ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC vs.
Revision 1744 by gezelter, Tue Jun 5 18:07:08 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62 < #include "UseTheForce/ForceField.hpp"
63 < #include "nonbonded/InteractionManager.hpp"
68 <
69 <
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 79 | Line 72 | namespace OpenMD {
72      forceField_(ff), simParams_(simParams),
73      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 136 | Line 129 | namespace OpenMD {
129      //equal to the total number of atoms minus number of atoms belong to
130      //cutoff group defined in meta-data file plus the number of cutoff
131      //groups defined in meta-data file
132 +
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134      
135      //every free atom (atom does not belong to rigid bodies) is an
# Line 231 | Line 225 | namespace OpenMD {
225  
226  
227    void SimInfo::calcNdf() {
228 <    int ndf_local;
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230      vector<StuntDouble*>::iterator j;
231 +    vector<Atom*>::iterator k;
232 +
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
# Line 252 | Line 250 | namespace OpenMD {
250              ndf_local += 3;
251            }
252          }
253 <            
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259        }
260      }
261      
262 +    ndfLocal_ = ndf_local;
263 +    cerr << "ndfLocal_ = " << ndfLocal_ << "\n";
264 +
265      // n_constraints is local, so subtract them on each processor
266      ndf_local -= nConstraints_;
267  
268   #ifdef IS_MPI
269      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
270 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
271   #else
272      ndf_ = ndf_local;
273 +    nGlobalFluctuatingCharges_ = nfq_local;
274   #endif
275  
276      // nZconstraints_ is global, as are the 3 COM translations for the
# Line 278 | Line 286 | namespace OpenMD {
286      fdf_ = fdf_local;
287   #endif
288      return fdf_;
289 +  }
290 +  
291 +  unsigned int SimInfo::getNLocalCutoffGroups(){
292 +    int nLocalCutoffAtoms = 0;
293 +    Molecule* mol;
294 +    MoleculeIterator mi;
295 +    CutoffGroup* cg;
296 +    Molecule::CutoffGroupIterator ci;
297 +    
298 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
299 +      
300 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
301 +           cg = mol->nextCutoffGroup(ci)) {
302 +        nLocalCutoffAtoms += cg->getNumAtom();
303 +        
304 +      }        
305 +    }
306 +    
307 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
308    }
309      
310    void SimInfo::calcNdfRaw() {
# Line 655 | Line 682 | namespace OpenMD {
682      moleculeStamps_.push_back(molStamp);
683      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
684    }
658
659  void SimInfo::update() {
685  
661    setupSimType();
662    setupCutoffRadius();
663    setupSwitchingRadius();
664    setupCutoffMethod();
665    setupSkinThickness();
666    setupSwitchingFunction();
667    setupAccumulateBoxDipole();
686  
687 < #ifdef IS_MPI
688 <    setupFortranParallel();
689 < #endif
690 <    setupFortranSim();
691 <    fortranInitialized_ = true;
692 <
687 >  /**
688 >   * update
689 >   *
690 >   *  Performs the global checks and variable settings after the
691 >   *  objects have been created.
692 >   *
693 >   */
694 >  void SimInfo::update() {  
695 >    setupSimVariables();
696      calcNdf();
697      calcNdfRaw();
698      calcNdfTrans();
699    }
700    
701 +  /**
702 +   * getSimulatedAtomTypes
703 +   *
704 +   * Returns an STL set of AtomType* that are actually present in this
705 +   * simulation.  Must query all processors to assemble this information.
706 +   *
707 +   */
708    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
709      SimInfo::MoleculeIterator mi;
710      Molecule* mol;
# Line 685 | Line 713 | namespace OpenMD {
713      set<AtomType*> atomTypes;
714      
715      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
716 <      
717 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
716 >      for(atom = mol->beginAtom(ai); atom != NULL;
717 >          atom = mol->nextAtom(ai)) {
718          atomTypes.insert(atom->getAtomType());
719 <      }
720 <      
693 <    }
719 >      }      
720 >    }    
721      
722 <    return atomTypes;        
696 <  }
722 > #ifdef IS_MPI
723  
724 <  /**
725 <   * setupCutoffRadius
700 <   *
701 <   *  If the cutoffRadius was explicitly set, use that value.
702 <   *  If the cutoffRadius was not explicitly set:
703 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
704 <   *      No electrostatic atoms?  Poll the atom types present in the
705 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 <   *      Use the maximum suggested value that was found.
707 <   */
708 <  void SimInfo::setupCutoffRadius() {
724 >    // loop over the found atom types on this processor, and add their
725 >    // numerical idents to a vector:
726      
727 <    if (simParams_->haveCutoffRadius()) {
728 <      cutoffRadius_ = simParams_->getCutoffRadius();
729 <    } else {      
730 <      if (usesElectrostaticAtoms_) {
714 <        sprintf(painCave.errMsg,
715 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 <                "\tOpenMD will use a default value of 12.0 angstroms"
717 <                "\tfor the cutoffRadius.\n");
718 <        painCave.isFatal = 0;
719 <        simError();
720 <        cutoffRadius_ = 12.0;
721 <      } else {
722 <        RealType thisCut;
723 <        set<AtomType*>::iterator i;
724 <        set<AtomType*> atomTypes;
725 <        atomTypes = getSimulatedAtomTypes();        
726 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 <        }
730 <        sprintf(painCave.errMsg,
731 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 <                "\tOpenMD will use %lf angstroms.\n",
733 <                cutoffRadius_);
734 <        painCave.isFatal = 0;
735 <        simError();
736 <      }            
737 <    }
727 >    vector<int> foundTypes;
728 >    set<AtomType*>::iterator i;
729 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
730 >      foundTypes.push_back( (*i)->getIdent() );
731  
732 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
733 <  }
732 >    // count_local holds the number of found types on this processor
733 >    int count_local = foundTypes.size();
734 >
735 >    int nproc = MPI::COMM_WORLD.Get_size();
736 >
737 >    // we need arrays to hold the counts and displacement vectors for
738 >    // all processors
739 >    vector<int> counts(nproc, 0);
740 >    vector<int> disps(nproc, 0);
741 >
742 >    // fill the counts array
743 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
744 >                              1, MPI::INT);
745    
746 <  /**
747 <   * setupSwitchingRadius
748 <   *
749 <   *  If the switchingRadius was explicitly set, use that value (but check it)
750 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
751 <   */
752 <  void SimInfo::setupSwitchingRadius() {
746 >    // use the processor counts to compute the displacement array
747 >    disps[0] = 0;    
748 >    int totalCount = counts[0];
749 >    for (int iproc = 1; iproc < nproc; iproc++) {
750 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
751 >      totalCount += counts[iproc];
752 >    }
753 >
754 >    // we need a (possibly redundant) set of all found types:
755 >    vector<int> ftGlobal(totalCount);
756      
757 <    if (simParams_->haveSwitchingRadius()) {
758 <      switchingRadius_ = simParams_->getSwitchingRadius();
759 <      if (switchingRadius_ > cutoffRadius_) {        
760 <        sprintf(painCave.errMsg,
754 <                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 <                switchingRadius_, cutoffRadius_);
756 <        painCave.isFatal = 1;
757 <        simError();
757 >    // now spray out the foundTypes to all the other processors:    
758 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
759 >                               &ftGlobal[0], &counts[0], &disps[0],
760 >                               MPI::INT);
761  
762 <      }
760 <    } else {      
761 <      switchingRadius_ = 0.85 * cutoffRadius_;
762 <      sprintf(painCave.errMsg,
763 <              "SimInfo Warning: No value was set for the switchingRadius.\n"
764 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766 <      painCave.isFatal = 0;
767 <      simError();
768 <    }            
769 <    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770 <  }
762 >    vector<int>::iterator j;
763  
764 <  /**
765 <   * setupSkinThickness
766 <   *
767 <   *  If the skinThickness was explicitly set, use that value (but check it)
768 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
769 <   */
770 <  void SimInfo::setupSkinThickness() {    
771 <    if (simParams_->haveSkinThickness()) {
772 <      skinThickness_ = simParams_->getSkinThickness();
773 <    } else {      
774 <      skinThickness_ = 1.0;
775 <      sprintf(painCave.errMsg,
776 <              "SimInfo Warning: No value was set for the skinThickness.\n"
777 <              "\tOpenMD will use a default value of %f Angstroms\n"
778 <              "\tfor this simulation\n", skinThickness_);
779 <      painCave.isFatal = 0;
788 <      simError();
789 <    }            
764 >    // foundIdents is a stl set, so inserting an already found ident
765 >    // will have no effect.
766 >    set<int> foundIdents;
767 >
768 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
769 >      foundIdents.insert((*j));
770 >    
771 >    // now iterate over the foundIdents and get the actual atom types
772 >    // that correspond to these:
773 >    set<int>::iterator it;
774 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
775 >      atomTypes.insert( forceField_->getAtomType((*it)) );
776 >
777 > #endif
778 >
779 >    return atomTypes;        
780    }
781  
782 <  void SimInfo::setupSimType() {
782 >  void SimInfo::setupSimVariables() {
783 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
784 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
785 >    calcBoxDipole_ = false;
786 >    if ( simParams_->haveAccumulateBoxDipole() )
787 >      if ( simParams_->getAccumulateBoxDipole() ) {
788 >        calcBoxDipole_ = true;      
789 >      }
790 >    
791      set<AtomType*>::iterator i;
792      set<AtomType*> atomTypes;
793 <    atomTypes = getSimulatedAtomTypes();
796 <
797 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798 <
793 >    atomTypes = getSimulatedAtomTypes();    
794      int usesElectrostatic = 0;
795      int usesMetallic = 0;
796      int usesDirectional = 0;
797 +    int usesFluctuatingCharges =  0;
798      //loop over all of the atom types
799      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
800        usesElectrostatic |= (*i)->isElectrostatic();
801        usesMetallic |= (*i)->isMetal();
802        usesDirectional |= (*i)->isDirectional();
803 +      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
804      }
805 <
805 >    
806   #ifdef IS_MPI    
807      int temp;
808      temp = usesDirectional;
809      MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 <
810 >    
811      temp = usesMetallic;
812      MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 <
813 >    
814      temp = usesElectrostatic;
815      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816 +
817 +    temp = usesFluctuatingCharges;
818 +    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819 + #else
820 +
821 +    usesDirectionalAtoms_ = usesDirectional;
822 +    usesMetallicAtoms_ = usesMetallic;
823 +    usesElectrostaticAtoms_ = usesElectrostatic;
824 +    usesFluctuatingCharges_ = usesFluctuatingCharges;
825 +
826   #endif
827 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
828 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
829 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
830 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
827 >    
828 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
829 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
830 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
831    }
832  
833 <  void SimInfo::setupFortranSim() {
834 <    int isError;
835 <    int nExclude, nOneTwo, nOneThree, nOneFour;
836 <    vector<int> fortranGlobalGroupMembership;
833 >
834 >  vector<int> SimInfo::getGlobalAtomIndices() {
835 >    SimInfo::MoleculeIterator mi;
836 >    Molecule* mol;
837 >    Molecule::AtomIterator ai;
838 >    Atom* atom;
839 >
840 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
841      
842 <    notifyFortranSkinThickness(&skinThickness_);
842 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
843 >      
844 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
845 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
846 >      }
847 >    }
848 >    return GlobalAtomIndices;
849 >  }
850  
835    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
836    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
837    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
851  
852 <    isError = 0;
852 >  vector<int> SimInfo::getGlobalGroupIndices() {
853 >    SimInfo::MoleculeIterator mi;
854 >    Molecule* mol;
855 >    Molecule::CutoffGroupIterator ci;
856 >    CutoffGroup* cg;
857  
858 <    //globalGroupMembership_ is filled by SimCreator    
859 <    for (int i = 0; i < nGlobalAtoms_; i++) {
860 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
858 >    vector<int> GlobalGroupIndices;
859 >    
860 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
861 >      
862 >      //local index of cutoff group is trivial, it only depends on the
863 >      //order of travesing
864 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 >           cg = mol->nextCutoffGroup(ci)) {
866 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
867 >      }        
868      }
869 +    return GlobalGroupIndices;
870 +  }
871  
872 +
873 +  void SimInfo::prepareTopology() {
874 +    int nExclude, nOneTwo, nOneThree, nOneFour;
875 +
876      //calculate mass ratio of cutoff group
847    vector<RealType> mfact;
877      SimInfo::MoleculeIterator mi;
878      Molecule* mol;
879      Molecule::CutoffGroupIterator ci;
# Line 853 | Line 882 | namespace OpenMD {
882      Atom* atom;
883      RealType totalMass;
884  
885 <    //to avoid memory reallocation, reserve enough space for mfact
886 <    mfact.reserve(getNCutoffGroups());
885 >    /**
886 >     * The mass factor is the relative mass of an atom to the total
887 >     * mass of the cutoff group it belongs to.  By default, all atoms
888 >     * are their own cutoff groups, and therefore have mass factors of
889 >     * 1.  We need some special handling for massless atoms, which
890 >     * will be treated as carrying the entire mass of the cutoff
891 >     * group.
892 >     */
893 >    massFactors_.clear();
894 >    massFactors_.resize(getNAtoms(), 1.0);
895      
896      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
897 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
898 >           cg = mol->nextCutoffGroup(ci)) {
899  
900          totalMass = cg->getMass();
901          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
902            // Check for massless groups - set mfact to 1 if true
903 <          if (totalMass != 0)
904 <            mfact.push_back(atom->getMass()/totalMass);
903 >          if (totalMass != 0)
904 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
905            else
906 <            mfact.push_back( 1.0 );
906 >            massFactors_[atom->getLocalIndex()] = 1.0;
907          }
908        }      
909      }
910  
911 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    vector<int> identArray;
911 >    // Build the identArray_
912  
913 <    //to avoid memory reallocation, reserve enough space identArray
914 <    identArray.reserve(getNAtoms());
878 <    
913 >    identArray_.clear();
914 >    identArray_.reserve(getNAtoms());    
915      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
916        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
917 <        identArray.push_back(atom->getIdent());
917 >        identArray_.push_back(atom->getIdent());
918        }
919      }    
884
885    //fill molMembershipArray
886    //molMembershipArray is filled by SimCreator    
887    vector<int> molMembershipArray(nGlobalAtoms_);
888    for (int i = 0; i < nGlobalAtoms_; i++) {
889      molMembershipArray[i] = globalMolMembership_[i] + 1;
890    }
920      
921 <    //setup fortran simulation
921 >    //scan topology
922  
923      nExclude = excludedInteractions_.getSize();
924      nOneTwo = oneTwoInteractions_.getSize();
# Line 901 | Line 930 | namespace OpenMD {
930      int* oneThreeList = oneThreeInteractions_.getPairList();
931      int* oneFourList = oneFourInteractions_.getPairList();
932  
933 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
905 <                   &nExclude, excludeList,
906 <                   &nOneTwo, oneTwoList,
907 <                   &nOneThree, oneThreeList,
908 <                   &nOneFour, oneFourList,
909 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
910 <                   &fortranGlobalGroupMembership[0], &isError);
911 <    
912 <    if( isError ){
913 <      
914 <      sprintf( painCave.errMsg,
915 <               "There was an error setting the simulation information in fortran.\n" );
916 <      painCave.isFatal = 1;
917 <      painCave.severity = OPENMD_ERROR;
918 <      simError();
919 <    }
920 <    
921 <    
922 <    sprintf( checkPointMsg,
923 <             "succesfully sent the simulation information to fortran.\n");
924 <    
925 <    errorCheckPoint();
926 <    
927 <    // Setup number of neighbors in neighbor list if present
928 <    if (simParams_->haveNeighborListNeighbors()) {
929 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 <      setNeighbors(&nlistNeighbors);
931 <    }
932 <  
933 <
934 <  }
935 <
936 <
937 <  void SimInfo::setupFortranParallel() {
938 < #ifdef IS_MPI    
939 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940 <    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 <    vector<int> localToGlobalCutoffGroupIndex;
942 <    SimInfo::MoleculeIterator mi;
943 <    Molecule::AtomIterator ai;
944 <    Molecule::CutoffGroupIterator ci;
945 <    Molecule* mol;
946 <    Atom* atom;
947 <    CutoffGroup* cg;
948 <    mpiSimData parallelData;
949 <    int isError;
950 <
951 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
952 <
953 <      //local index(index in DataStorge) of atom is important
954 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
956 <      }
957 <
958 <      //local index of cutoff group is trivial, it only depends on the order of travesing
959 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
960 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
961 <      }        
962 <        
963 <    }
964 <
965 <    //fill up mpiSimData struct
966 <    parallelData.nMolGlobal = getNGlobalMolecules();
967 <    parallelData.nMolLocal = getNMolecules();
968 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
969 <    parallelData.nAtomsLocal = getNAtoms();
970 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
971 <    parallelData.nGroupsLocal = getNCutoffGroups();
972 <    parallelData.myNode = worldRank;
973 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
974 <
975 <    //pass mpiSimData struct and index arrays to fortran
976 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
977 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
978 <                    &localToGlobalCutoffGroupIndex[0], &isError);
979 <
980 <    if (isError) {
981 <      sprintf(painCave.errMsg,
982 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
983 <      painCave.isFatal = 1;
984 <      simError();
985 <    }
986 <
987 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
988 <    errorCheckPoint();
989 <
990 < #endif
991 <  }
992 <
993 <
994 <  void SimInfo::setupSwitchingFunction() {    
995 <    int ft = CUBIC;
996 <    
997 <    if (simParams_->haveSwitchingFunctionType()) {
998 <      string funcType = simParams_->getSwitchingFunctionType();
999 <      toUpper(funcType);
1000 <      if (funcType == "CUBIC") {
1001 <        ft = CUBIC;
1002 <      } else {
1003 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1004 <          ft = FIFTH_ORDER_POLY;
1005 <        } else {
1006 <          // throw error        
1007 <          sprintf( painCave.errMsg,
1008 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1009 <          painCave.isFatal = 1;
1010 <          simError();
1011 <        }          
1012 <      }
1013 <    }
1014 <
1015 <    // send switching function notification to switcheroo
1016 <    setFunctionType(&ft);
1017 <
1018 <  }
1019 <
1020 <  void SimInfo::setupAccumulateBoxDipole() {    
1021 <
1022 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023 <    if ( simParams_->haveAccumulateBoxDipole() )
1024 <      if ( simParams_->getAccumulateBoxDipole() ) {
1025 <        calcBoxDipole_ = true;
1026 <      }
1027 <
933 >    topologyDone_ = true;
934    }
935  
936    void SimInfo::addProperty(GenericData* genData) {
# Line 1061 | Line 967 | namespace OpenMD {
967      Molecule* mol;
968      RigidBody* rb;
969      Atom* atom;
970 +    CutoffGroup* cg;
971      SimInfo::MoleculeIterator mi;
972      Molecule::RigidBodyIterator rbIter;
973 <    Molecule::AtomIterator atomIter;;
973 >    Molecule::AtomIterator atomIter;
974 >    Molecule::CutoffGroupIterator cgIter;
975  
976      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
977          
# Line 1073 | Line 981 | namespace OpenMD {
981          
982        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
983          rb->setSnapshotManager(sman_);
984 +      }
985 +
986 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
987 +        cg->setSnapshotManager(sman_);
988        }
989      }    
990      
# Line 1302 | Line 1214 | namespace OpenMD {
1214      
1215      det = intTensor.determinant();
1216      sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1217 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1217 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1218      return;
1219    }
1220  
# Line 1318 | Line 1230 | namespace OpenMD {
1230      
1231      detI = intTensor.determinant();
1232      sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1233 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1233 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1234      return;
1235    }
1236   /*

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines