iyx  Iyy  -Iyz |
1089         [ -Izx -Iyz   Izz ]
1090      */
1091  
1092     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1093        
1094  
1095 <      double xx = 0.0;
1096 <      double yy = 0.0;
1097 <      double zz = 0.0;
1098 <      double xy = 0.0;
1099 <      double xz = 0.0;
1100 <      double yz = 0.0;
1095 >      RealType xx = 0.0;
1096 >      RealType yy = 0.0;
1097 >      RealType zz = 0.0;
1098 >      RealType xy = 0.0;
1099 >      RealType xz = 0.0;
1100 >      RealType yz = 0.0;
1101        Vector3d com(0.0);
1102        Vector3d comVel(0.0);
1103        
# Line 1183 | Line 1109 | namespace oopse {
1109        Vector3d thisq(0.0);
1110        Vector3d thisv(0.0);
1111  
1112 <      double thisMass = 0.0;
1112 >      RealType thisMass = 0.0;
1113      
1114        
1115        
# Line 1221 | Line 1147 | namespace oopse {
1147   #ifdef IS_MPI
1148        Mat3x3d tmpI(inertiaTensor);
1149        Vector3d tmpAngMom;
1150 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1151 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1150 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1152   #endif
1153                
1154        return;
# Line 1243 | Line 1169 | namespace oopse {
1169        Vector3d thisr(0.0);
1170        Vector3d thisp(0.0);
1171        
1172 <      double thisMass;
1172 >      RealType thisMass;
1173        
1174        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1175          thisMass = mol->getMass();
# Line 1256 | Line 1182 | namespace oopse {
1182        
1183   #ifdef IS_MPI
1184        Vector3d tmpAngMom;
1185 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1185 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1186   #endif
1187        
1188        return angularMomentum;
1189     }
1190    
1191 <  
1192 < }//end namespace oopse
1191 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1192 >    return IOIndexToIntegrableObject.at(index);
1193 >  }
1194 >  
1195 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1196 >    IOIndexToIntegrableObject= v;
1197 >  }
1198  
1199 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1200 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1201 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1202 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1203 +  */
1204 +  void SimInfo::getGyrationalVolume(RealType &volume){
1205 +    Mat3x3d intTensor;
1206 +    RealType det;
1207 +    Vector3d dummyAngMom;
1208 +    RealType sysconstants;
1209 +    RealType geomCnst;
1210 +
1211 +    geomCnst = 3.0/2.0;
1212 +    /* Get the inertial tensor and angular momentum for free*/
1213 +    getInertiaTensor(intTensor,dummyAngMom);
1214 +    
1215 +    det = intTensor.determinant();
1216 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1217 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1218 +    return;
1219 +  }
1220 +
1221 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1222 +    Mat3x3d intTensor;
1223 +    Vector3d dummyAngMom;
1224 +    RealType sysconstants;
1225 +    RealType geomCnst;
1226 +
1227 +    geomCnst = 3.0/2.0;
1228 +    /* Get the inertial tensor and angular momentum for free*/
1229 +    getInertiaTensor(intTensor,dummyAngMom);
1230 +    
1231 +    detI = intTensor.determinant();
1232 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1233 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1234 +    return;
1235 +  }
1236 + /*
1237 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1238 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1239 +      sdByGlobalIndex_ = v;
1240 +    }
1241 +
1242 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1243 +      //assert(index < nAtoms_ + nRigidBodies_);
1244 +      return sdByGlobalIndex_.at(index);
1245 +    }  
1246 + */  
1247 +  int SimInfo::getNGlobalConstraints() {
1248 +    int nGlobalConstraints;
1249 + #ifdef IS_MPI
1250 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1251 +                  MPI_COMM_WORLD);    
1252 + #else
1253 +    nGlobalConstraints =  nConstraints_;
1254 + #endif
1255 +    return nGlobalConstraints;
1256 +  }
1257 +
1258 + }//end namespace OpenMD
1259 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 734 by chuckv, Tue Nov 15 16:05:38 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines