ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60 <
60 > #include "selection/SelectionManager.hpp"
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
63 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                                ForceField* ff, Globals* simParams) :
72 <                                forceField_(ff), simParams_(simParams),
73 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <                                sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
78 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81      MoleculeStamp* molStamp;
82      int nMolWithSameStamp;
83      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85      CutoffGroupStamp* cgStamp;    
86      RigidBodyStamp* rbStamp;
87      int nRigidAtoms = 0;
88      
89 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 <        molStamp = i->first;
91 <        nMolWithSameStamp = i->second;
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
94 <
95 <        //calculate atoms in molecules
96 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
97 <
98 <
99 <        //calculate atoms in cutoff groups
100 <        int nAtomsInGroups = 0;
101 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 <        
103 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 <            cgStamp = molStamp->getCutoffGroup(j);
105 <            nAtomsInGroups += cgStamp->getNMembers();
106 <        }
107 <
108 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNCutoffGroups();
114 <        
115 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
116 <            rbStamp = molStamp->getRigidBody(j);
117 <            nAtomsInRigidBodies += rbStamp->getNMembers();
118 <        }
119 <
120 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
122 <        
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
123    //every free atom (atom does not belong to cutoff groups) is a cutoff group
124    //therefore the total number of cutoff groups in the system is equal to
125    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
126    //file plus the number of cutoff groups defined in meta-data file
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
128
129    //every free atom (atom does not belong to rigid bodies) is an integrable object
130    //therefore the total number of  integrable objects in the system is equal to
131    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
132    //file plus the number of  rigid bodies defined in meta-data file
133    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
134
135    nGlobalMols_ = molStampIds_.size();
136
137 #ifdef IS_MPI    
138    molToProcMap_.resize(nGlobalMols_);
139 #endif
134      
135 < }
136 <
137 < SimInfo::~SimInfo() {
138 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
139 <
140 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
135 >    //every free atom (atom does not belong to rigid bodies) is an
136 >    //integrable object therefore the total number of integrable objects
137 >    //in the system is equal to the total number of atoms minus number of
138 >    //atoms belong to rigid body defined in meta-data file plus the number
139 >    //of rigid bodies defined in meta-data file
140 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >      + nGlobalRigidBodies_;
142      
143 +    nGlobalMols_ = molStampIds_.size();
144 +    molToProcMap_.resize(nGlobalMols_);
145 +  }
146 +  
147 +  SimInfo::~SimInfo() {
148 +    map<int, Molecule*>::iterator i;
149 +    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 +      delete i->second;
151 +    }
152 +    molecules_.clear();
153 +      
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157 +  }
158  
152 }
159  
160 < int SimInfo::getNGlobalConstraints() {
155 <    int nGlobalConstraints;
156 < #ifdef IS_MPI
157 <    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
158 <                  MPI_COMM_WORLD);    
159 < #else
160 <    nGlobalConstraints =  nConstraints_;
161 < #endif
162 <    return nGlobalConstraints;
163 < }
164 <
165 < bool SimInfo::addMolecule(Molecule* mol) {
160 >  bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
168 <        nAtoms_ += mol->getNAtoms();
169 <        nBonds_ += mol->getNBonds();
170 <        nBends_ += mol->getNBends();
171 <        nTorsions_ += mol->getNTorsions();
172 <        nRigidBodies_ += mol->getNRigidBodies();
173 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
174 <        nCutoffGroups_ += mol->getNCutoffGroups();
175 <        nConstraints_ += mol->getNConstraintPairs();
176 <
177 <        addExcludePairs(mol);
178 <        
179 <        return true;
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168 >      nAtoms_ += mol->getNAtoms();
169 >      nBonds_ += mol->getNBonds();
170 >      nBends_ += mol->getNBends();
171 >      nTorsions_ += mol->getNTorsions();
172 >      nInversions_ += mol->getNInversions();
173 >      nRigidBodies_ += mol->getNRigidBodies();
174 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
175 >      nCutoffGroups_ += mol->getNCutoffGroups();
176 >      nConstraints_ += mol->getNConstraintPairs();
177 >      
178 >      addInteractionPairs(mol);
179 >      
180 >      return true;
181      } else {
182 <        return false;
182 >      return false;
183      }
184 < }
185 <
186 < bool SimInfo::removeMolecule(Molecule* mol) {
184 >  }
185 >  
186 >  bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
189  
190      if (i != molecules_.end() ) {
191  
192 <        assert(mol == i->second);
192 >      assert(mol == i->second);
193          
194 <        nAtoms_ -= mol->getNAtoms();
195 <        nBonds_ -= mol->getNBonds();
196 <        nBends_ -= mol->getNBends();
197 <        nTorsions_ -= mol->getNTorsions();
198 <        nRigidBodies_ -= mol->getNRigidBodies();
199 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
200 <        nCutoffGroups_ -= mol->getNCutoffGroups();
201 <        nConstraints_ -= mol->getNConstraintPairs();
194 >      nAtoms_ -= mol->getNAtoms();
195 >      nBonds_ -= mol->getNBonds();
196 >      nBends_ -= mol->getNBends();
197 >      nTorsions_ -= mol->getNTorsions();
198 >      nInversions_ -= mol->getNInversions();
199 >      nRigidBodies_ -= mol->getNRigidBodies();
200 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 >      nCutoffGroups_ -= mol->getNCutoffGroups();
202 >      nConstraints_ -= mol->getNConstraintPairs();
203  
204 <        removeExcludePairs(mol);
205 <        molecules_.erase(mol->getGlobalIndex());
204 >      removeInteractionPairs(mol);
205 >      molecules_.erase(mol->getGlobalIndex());
206  
207 <        delete mol;
207 >      delete mol;
208          
209 <        return true;
209 >      return true;
210      } else {
211 <        return false;
211 >      return false;
212      }
213 +  }    
214  
217
218 }    
219
215          
216 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
216 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217      i = molecules_.begin();
218      return i == molecules_.end() ? NULL : i->second;
219 < }    
219 >  }    
220  
221 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
221 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222      ++i;
223      return i == molecules_.end() ? NULL : i->second;    
224 < }
224 >  }
225  
226  
227 < void SimInfo::calcNdf() {
228 <    int ndf_local;
227 >  void SimInfo::calcNdf() {
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 <               integrableObject = mol->nextIntegrableObject(j)) {
241 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 >           integrableObject = mol->nextIntegrableObject(j)) {
243  
244 <            ndf_local += 3;
244 >        ndf_local += 3;
245  
246 <            if (integrableObject->isDirectional()) {
247 <                if (integrableObject->isLinear()) {
248 <                    ndf_local += 2;
249 <                } else {
250 <                    ndf_local += 3;
251 <                }
252 <            }
253 <            
254 <        }//end for (integrableObject)
255 <    }// end for (mol)
246 >        if (integrableObject->isDirectional()) {
247 >          if (integrableObject->isLinear()) {
248 >            ndf_local += 2;
249 >          } else {
250 >            ndf_local += 3;
251 >          }
252 >        }
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261      
262 +    ndfLocal_ = ndf_local;
263 +    cerr << "ndfLocal_ = " << ndfLocal_ << "\n";
264 +
265      // n_constraints is local, so subtract them on each processor
266      ndf_local -= nConstraints_;
267  
268   #ifdef IS_MPI
269      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
271   #else
272      ndf_ = ndf_local;
273 +    nGlobalFluctuatingCharges_ = nfq_local;
274   #endif
275  
276      // nZconstraints_ is global, as are the 3 COM translations for the
277      // entire system:
278      ndf_ = ndf_ - 3 - nZconstraint_;
279  
280 < }
280 >  }
281  
282 < void SimInfo::calcNdfRaw() {
282 >  int SimInfo::getFdf() {
283 > #ifdef IS_MPI
284 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
285 > #else
286 >    fdf_ = fdf_local;
287 > #endif
288 >    return fdf_;
289 >  }
290 >  
291 >  unsigned int SimInfo::getNLocalCutoffGroups(){
292 >    int nLocalCutoffAtoms = 0;
293 >    Molecule* mol;
294 >    MoleculeIterator mi;
295 >    CutoffGroup* cg;
296 >    Molecule::CutoffGroupIterator ci;
297 >    
298 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
299 >      
300 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
301 >           cg = mol->nextCutoffGroup(ci)) {
302 >        nLocalCutoffAtoms += cg->getNumAtom();
303 >        
304 >      }        
305 >    }
306 >    
307 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
308 >  }
309 >    
310 >  void SimInfo::calcNdfRaw() {
311      int ndfRaw_local;
312  
313      MoleculeIterator i;
314 <    std::vector<StuntDouble*>::iterator j;
314 >    vector<StuntDouble*>::iterator j;
315      Molecule* mol;
316      StuntDouble* integrableObject;
317  
# Line 282 | Line 319 | void SimInfo::calcNdfRaw() {
319      ndfRaw_local = 0;
320      
321      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
322 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
323 <               integrableObject = mol->nextIntegrableObject(j)) {
322 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
323 >           integrableObject = mol->nextIntegrableObject(j)) {
324  
325 <            ndfRaw_local += 3;
325 >        ndfRaw_local += 3;
326  
327 <            if (integrableObject->isDirectional()) {
328 <                if (integrableObject->isLinear()) {
329 <                    ndfRaw_local += 2;
330 <                } else {
331 <                    ndfRaw_local += 3;
332 <                }
333 <            }
327 >        if (integrableObject->isDirectional()) {
328 >          if (integrableObject->isLinear()) {
329 >            ndfRaw_local += 2;
330 >          } else {
331 >            ndfRaw_local += 3;
332 >          }
333 >        }
334              
335 <        }
335 >      }
336      }
337      
338   #ifdef IS_MPI
# Line 303 | Line 340 | void SimInfo::calcNdfRaw() {
340   #else
341      ndfRaw_ = ndfRaw_local;
342   #endif
343 < }
343 >  }
344  
345 < void SimInfo::calcNdfTrans() {
345 >  void SimInfo::calcNdfTrans() {
346      int ndfTrans_local;
347  
348      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 319 | Line 356 | void SimInfo::calcNdfTrans() {
356  
357      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
358  
359 < }
359 >  }
360  
361 < void SimInfo::addExcludePairs(Molecule* mol) {
362 <    std::vector<Bond*>::iterator bondIter;
363 <    std::vector<Bend*>::iterator bendIter;
364 <    std::vector<Torsion*>::iterator torsionIter;
361 >  void SimInfo::addInteractionPairs(Molecule* mol) {
362 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
363 >    vector<Bond*>::iterator bondIter;
364 >    vector<Bend*>::iterator bendIter;
365 >    vector<Torsion*>::iterator torsionIter;
366 >    vector<Inversion*>::iterator inversionIter;
367      Bond* bond;
368      Bend* bend;
369      Torsion* torsion;
370 +    Inversion* inversion;
371      int a;
372      int b;
373      int c;
374      int d;
335    
336    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
337        a = bond->getAtomA()->getGlobalIndex();
338        b = bond->getAtomB()->getGlobalIndex();        
339        exclude_.addPair(a, b);
340    }
375  
376 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
377 <        a = bend->getAtomA()->getGlobalIndex();
378 <        b = bend->getAtomB()->getGlobalIndex();        
379 <        c = bend->getAtomC()->getGlobalIndex();
376 >    // atomGroups can be used to add special interaction maps between
377 >    // groups of atoms that are in two separate rigid bodies.
378 >    // However, most site-site interactions between two rigid bodies
379 >    // are probably not special, just the ones between the physically
380 >    // bonded atoms.  Interactions *within* a single rigid body should
381 >    // always be excluded.  These are done at the bottom of this
382 >    // function.
383  
384 <        exclude_.addPair(a, b);
385 <        exclude_.addPair(a, c);
386 <        exclude_.addPair(b, c);        
387 <    }
388 <
389 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
390 <        a = torsion->getAtomA()->getGlobalIndex();
391 <        b = torsion->getAtomB()->getGlobalIndex();        
392 <        c = torsion->getAtomC()->getGlobalIndex();        
393 <        d = torsion->getAtomD()->getGlobalIndex();        
384 >    map<int, set<int> > atomGroups;
385 >    Molecule::RigidBodyIterator rbIter;
386 >    RigidBody* rb;
387 >    Molecule::IntegrableObjectIterator ii;
388 >    StuntDouble* integrableObject;
389 >    
390 >    for (integrableObject = mol->beginIntegrableObject(ii);
391 >         integrableObject != NULL;
392 >         integrableObject = mol->nextIntegrableObject(ii)) {
393 >      
394 >      if (integrableObject->isRigidBody()) {
395 >        rb = static_cast<RigidBody*>(integrableObject);
396 >        vector<Atom*> atoms = rb->getAtoms();
397 >        set<int> rigidAtoms;
398 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
399 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
400 >        }
401 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
402 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
403 >        }      
404 >      } else {
405 >        set<int> oneAtomSet;
406 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
407 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
408 >      }
409 >    }  
410 >          
411 >    for (bond= mol->beginBond(bondIter); bond != NULL;
412 >         bond = mol->nextBond(bondIter)) {
413  
414 <        exclude_.addPair(a, b);
415 <        exclude_.addPair(a, c);
416 <        exclude_.addPair(a, d);
417 <        exclude_.addPair(b, c);
418 <        exclude_.addPair(b, d);
419 <        exclude_.addPair(c, d);        
414 >      a = bond->getAtomA()->getGlobalIndex();
415 >      b = bond->getAtomB()->getGlobalIndex();  
416 >    
417 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
418 >        oneTwoInteractions_.addPair(a, b);
419 >      } else {
420 >        excludedInteractions_.addPair(a, b);
421 >      }
422      }
423  
424 <    
425 < }
424 >    for (bend= mol->beginBend(bendIter); bend != NULL;
425 >         bend = mol->nextBend(bendIter)) {
426  
427 < void SimInfo::removeExcludePairs(Molecule* mol) {
428 <    std::vector<Bond*>::iterator bondIter;
429 <    std::vector<Bend*>::iterator bendIter;
430 <    std::vector<Torsion*>::iterator torsionIter;
427 >      a = bend->getAtomA()->getGlobalIndex();
428 >      b = bend->getAtomB()->getGlobalIndex();        
429 >      c = bend->getAtomC()->getGlobalIndex();
430 >      
431 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
432 >        oneTwoInteractions_.addPair(a, b);      
433 >        oneTwoInteractions_.addPair(b, c);
434 >      } else {
435 >        excludedInteractions_.addPair(a, b);
436 >        excludedInteractions_.addPair(b, c);
437 >      }
438 >
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >      } else {
442 >        excludedInteractions_.addPair(a, c);
443 >      }
444 >    }
445 >
446 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
447 >         torsion = mol->nextTorsion(torsionIter)) {
448 >
449 >      a = torsion->getAtomA()->getGlobalIndex();
450 >      b = torsion->getAtomB()->getGlobalIndex();        
451 >      c = torsion->getAtomC()->getGlobalIndex();        
452 >      d = torsion->getAtomD()->getGlobalIndex();      
453 >
454 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
455 >        oneTwoInteractions_.addPair(a, b);      
456 >        oneTwoInteractions_.addPair(b, c);
457 >        oneTwoInteractions_.addPair(c, d);
458 >      } else {
459 >        excludedInteractions_.addPair(a, b);
460 >        excludedInteractions_.addPair(b, c);
461 >        excludedInteractions_.addPair(c, d);
462 >      }
463 >
464 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
465 >        oneThreeInteractions_.addPair(a, c);      
466 >        oneThreeInteractions_.addPair(b, d);      
467 >      } else {
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(b, d);
470 >      }
471 >
472 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
473 >        oneFourInteractions_.addPair(a, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(a, d);
476 >      }
477 >    }
478 >
479 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
480 >         inversion = mol->nextInversion(inversionIter)) {
481 >
482 >      a = inversion->getAtomA()->getGlobalIndex();
483 >      b = inversion->getAtomB()->getGlobalIndex();        
484 >      c = inversion->getAtomC()->getGlobalIndex();        
485 >      d = inversion->getAtomD()->getGlobalIndex();        
486 >
487 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
488 >        oneTwoInteractions_.addPair(a, b);      
489 >        oneTwoInteractions_.addPair(a, c);
490 >        oneTwoInteractions_.addPair(a, d);
491 >      } else {
492 >        excludedInteractions_.addPair(a, b);
493 >        excludedInteractions_.addPair(a, c);
494 >        excludedInteractions_.addPair(a, d);
495 >      }
496 >
497 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
498 >        oneThreeInteractions_.addPair(b, c);    
499 >        oneThreeInteractions_.addPair(b, d);    
500 >        oneThreeInteractions_.addPair(c, d);      
501 >      } else {
502 >        excludedInteractions_.addPair(b, c);
503 >        excludedInteractions_.addPair(b, d);
504 >        excludedInteractions_.addPair(c, d);
505 >      }
506 >    }
507 >
508 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
509 >         rb = mol->nextRigidBody(rbIter)) {
510 >      vector<Atom*> atoms = rb->getAtoms();
511 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
512 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
513 >          a = atoms[i]->getGlobalIndex();
514 >          b = atoms[j]->getGlobalIndex();
515 >          excludedInteractions_.addPair(a, b);
516 >        }
517 >      }
518 >    }        
519 >
520 >  }
521 >
522 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
523 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
524 >    vector<Bond*>::iterator bondIter;
525 >    vector<Bend*>::iterator bendIter;
526 >    vector<Torsion*>::iterator torsionIter;
527 >    vector<Inversion*>::iterator inversionIter;
528      Bond* bond;
529      Bend* bend;
530      Torsion* torsion;
531 +    Inversion* inversion;
532      int a;
533      int b;
534      int c;
535      int d;
536 +
537 +    map<int, set<int> > atomGroups;
538 +    Molecule::RigidBodyIterator rbIter;
539 +    RigidBody* rb;
540 +    Molecule::IntegrableObjectIterator ii;
541 +    StuntDouble* integrableObject;
542      
543 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
544 <        a = bond->getAtomA()->getGlobalIndex();
545 <        b = bond->getAtomB()->getGlobalIndex();        
546 <        exclude_.removePair(a, b);
543 >    for (integrableObject = mol->beginIntegrableObject(ii);
544 >         integrableObject != NULL;
545 >         integrableObject = mol->nextIntegrableObject(ii)) {
546 >      
547 >      if (integrableObject->isRigidBody()) {
548 >        rb = static_cast<RigidBody*>(integrableObject);
549 >        vector<Atom*> atoms = rb->getAtoms();
550 >        set<int> rigidAtoms;
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
553 >        }
554 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
555 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
556 >        }      
557 >      } else {
558 >        set<int> oneAtomSet;
559 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
560 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
561 >      }
562 >    }  
563 >
564 >    for (bond= mol->beginBond(bondIter); bond != NULL;
565 >         bond = mol->nextBond(bondIter)) {
566 >      
567 >      a = bond->getAtomA()->getGlobalIndex();
568 >      b = bond->getAtomB()->getGlobalIndex();  
569 >    
570 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
571 >        oneTwoInteractions_.removePair(a, b);
572 >      } else {
573 >        excludedInteractions_.removePair(a, b);
574 >      }
575      }
576  
577 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
578 <        a = bend->getAtomA()->getGlobalIndex();
389 <        b = bend->getAtomB()->getGlobalIndex();        
390 <        c = bend->getAtomC()->getGlobalIndex();
577 >    for (bend= mol->beginBend(bendIter); bend != NULL;
578 >         bend = mol->nextBend(bendIter)) {
579  
580 <        exclude_.removePair(a, b);
581 <        exclude_.removePair(a, c);
582 <        exclude_.removePair(b, c);        
580 >      a = bend->getAtomA()->getGlobalIndex();
581 >      b = bend->getAtomB()->getGlobalIndex();        
582 >      c = bend->getAtomC()->getGlobalIndex();
583 >      
584 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
585 >        oneTwoInteractions_.removePair(a, b);      
586 >        oneTwoInteractions_.removePair(b, c);
587 >      } else {
588 >        excludedInteractions_.removePair(a, b);
589 >        excludedInteractions_.removePair(b, c);
590 >      }
591 >
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >      } else {
595 >        excludedInteractions_.removePair(a, c);
596 >      }
597      }
598  
599 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
600 <        a = torsion->getAtomA()->getGlobalIndex();
399 <        b = torsion->getAtomB()->getGlobalIndex();        
400 <        c = torsion->getAtomC()->getGlobalIndex();        
401 <        d = torsion->getAtomD()->getGlobalIndex();        
599 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
600 >         torsion = mol->nextTorsion(torsionIter)) {
601  
602 <        exclude_.removePair(a, b);
603 <        exclude_.removePair(a, c);
604 <        exclude_.removePair(a, d);
605 <        exclude_.removePair(b, c);
606 <        exclude_.removePair(b, d);
607 <        exclude_.removePair(c, d);        
602 >      a = torsion->getAtomA()->getGlobalIndex();
603 >      b = torsion->getAtomB()->getGlobalIndex();        
604 >      c = torsion->getAtomC()->getGlobalIndex();        
605 >      d = torsion->getAtomD()->getGlobalIndex();      
606 >  
607 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
608 >        oneTwoInteractions_.removePair(a, b);      
609 >        oneTwoInteractions_.removePair(b, c);
610 >        oneTwoInteractions_.removePair(c, d);
611 >      } else {
612 >        excludedInteractions_.removePair(a, b);
613 >        excludedInteractions_.removePair(b, c);
614 >        excludedInteractions_.removePair(c, d);
615 >      }
616 >
617 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
618 >        oneThreeInteractions_.removePair(a, c);      
619 >        oneThreeInteractions_.removePair(b, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(b, d);
623 >      }
624 >
625 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
626 >        oneFourInteractions_.removePair(a, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(a, d);
629 >      }
630      }
631  
632 < }
632 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
633 >         inversion = mol->nextInversion(inversionIter)) {
634  
635 +      a = inversion->getAtomA()->getGlobalIndex();
636 +      b = inversion->getAtomB()->getGlobalIndex();        
637 +      c = inversion->getAtomC()->getGlobalIndex();        
638 +      d = inversion->getAtomD()->getGlobalIndex();        
639  
640 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
641 <    int curStampId;
640 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
641 >        oneTwoInteractions_.removePair(a, b);      
642 >        oneTwoInteractions_.removePair(a, c);
643 >        oneTwoInteractions_.removePair(a, d);
644 >      } else {
645 >        excludedInteractions_.removePair(a, b);
646 >        excludedInteractions_.removePair(a, c);
647 >        excludedInteractions_.removePair(a, d);
648 >      }
649  
650 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
651 +        oneThreeInteractions_.removePair(b, c);    
652 +        oneThreeInteractions_.removePair(b, d);    
653 +        oneThreeInteractions_.removePair(c, d);      
654 +      } else {
655 +        excludedInteractions_.removePair(b, c);
656 +        excludedInteractions_.removePair(b, d);
657 +        excludedInteractions_.removePair(c, d);
658 +      }
659 +    }
660 +
661 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
662 +         rb = mol->nextRigidBody(rbIter)) {
663 +      vector<Atom*> atoms = rb->getAtoms();
664 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
665 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
666 +          a = atoms[i]->getGlobalIndex();
667 +          b = atoms[j]->getGlobalIndex();
668 +          excludedInteractions_.removePair(a, b);
669 +        }
670 +      }
671 +    }        
672 +    
673 +  }
674 +  
675 +  
676 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
677 +    int curStampId;
678 +    
679      //index from 0
680      curStampId = moleculeStamps_.size();
681  
682      moleculeStamps_.push_back(molStamp);
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684 < }
684 >  }
685  
424 void SimInfo::update() {
686  
687 <    setupSimType();
688 <
689 < #ifdef IS_MPI
690 <    setupFortranParallel();
691 < #endif
692 <
693 <    setupFortranSim();
694 <
695 <    //setup fortran force field
435 <    /** @deprecate */    
436 <    int isError = 0;
437 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
438 <    if(isError){
439 <        sprintf( painCave.errMsg,
440 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
441 <        painCave.isFatal = 1;
442 <        simError();
443 <    }
444 <  
445 <    
446 <    setupCutoff();
447 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699 <
700 <    fortranInitialized_ = true;
701 < }
702 <
703 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
699 >  }
700 >  
701 >  /**
702 >   * getSimulatedAtomTypes
703 >   *
704 >   * Returns an STL set of AtomType* that are actually present in this
705 >   * simulation.  Must query all processors to assemble this information.
706 >   *
707 >   */
708 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
711      Molecule::AtomIterator ai;
712      Atom* atom;
713 <    std::set<AtomType*> atomTypes;
714 <
713 >    set<AtomType*> atomTypes;
714 >    
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 +      for(atom = mol->beginAtom(ai); atom != NULL;
717 +          atom = mol->nextAtom(ai)) {
718 +        atomTypes.insert(atom->getAtomType());
719 +      }      
720 +    }    
721 +    
722 + #ifdef IS_MPI
723  
724 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
725 <            atomTypes.insert(atom->getAtomType());
726 <        }
727 <        
728 <    }
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726 >    
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    return atomTypes;        
733 < }
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734  
735 < void SimInfo::setupSimType() {
474 <    std::set<AtomType*>::iterator i;
475 <    std::set<AtomType*> atomTypes;
476 <    atomTypes = getUniqueAtomTypes();
477 <    
478 <    int useLennardJones = 0;
479 <    int useElectrostatic = 0;
480 <    int useEAM = 0;
481 <    int useCharge = 0;
482 <    int useDirectional = 0;
483 <    int useDipole = 0;
484 <    int useGayBerne = 0;
485 <    int useSticky = 0;
486 <    int useShape = 0;
487 <    int useFLARB = 0; //it is not in AtomType yet
488 <    int useDirectionalAtom = 0;    
489 <    int useElectrostatics = 0;
490 <    //usePBC and useRF are from simParams
491 <    int usePBC = simParams_->getPBC();
492 <    int useRF = simParams_->getUseRF();
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736  
737 <    //loop over all of the atom types
738 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
739 <        useLennardJones |= (*i)->isLennardJones();
740 <        useElectrostatic |= (*i)->isElectrostatic();
498 <        useEAM |= (*i)->isEAM();
499 <        useCharge |= (*i)->isCharge();
500 <        useDirectional |= (*i)->isDirectional();
501 <        useDipole |= (*i)->isDipole();
502 <        useGayBerne |= (*i)->isGayBerne();
503 <        useSticky |= (*i)->isSticky();
504 <        useShape |= (*i)->isShape();
505 <    }
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741  
742 <    if (useSticky || useDipole || useGayBerne || useShape) {
743 <        useDirectionalAtom = 1;
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745 >  
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752      }
753  
754 <    if (useCharge || useDipole) {
755 <        useElectrostatics = 1;
756 <    }
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756 >    
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 < #ifdef IS_MPI    
516 <    int temp;
762 >    vector<int>::iterator j;
763  
764 <    temp = usePBC;
765 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767  
768 <    temp = useDirectionalAtom;
769 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770 >    
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778  
779 <    temp = useLennardJones;
780 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
779 >    return atomTypes;        
780 >  }
781  
782 <    temp = useElectrostatics;
783 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790 >    
791 >    set<AtomType*>::iterator i;
792 >    set<AtomType*> atomTypes;
793 >    atomTypes = getSimulatedAtomTypes();    
794 >    int usesElectrostatic = 0;
795 >    int usesMetallic = 0;
796 >    int usesDirectional = 0;
797 >    int usesFluctuatingCharges =  0;
798 >    //loop over all of the atom types
799 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800 >      usesElectrostatic |= (*i)->isElectrostatic();
801 >      usesMetallic |= (*i)->isMetal();
802 >      usesDirectional |= (*i)->isDirectional();
803 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804 >    }
805 >    
806 > #ifdef IS_MPI    
807 >    int temp;
808 >    temp = usesDirectional;
809 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >    
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 >    
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816  
817 <    temp = useCharge;
818 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817 >    temp = usesFluctuatingCharges;
818 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 > #else
820  
821 <    temp = useDipole;
822 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 >    usesDirectionalAtoms_ = usesDirectional;
822 >    usesMetallicAtoms_ = usesMetallic;
823 >    usesElectrostaticAtoms_ = usesElectrostatic;
824 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
825  
826 <    temp = useSticky;
827 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 > #endif
827 >    
828 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
829 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
830 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
831 >  }
832  
539    temp = useGayBerne;
540    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833  
834 <    temp = useEAM;
835 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
834 >  vector<int> SimInfo::getGlobalAtomIndices() {
835 >    SimInfo::MoleculeIterator mi;
836 >    Molecule* mol;
837 >    Molecule::AtomIterator ai;
838 >    Atom* atom;
839  
840 <    temp = useShape;
546 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
547 <
548 <    temp = useFLARB;
549 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
550 <
551 <    temp = useRF;
552 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
841      
842 < #endif
842 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
843 >      
844 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
845 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
846 >      }
847 >    }
848 >    return GlobalAtomIndices;
849 >  }
850  
556    fInfo_.SIM_uses_PBC = usePBC;    
557    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
558    fInfo_.SIM_uses_LennardJones = useLennardJones;
559    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
560    fInfo_.SIM_uses_Charges = useCharge;
561    fInfo_.SIM_uses_Dipoles = useDipole;
562    fInfo_.SIM_uses_Sticky = useSticky;
563    fInfo_.SIM_uses_GayBerne = useGayBerne;
564    fInfo_.SIM_uses_EAM = useEAM;
565    fInfo_.SIM_uses_Shapes = useShape;
566    fInfo_.SIM_uses_FLARB = useFLARB;
567    fInfo_.SIM_uses_RF = useRF;
851  
852 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
852 >  vector<int> SimInfo::getGlobalGroupIndices() {
853 >    SimInfo::MoleculeIterator mi;
854 >    Molecule* mol;
855 >    Molecule::CutoffGroupIterator ci;
856 >    CutoffGroup* cg;
857  
858 <        if (simParams_->haveDielectric()) {
859 <            fInfo_.dielect = simParams_->getDielectric();
860 <        } else {
861 <            sprintf(painCave.errMsg,
862 <                    "SimSetup Error: No Dielectric constant was set.\n"
863 <                    "\tYou are trying to use Reaction Field without"
864 <                    "\tsetting a dielectric constant!\n");
865 <            painCave.isFatal = 1;
866 <            simError();
867 <        }
581 <        
582 <    } else {
583 <        fInfo_.dielect = 0.0;
858 >    vector<int> GlobalGroupIndices;
859 >    
860 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
861 >      
862 >      //local index of cutoff group is trivial, it only depends on the
863 >      //order of travesing
864 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 >           cg = mol->nextCutoffGroup(ci)) {
866 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
867 >      }        
868      }
869 +    return GlobalGroupIndices;
870 +  }
871  
586 }
872  
873 < void SimInfo::setupFortranSim() {
874 <    int isError;
590 <    int nExclude;
591 <    std::vector<int> fortranGlobalGroupMembership;
592 <    
593 <    nExclude = exclude_.getSize();
594 <    isError = 0;
873 >  void SimInfo::prepareTopology() {
874 >    int nExclude, nOneTwo, nOneThree, nOneFour;
875  
596    //globalGroupMembership_ is filled by SimCreator    
597    for (int i = 0; i < nGlobalAtoms_; i++) {
598        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
599    }
600
876      //calculate mass ratio of cutoff group
602    std::vector<double> mfact;
877      SimInfo::MoleculeIterator mi;
878      Molecule* mol;
879      Molecule::CutoffGroupIterator ci;
880      CutoffGroup* cg;
881      Molecule::AtomIterator ai;
882      Atom* atom;
883 <    double totalMass;
883 >    RealType totalMass;
884  
885 <    //to avoid memory reallocation, reserve enough space for mfact
886 <    mfact.reserve(getNCutoffGroups());
885 >    /**
886 >     * The mass factor is the relative mass of an atom to the total
887 >     * mass of the cutoff group it belongs to.  By default, all atoms
888 >     * are their own cutoff groups, and therefore have mass factors of
889 >     * 1.  We need some special handling for massless atoms, which
890 >     * will be treated as carrying the entire mass of the cutoff
891 >     * group.
892 >     */
893 >    massFactors_.clear();
894 >    massFactors_.resize(getNAtoms(), 1.0);
895      
896      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
897 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
898 >           cg = mol->nextCutoffGroup(ci)) {
899  
900 <            totalMass = cg->getMass();
901 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902 <                        mfact.push_back(atom->getMass()/totalMass);
903 <            }
904 <
905 <        }      
900 >        totalMass = cg->getMass();
901 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902 >          // Check for massless groups - set mfact to 1 if true
903 >          if (totalMass != 0)
904 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
905 >          else
906 >            massFactors_[atom->getLocalIndex()] = 1.0;
907 >        }
908 >      }      
909      }
910  
911 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
626 <    std::vector<int> identArray;
911 >    // Build the identArray_
912  
913 <    //to avoid memory reallocation, reserve enough space identArray
914 <    identArray.reserve(getNAtoms());
630 <    
913 >    identArray_.clear();
914 >    identArray_.reserve(getNAtoms());    
915      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
916 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
917 <            identArray.push_back(atom->getIdent());
918 <        }
916 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
917 >        identArray_.push_back(atom->getIdent());
918 >      }
919      }    
636
637    //fill molMembershipArray
638    //molMembershipArray is filled by SimCreator    
639    std::vector<int> molMembershipArray(nGlobalAtoms_);
640    for (int i = 0; i < nGlobalAtoms_; i++) {
641        molMembershipArray[i] = globalMolMembership_[i] + 1;
642    }
920      
921 <    //setup fortran simulation
645 <    //gloalExcludes and molMembershipArray should go away (They are never used)
646 <    //why the hell fortran need to know molecule?
647 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
648 <    int nGlobalExcludes = 0;
649 <    int* globalExcludes = NULL;
650 <    int* excludeList = exclude_.getExcludeList();
651 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
652 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
653 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
921 >    //scan topology
922  
923 <    if( isError ){
923 >    nExclude = excludedInteractions_.getSize();
924 >    nOneTwo = oneTwoInteractions_.getSize();
925 >    nOneThree = oneThreeInteractions_.getSize();
926 >    nOneFour = oneFourInteractions_.getSize();
927  
928 <        sprintf( painCave.errMsg,
929 <                 "There was an error setting the simulation information in fortran.\n" );
930 <        painCave.isFatal = 1;
931 <        painCave.severity = OOPSE_ERROR;
661 <        simError();
662 <    }
928 >    int* excludeList = excludedInteractions_.getPairList();
929 >    int* oneTwoList = oneTwoInteractions_.getPairList();
930 >    int* oneThreeList = oneThreeInteractions_.getPairList();
931 >    int* oneFourList = oneFourInteractions_.getPairList();
932  
933 < #ifdef IS_MPI
934 <    sprintf( checkPointMsg,
666 <       "succesfully sent the simulation information to fortran.\n");
667 <    MPIcheckPoint();
668 < #endif // is_mpi
669 < }
933 >    topologyDone_ = true;
934 >  }
935  
936 +  void SimInfo::addProperty(GenericData* genData) {
937 +    properties_.addProperty(genData);  
938 +  }
939  
940 < #ifdef IS_MPI
941 < void SimInfo::setupFortranParallel() {
942 <    
675 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
676 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
677 <    std::vector<int> localToGlobalCutoffGroupIndex;
678 <    SimInfo::MoleculeIterator mi;
679 <    Molecule::AtomIterator ai;
680 <    Molecule::CutoffGroupIterator ci;
681 <    Molecule* mol;
682 <    Atom* atom;
683 <    CutoffGroup* cg;
684 <    mpiSimData parallelData;
685 <    int isError;
940 >  void SimInfo::removeProperty(const string& propName) {
941 >    properties_.removeProperty(propName);  
942 >  }
943  
944 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
944 >  void SimInfo::clearProperties() {
945 >    properties_.clearProperties();
946 >  }
947  
948 <        //local index(index in DataStorge) of atom is important
949 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
950 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
951 <        }
948 >  vector<string> SimInfo::getPropertyNames() {
949 >    return properties_.getPropertyNames();  
950 >  }
951 >      
952 >  vector<GenericData*> SimInfo::getProperties() {
953 >    return properties_.getProperties();
954 >  }
955  
956 <        //local index of cutoff group is trivial, it only depends on the order of travesing
695 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
696 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
697 <        }        
698 <        
699 <    }
700 <
701 <    //fill up mpiSimData struct
702 <    parallelData.nMolGlobal = getNGlobalMolecules();
703 <    parallelData.nMolLocal = getNMolecules();
704 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
705 <    parallelData.nAtomsLocal = getNAtoms();
706 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
707 <    parallelData.nGroupsLocal = getNCutoffGroups();
708 <    parallelData.myNode = worldRank;
709 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
710 <
711 <    //pass mpiSimData struct and index arrays to fortran
712 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
713 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
714 <                    &localToGlobalCutoffGroupIndex[0], &isError);
715 <
716 <    if (isError) {
717 <        sprintf(painCave.errMsg,
718 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
719 <        painCave.isFatal = 1;
720 <        simError();
721 <    }
722 <
723 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
724 <    MPIcheckPoint();
725 <
726 <
727 < }
728 <
729 < #endif
730 <
731 < double SimInfo::calcMaxCutoffRadius() {
732 <
733 <
734 <    std::set<AtomType*> atomTypes;
735 <    std::set<AtomType*>::iterator i;
736 <    std::vector<double> cutoffRadius;
737 <
738 <    //get the unique atom types
739 <    atomTypes = getUniqueAtomTypes();
740 <
741 <    //query the max cutoff radius among these atom types
742 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
743 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
744 <    }
745 <
746 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
747 < #ifdef IS_MPI
748 <    //pick the max cutoff radius among the processors
749 < #endif
750 <
751 <    return maxCutoffRadius;
752 < }
753 <
754 < void SimInfo::setupCutoff() {
755 <    double rcut_;  //cutoff radius
756 <    double rsw_; //switching radius
757 <    
758 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
759 <        
760 <        if (!simParams_->haveRcut()){
761 <            sprintf(painCave.errMsg,
762 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
763 <                "\tOOPSE will use a default value of 15.0 angstroms"
764 <                "\tfor the cutoffRadius.\n");
765 <            painCave.isFatal = 0;
766 <            simError();
767 <            rcut_ = 15.0;
768 <        } else{
769 <            rcut_ = simParams_->getRcut();
770 <        }
771 <
772 <        if (!simParams_->haveRsw()){
773 <            sprintf(painCave.errMsg,
774 <                "SimCreator Warning: No value was set for switchingRadius.\n"
775 <                "\tOOPSE will use a default value of\n"
776 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
777 <            painCave.isFatal = 0;
778 <            simError();
779 <            rsw_ = 0.95 * rcut_;
780 <        } else{
781 <            rsw_ = simParams_->getRsw();
782 <        }
783 <
784 <    } else {
785 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
786 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
787 <        
788 <        if (simParams_->haveRcut()) {
789 <            rcut_ = simParams_->getRcut();
790 <        } else {
791 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
792 <            rcut_ = calcMaxCutoffRadius();
793 <        }
794 <
795 <        if (simParams_->haveRsw()) {
796 <            rsw_  = simParams_->getRsw();
797 <        } else {
798 <            rsw_ = rcut_;
799 <        }
800 <    
801 <    }
802 <        
803 <    double rnblist = rcut_ + 1; // skin of neighbor list
804 <
805 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
806 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
807 < }
808 <
809 < void SimInfo::addProperty(GenericData* genData) {
810 <    properties_.addProperty(genData);  
811 < }
812 <
813 < void SimInfo::removeProperty(const std::string& propName) {
814 <    properties_.removeProperty(propName);  
815 < }
816 <
817 < void SimInfo::clearProperties() {
818 <    properties_.clearProperties();
819 < }
820 <
821 < std::vector<std::string> SimInfo::getPropertyNames() {
822 <    return properties_.getPropertyNames();  
823 < }
824 <      
825 < std::vector<GenericData*> SimInfo::getProperties() {
826 <    return properties_.getProperties();
827 < }
828 <
829 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
956 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
957      return properties_.getPropertyByName(propName);
958 < }
958 >  }
959  
960 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
960 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
961 >    if (sman_ == sman) {
962 >      return;
963 >    }    
964 >    delete sman_;
965      sman_ = sman;
966  
967      Molecule* mol;
968      RigidBody* rb;
969      Atom* atom;
970 +    CutoffGroup* cg;
971      SimInfo::MoleculeIterator mi;
972      Molecule::RigidBodyIterator rbIter;
973 <    Molecule::AtomIterator atomIter;;
973 >    Molecule::AtomIterator atomIter;
974 >    Molecule::CutoffGroupIterator cgIter;
975  
976      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
977          
978 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
979 <            atom->setSnapshotManager(sman_);
980 <        }
978 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
979 >        atom->setSnapshotManager(sman_);
980 >      }
981          
982 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
983 <            rb->setSnapshotManager(sman_);
984 <        }
982 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
983 >        rb->setSnapshotManager(sman_);
984 >      }
985 >
986 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
987 >        cg->setSnapshotManager(sman_);
988 >      }
989      }    
990      
991 < }
991 >  }
992  
993 < Vector3d SimInfo::getComVel(){
993 >  Vector3d SimInfo::getComVel(){
994      SimInfo::MoleculeIterator i;
995      Molecule* mol;
996  
997      Vector3d comVel(0.0);
998 <    double totalMass = 0.0;
998 >    RealType totalMass = 0.0;
999      
1000  
1001      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1002 <        double mass = mol->getMass();
1003 <        totalMass += mass;
1004 <        comVel += mass * mol->getComVel();
1002 >      RealType mass = mol->getMass();
1003 >      totalMass += mass;
1004 >      comVel += mass * mol->getComVel();
1005      }  
1006  
1007   #ifdef IS_MPI
1008 <    double tmpMass = totalMass;
1008 >    RealType tmpMass = totalMass;
1009      Vector3d tmpComVel(comVel);    
1010 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1010 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1011 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1012   #endif
1013  
1014      comVel /= totalMass;
1015  
1016      return comVel;
1017 < }
1017 >  }
1018  
1019 < Vector3d SimInfo::getCom(){
1019 >  Vector3d SimInfo::getCom(){
1020      SimInfo::MoleculeIterator i;
1021      Molecule* mol;
1022  
1023      Vector3d com(0.0);
1024 <    double totalMass = 0.0;
1024 >    RealType totalMass = 0.0;
1025      
1026      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1027 <        double mass = mol->getMass();
1028 <        totalMass += mass;
1029 <        com += mass * mol->getCom();
1027 >      RealType mass = mol->getMass();
1028 >      totalMass += mass;
1029 >      com += mass * mol->getCom();
1030      }  
1031  
1032   #ifdef IS_MPI
1033 <    double tmpMass = totalMass;
1033 >    RealType tmpMass = totalMass;
1034      Vector3d tmpCom(com);    
1035 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1036 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1035 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1036 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1037   #endif
1038  
1039      com /= totalMass;
1040  
1041      return com;
1042  
1043 < }        
1043 >  }        
1044  
1045 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1045 >  ostream& operator <<(ostream& o, SimInfo& info) {
1046  
1047      return o;
1048 < }
1048 >  }
1049 >  
1050 >  
1051 >   /*
1052 >   Returns center of mass and center of mass velocity in one function call.
1053 >   */
1054 >  
1055 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1056 >      SimInfo::MoleculeIterator i;
1057 >      Molecule* mol;
1058 >      
1059 >    
1060 >      RealType totalMass = 0.0;
1061 >    
1062  
1063 < }//end namespace oopse
1063 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1064 >         RealType mass = mol->getMass();
1065 >         totalMass += mass;
1066 >         com += mass * mol->getCom();
1067 >         comVel += mass * mol->getComVel();          
1068 >      }  
1069 >      
1070 > #ifdef IS_MPI
1071 >      RealType tmpMass = totalMass;
1072 >      Vector3d tmpCom(com);  
1073 >      Vector3d tmpComVel(comVel);
1074 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1075 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1076 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1077 > #endif
1078 >      
1079 >      com /= totalMass;
1080 >      comVel /= totalMass;
1081 >   }        
1082 >  
1083 >   /*
1084 >   Return intertia tensor for entire system and angular momentum Vector.
1085  
1086 +
1087 +       [  Ixx -Ixy  -Ixz ]
1088 +    J =| -Iyx  Iyy  -Iyz |
1089 +       [ -Izx -Iyz   Izz ]
1090 +    */
1091 +
1092 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1093 +      
1094 +
1095 +      RealType xx = 0.0;
1096 +      RealType yy = 0.0;
1097 +      RealType zz = 0.0;
1098 +      RealType xy = 0.0;
1099 +      RealType xz = 0.0;
1100 +      RealType yz = 0.0;
1101 +      Vector3d com(0.0);
1102 +      Vector3d comVel(0.0);
1103 +      
1104 +      getComAll(com, comVel);
1105 +      
1106 +      SimInfo::MoleculeIterator i;
1107 +      Molecule* mol;
1108 +      
1109 +      Vector3d thisq(0.0);
1110 +      Vector3d thisv(0.0);
1111 +
1112 +      RealType thisMass = 0.0;
1113 +    
1114 +      
1115 +      
1116 +  
1117 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1118 +        
1119 +         thisq = mol->getCom()-com;
1120 +         thisv = mol->getComVel()-comVel;
1121 +         thisMass = mol->getMass();
1122 +         // Compute moment of intertia coefficients.
1123 +         xx += thisq[0]*thisq[0]*thisMass;
1124 +         yy += thisq[1]*thisq[1]*thisMass;
1125 +         zz += thisq[2]*thisq[2]*thisMass;
1126 +        
1127 +         // compute products of intertia
1128 +         xy += thisq[0]*thisq[1]*thisMass;
1129 +         xz += thisq[0]*thisq[2]*thisMass;
1130 +         yz += thisq[1]*thisq[2]*thisMass;
1131 +            
1132 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1133 +            
1134 +      }  
1135 +      
1136 +      
1137 +      inertiaTensor(0,0) = yy + zz;
1138 +      inertiaTensor(0,1) = -xy;
1139 +      inertiaTensor(0,2) = -xz;
1140 +      inertiaTensor(1,0) = -xy;
1141 +      inertiaTensor(1,1) = xx + zz;
1142 +      inertiaTensor(1,2) = -yz;
1143 +      inertiaTensor(2,0) = -xz;
1144 +      inertiaTensor(2,1) = -yz;
1145 +      inertiaTensor(2,2) = xx + yy;
1146 +      
1147 + #ifdef IS_MPI
1148 +      Mat3x3d tmpI(inertiaTensor);
1149 +      Vector3d tmpAngMom;
1150 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1151 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1152 + #endif
1153 +              
1154 +      return;
1155 +   }
1156 +
1157 +   //Returns the angular momentum of the system
1158 +   Vector3d SimInfo::getAngularMomentum(){
1159 +      
1160 +      Vector3d com(0.0);
1161 +      Vector3d comVel(0.0);
1162 +      Vector3d angularMomentum(0.0);
1163 +      
1164 +      getComAll(com,comVel);
1165 +      
1166 +      SimInfo::MoleculeIterator i;
1167 +      Molecule* mol;
1168 +      
1169 +      Vector3d thisr(0.0);
1170 +      Vector3d thisp(0.0);
1171 +      
1172 +      RealType thisMass;
1173 +      
1174 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1175 +        thisMass = mol->getMass();
1176 +        thisr = mol->getCom()-com;
1177 +        thisp = (mol->getComVel()-comVel)*thisMass;
1178 +        
1179 +        angularMomentum += cross( thisr, thisp );
1180 +        
1181 +      }  
1182 +      
1183 + #ifdef IS_MPI
1184 +      Vector3d tmpAngMom;
1185 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1186 + #endif
1187 +      
1188 +      return angularMomentum;
1189 +   }
1190 +  
1191 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1192 +    return IOIndexToIntegrableObject.at(index);
1193 +  }
1194 +  
1195 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1196 +    IOIndexToIntegrableObject= v;
1197 +  }
1198 +
1199 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1200 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1201 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1202 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1203 +  */
1204 +  void SimInfo::getGyrationalVolume(RealType &volume){
1205 +    Mat3x3d intTensor;
1206 +    RealType det;
1207 +    Vector3d dummyAngMom;
1208 +    RealType sysconstants;
1209 +    RealType geomCnst;
1210 +
1211 +    geomCnst = 3.0/2.0;
1212 +    /* Get the inertial tensor and angular momentum for free*/
1213 +    getInertiaTensor(intTensor,dummyAngMom);
1214 +    
1215 +    det = intTensor.determinant();
1216 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1217 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1218 +    return;
1219 +  }
1220 +
1221 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1222 +    Mat3x3d intTensor;
1223 +    Vector3d dummyAngMom;
1224 +    RealType sysconstants;
1225 +    RealType geomCnst;
1226 +
1227 +    geomCnst = 3.0/2.0;
1228 +    /* Get the inertial tensor and angular momentum for free*/
1229 +    getInertiaTensor(intTensor,dummyAngMom);
1230 +    
1231 +    detI = intTensor.determinant();
1232 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1233 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1234 +    return;
1235 +  }
1236 + /*
1237 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1238 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1239 +      sdByGlobalIndex_ = v;
1240 +    }
1241 +
1242 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1243 +      //assert(index < nAtoms_ + nRigidBodies_);
1244 +      return sdByGlobalIndex_.at(index);
1245 +    }  
1246 + */  
1247 +  int SimInfo::getNGlobalConstraints() {
1248 +    int nGlobalConstraints;
1249 + #ifdef IS_MPI
1250 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1251 +                  MPI_COMM_WORLD);    
1252 + #else
1253 +    nGlobalConstraints =  nConstraints_;
1254 + #endif
1255 +    return nGlobalConstraints;
1256 +  }
1257 +
1258 + }//end namespace OpenMD
1259 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines