ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 432 by tim, Fri Mar 11 15:00:20 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1725 by gezelter, Sat May 26 18:13:43 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 48 | Line 49
49  
50   #include <algorithm>
51   #include <set>
52 + #include <map>
53  
54   #include "brains/SimInfo.hpp"
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
57 > #include "primitives/StuntDouble.hpp"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61 <
61 > #include "io/ForceFieldOptions.hpp"
62 > #include "brains/ForceField.hpp"
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
64 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68 < namespace oopse {
69 <
70 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
71 <                                ForceField* ff, Globals* simParams) :
72 <                                forceField_(ff), simParams_(simParams),
73 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
77 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
78 <                                sman_(NULL), fortranInitialized_(false) {
79 <
80 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
72 >    forceField_(ff), simParams_(simParams),
73 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
74 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
75 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0),
76 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 >    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),
79 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
80 >    
81      MoleculeStamp* molStamp;
82      int nMolWithSameStamp;
83      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
84 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
84 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
85      CutoffGroupStamp* cgStamp;    
86      RigidBodyStamp* rbStamp;
87      int nRigidAtoms = 0;
88      
89 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
90 <        molStamp = i->first;
91 <        nMolWithSameStamp = i->second;
92 <        
93 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
94 <
95 <        //calculate atoms in molecules
96 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
97 <
98 <
99 <        //calculate atoms in cutoff groups
100 <        int nAtomsInGroups = 0;
101 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
102 <        
103 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
104 <            cgStamp = molStamp->getCutoffGroup(j);
105 <            nAtomsInGroups += cgStamp->getNMembers();
106 <        }
107 <
108 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
114 <        
115 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
116 <            rbStamp = molStamp->getRigidBody(j);
117 <            nAtomsInRigidBodies += rbStamp->getNMembers();
118 <        }
119 <
120 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
121 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
122 <        
89 >    vector<Component*> components = simParams->getComponents();
90 >    
91 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 >      molStamp = (*i)->getMoleculeStamp();
93 >      nMolWithSameStamp = (*i)->getNMol();
94 >      
95 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
96 >      
97 >      //calculate atoms in molecules
98 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 >      
100 >      //calculate atoms in cutoff groups
101 >      int nAtomsInGroups = 0;
102 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
103 >      
104 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
105 >        cgStamp = molStamp->getCutoffGroupStamp(j);
106 >        nAtomsInGroups += cgStamp->getNMembers();
107 >      }
108 >      
109 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
110 >      
111 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
112 >      
113 >      //calculate atoms in rigid bodies
114 >      int nAtomsInRigidBodies = 0;
115 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
116 >      
117 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
118 >        rbStamp = molStamp->getRigidBodyStamp(j);
119 >        nAtomsInRigidBodies += rbStamp->getNMembers();
120 >      }
121 >      
122 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
123 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
124 >      
125      }
126 +    
127 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
128 +    //group therefore the total number of cutoff groups in the system is
129 +    //equal to the total number of atoms minus number of atoms belong to
130 +    //cutoff group defined in meta-data file plus the number of cutoff
131 +    //groups defined in meta-data file
132  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134 <
135 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
136 <    //therefore the total number of  integrable objects in the system is equal to
137 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
138 <    //file plus the number of  rigid bodies defined in meta-data file
139 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
140 <
134 >    
135 >    //every free atom (atom does not belong to rigid bodies) is an
136 >    //integrable object therefore the total number of integrable objects
137 >    //in the system is equal to the total number of atoms minus number of
138 >    //atoms belong to rigid body defined in meta-data file plus the number
139 >    //of rigid bodies defined in meta-data file
140 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
141 >      + nGlobalRigidBodies_;
142 >    
143      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
144      molToProcMap_.resize(nGlobalMols_);
145 < #endif
146 <
147 < }
148 <
144 < SimInfo::~SimInfo() {
145 <    std::map<int, Molecule*>::iterator i;
145 >  }
146 >  
147 >  SimInfo::~SimInfo() {
148 >    map<int, Molecule*>::iterator i;
149      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
150 <        delete i->second;
150 >      delete i->second;
151      }
152      molecules_.clear();
153 <    
151 <    MemoryUtils::deletePointers(moleculeStamps_);
152 <    
153 >      
154      delete sman_;
155      delete simParams_;
156      delete forceField_;
157 < }
157 >  }
158  
158 int SimInfo::getNGlobalConstraints() {
159    int nGlobalConstraints;
160 #ifdef IS_MPI
161    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
162                  MPI_COMM_WORLD);    
163 #else
164    nGlobalConstraints =  nConstraints_;
165 #endif
166    return nGlobalConstraints;
167 }
159  
160 < bool SimInfo::addMolecule(Molecule* mol) {
160 >  bool SimInfo::addMolecule(Molecule* mol) {
161      MoleculeIterator i;
162 <
162 >    
163      i = molecules_.find(mol->getGlobalIndex());
164      if (i == molecules_.end() ) {
165 <
166 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
167 <        
168 <        nAtoms_ += mol->getNAtoms();
169 <        nBonds_ += mol->getNBonds();
170 <        nBends_ += mol->getNBends();
171 <        nTorsions_ += mol->getNTorsions();
172 <        nRigidBodies_ += mol->getNRigidBodies();
173 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
174 <        nCutoffGroups_ += mol->getNCutoffGroups();
175 <        nConstraints_ += mol->getNConstraintPairs();
176 <
177 <        addExcludePairs(mol);
178 <        
179 <        return true;
165 >      
166 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
167 >      
168 >      nAtoms_ += mol->getNAtoms();
169 >      nBonds_ += mol->getNBonds();
170 >      nBends_ += mol->getNBends();
171 >      nTorsions_ += mol->getNTorsions();
172 >      nInversions_ += mol->getNInversions();
173 >      nRigidBodies_ += mol->getNRigidBodies();
174 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
175 >      nCutoffGroups_ += mol->getNCutoffGroups();
176 >      nConstraints_ += mol->getNConstraintPairs();
177 >      
178 >      addInteractionPairs(mol);
179 >      
180 >      return true;
181      } else {
182 <        return false;
182 >      return false;
183      }
184 < }
185 <
186 < bool SimInfo::removeMolecule(Molecule* mol) {
184 >  }
185 >  
186 >  bool SimInfo::removeMolecule(Molecule* mol) {
187      MoleculeIterator i;
188      i = molecules_.find(mol->getGlobalIndex());
189  
190      if (i != molecules_.end() ) {
191  
192 <        assert(mol == i->second);
192 >      assert(mol == i->second);
193          
194 <        nAtoms_ -= mol->getNAtoms();
195 <        nBonds_ -= mol->getNBonds();
196 <        nBends_ -= mol->getNBends();
197 <        nTorsions_ -= mol->getNTorsions();
198 <        nRigidBodies_ -= mol->getNRigidBodies();
199 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
200 <        nCutoffGroups_ -= mol->getNCutoffGroups();
201 <        nConstraints_ -= mol->getNConstraintPairs();
194 >      nAtoms_ -= mol->getNAtoms();
195 >      nBonds_ -= mol->getNBonds();
196 >      nBends_ -= mol->getNBends();
197 >      nTorsions_ -= mol->getNTorsions();
198 >      nInversions_ -= mol->getNInversions();
199 >      nRigidBodies_ -= mol->getNRigidBodies();
200 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
201 >      nCutoffGroups_ -= mol->getNCutoffGroups();
202 >      nConstraints_ -= mol->getNConstraintPairs();
203  
204 <        removeExcludePairs(mol);
205 <        molecules_.erase(mol->getGlobalIndex());
204 >      removeInteractionPairs(mol);
205 >      molecules_.erase(mol->getGlobalIndex());
206  
207 <        delete mol;
207 >      delete mol;
208          
209 <        return true;
209 >      return true;
210      } else {
211 <        return false;
211 >      return false;
212      }
213 +  }    
214  
221
222 }    
223
215          
216 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
216 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
217      i = molecules_.begin();
218      return i == molecules_.end() ? NULL : i->second;
219 < }    
219 >  }    
220  
221 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
221 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
222      ++i;
223      return i == molecules_.end() ? NULL : i->second;    
224 < }
224 >  }
225  
226  
227 < void SimInfo::calcNdf() {
228 <    int ndf_local;
227 >  void SimInfo::calcNdf() {
228 >    int ndf_local, nfq_local;
229      MoleculeIterator i;
230 <    std::vector<StuntDouble*>::iterator j;
230 >    vector<StuntDouble*>::iterator j;
231 >    vector<Atom*>::iterator k;
232 >
233      Molecule* mol;
234      StuntDouble* integrableObject;
235 +    Atom* atom;
236  
237      ndf_local = 0;
238 +    nfq_local = 0;
239      
240      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
241 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 <               integrableObject = mol->nextIntegrableObject(j)) {
241 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
242 >           integrableObject = mol->nextIntegrableObject(j)) {
243  
244 <            ndf_local += 3;
244 >        ndf_local += 3;
245  
246 <            if (integrableObject->isDirectional()) {
247 <                if (integrableObject->isLinear()) {
248 <                    ndf_local += 2;
249 <                } else {
250 <                    ndf_local += 3;
251 <                }
252 <            }
253 <            
254 <        }//end for (integrableObject)
255 <    }// end for (mol)
246 >        if (integrableObject->isDirectional()) {
247 >          if (integrableObject->isLinear()) {
248 >            ndf_local += 2;
249 >          } else {
250 >            ndf_local += 3;
251 >          }
252 >        }
253 >      }
254 >      for (atom = mol->beginFluctuatingCharge(k); atom != NULL;
255 >           atom = mol->nextFluctuatingCharge(k)) {
256 >        if (atom->isFluctuatingCharge()) {
257 >          nfq_local++;
258 >        }
259 >      }
260 >    }
261      
262      // n_constraints is local, so subtract them on each processor
263      ndf_local -= nConstraints_;
264  
265   #ifdef IS_MPI
266      MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 +    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
268   #else
269      ndf_ = ndf_local;
270 +    nGlobalFluctuatingCharges_ = nfq_local;
271   #endif
272  
273      // nZconstraints_ is global, as are the 3 COM translations for the
274      // entire system:
275      ndf_ = ndf_ - 3 - nZconstraint_;
276  
277 < }
277 >  }
278  
279 < void SimInfo::calcNdfRaw() {
279 >  int SimInfo::getFdf() {
280 > #ifdef IS_MPI
281 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
282 > #else
283 >    fdf_ = fdf_local;
284 > #endif
285 >    return fdf_;
286 >  }
287 >  
288 >  unsigned int SimInfo::getNLocalCutoffGroups(){
289 >    int nLocalCutoffAtoms = 0;
290 >    Molecule* mol;
291 >    MoleculeIterator mi;
292 >    CutoffGroup* cg;
293 >    Molecule::CutoffGroupIterator ci;
294 >    
295 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
296 >      
297 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
298 >           cg = mol->nextCutoffGroup(ci)) {
299 >        nLocalCutoffAtoms += cg->getNumAtom();
300 >        
301 >      }        
302 >    }
303 >    
304 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
305 >  }
306 >    
307 >  void SimInfo::calcNdfRaw() {
308      int ndfRaw_local;
309  
310      MoleculeIterator i;
311 <    std::vector<StuntDouble*>::iterator j;
311 >    vector<StuntDouble*>::iterator j;
312      Molecule* mol;
313      StuntDouble* integrableObject;
314  
# Line 286 | Line 316 | void SimInfo::calcNdfRaw() {
316      ndfRaw_local = 0;
317      
318      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
319 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
320 <               integrableObject = mol->nextIntegrableObject(j)) {
319 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
320 >           integrableObject = mol->nextIntegrableObject(j)) {
321  
322 <            ndfRaw_local += 3;
322 >        ndfRaw_local += 3;
323  
324 <            if (integrableObject->isDirectional()) {
325 <                if (integrableObject->isLinear()) {
326 <                    ndfRaw_local += 2;
327 <                } else {
328 <                    ndfRaw_local += 3;
329 <                }
330 <            }
324 >        if (integrableObject->isDirectional()) {
325 >          if (integrableObject->isLinear()) {
326 >            ndfRaw_local += 2;
327 >          } else {
328 >            ndfRaw_local += 3;
329 >          }
330 >        }
331              
332 <        }
332 >      }
333      }
334      
335   #ifdef IS_MPI
# Line 307 | Line 337 | void SimInfo::calcNdfRaw() {
337   #else
338      ndfRaw_ = ndfRaw_local;
339   #endif
340 < }
340 >  }
341  
342 < void SimInfo::calcNdfTrans() {
342 >  void SimInfo::calcNdfTrans() {
343      int ndfTrans_local;
344  
345      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 323 | Line 353 | void SimInfo::calcNdfTrans() {
353  
354      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
355  
356 < }
356 >  }
357  
358 < void SimInfo::addExcludePairs(Molecule* mol) {
359 <    std::vector<Bond*>::iterator bondIter;
360 <    std::vector<Bend*>::iterator bendIter;
361 <    std::vector<Torsion*>::iterator torsionIter;
358 >  void SimInfo::addInteractionPairs(Molecule* mol) {
359 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
360 >    vector<Bond*>::iterator bondIter;
361 >    vector<Bend*>::iterator bendIter;
362 >    vector<Torsion*>::iterator torsionIter;
363 >    vector<Inversion*>::iterator inversionIter;
364      Bond* bond;
365      Bend* bend;
366      Torsion* torsion;
367 +    Inversion* inversion;
368      int a;
369      int b;
370      int c;
371      int d;
339    
340    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
341        a = bond->getAtomA()->getGlobalIndex();
342        b = bond->getAtomB()->getGlobalIndex();        
343        exclude_.addPair(a, b);
344    }
372  
373 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
374 <        a = bend->getAtomA()->getGlobalIndex();
375 <        b = bend->getAtomB()->getGlobalIndex();        
376 <        c = bend->getAtomC()->getGlobalIndex();
373 >    // atomGroups can be used to add special interaction maps between
374 >    // groups of atoms that are in two separate rigid bodies.
375 >    // However, most site-site interactions between two rigid bodies
376 >    // are probably not special, just the ones between the physically
377 >    // bonded atoms.  Interactions *within* a single rigid body should
378 >    // always be excluded.  These are done at the bottom of this
379 >    // function.
380  
381 <        exclude_.addPair(a, b);
382 <        exclude_.addPair(a, c);
383 <        exclude_.addPair(b, c);        
381 >    map<int, set<int> > atomGroups;
382 >    Molecule::RigidBodyIterator rbIter;
383 >    RigidBody* rb;
384 >    Molecule::IntegrableObjectIterator ii;
385 >    StuntDouble* integrableObject;
386 >    
387 >    for (integrableObject = mol->beginIntegrableObject(ii);
388 >         integrableObject != NULL;
389 >         integrableObject = mol->nextIntegrableObject(ii)) {
390 >      
391 >      if (integrableObject->isRigidBody()) {
392 >        rb = static_cast<RigidBody*>(integrableObject);
393 >        vector<Atom*> atoms = rb->getAtoms();
394 >        set<int> rigidAtoms;
395 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
396 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
397 >        }
398 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
399 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
400 >        }      
401 >      } else {
402 >        set<int> oneAtomSet;
403 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
404 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
405 >      }
406 >    }  
407 >          
408 >    for (bond= mol->beginBond(bondIter); bond != NULL;
409 >         bond = mol->nextBond(bondIter)) {
410 >
411 >      a = bond->getAtomA()->getGlobalIndex();
412 >      b = bond->getAtomB()->getGlobalIndex();  
413 >    
414 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
415 >        oneTwoInteractions_.addPair(a, b);
416 >      } else {
417 >        excludedInteractions_.addPair(a, b);
418 >      }
419      }
420  
421 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 <        a = torsion->getAtomA()->getGlobalIndex();
358 <        b = torsion->getAtomB()->getGlobalIndex();        
359 <        c = torsion->getAtomC()->getGlobalIndex();        
360 <        d = torsion->getAtomD()->getGlobalIndex();        
421 >    for (bend= mol->beginBend(bendIter); bend != NULL;
422 >         bend = mol->nextBend(bendIter)) {
423  
424 <        exclude_.addPair(a, b);
425 <        exclude_.addPair(a, c);
426 <        exclude_.addPair(a, d);
427 <        exclude_.addPair(b, c);
428 <        exclude_.addPair(b, d);
429 <        exclude_.addPair(c, d);        
424 >      a = bend->getAtomA()->getGlobalIndex();
425 >      b = bend->getAtomB()->getGlobalIndex();        
426 >      c = bend->getAtomC()->getGlobalIndex();
427 >      
428 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
429 >        oneTwoInteractions_.addPair(a, b);      
430 >        oneTwoInteractions_.addPair(b, c);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >      }
435 >
436 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
437 >        oneThreeInteractions_.addPair(a, c);      
438 >      } else {
439 >        excludedInteractions_.addPair(a, c);
440 >      }
441      }
442  
443 <    Molecule::RigidBodyIterator rbIter;
444 <    RigidBody* rb;
372 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
373 <        std::vector<Atom*> atoms = rb->getAtoms();
374 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
375 <            for (int j = i + 1; j < atoms.size(); ++j) {
376 <                a = atoms[i]->getGlobalIndex();
377 <                b = atoms[j]->getGlobalIndex();
378 <                exclude_.addPair(a, b);
379 <            }
380 <        }
381 <    }        
443 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
444 >         torsion = mol->nextTorsion(torsionIter)) {
445  
446 <    Molecule::CutoffGroupIterator cgIter;
447 <    CutoffGroup* cg;
448 <    for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
449 <        std::vector<Atom*> atoms = cg->getAtoms();
387 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
388 <            for (int j = i + 1; j < atoms.size(); ++j) {
389 <                a = atoms[i]->getGlobalIndex();
390 <                b = atoms[j]->getGlobalIndex();
391 <                exclude_.addPair(a, b);
392 <            }
393 <        }
394 <    }  
446 >      a = torsion->getAtomA()->getGlobalIndex();
447 >      b = torsion->getAtomB()->getGlobalIndex();        
448 >      c = torsion->getAtomC()->getGlobalIndex();        
449 >      d = torsion->getAtomD()->getGlobalIndex();      
450  
451 < }
451 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
452 >        oneTwoInteractions_.addPair(a, b);      
453 >        oneTwoInteractions_.addPair(b, c);
454 >        oneTwoInteractions_.addPair(c, d);
455 >      } else {
456 >        excludedInteractions_.addPair(a, b);
457 >        excludedInteractions_.addPair(b, c);
458 >        excludedInteractions_.addPair(c, d);
459 >      }
460  
461 < void SimInfo::removeExcludePairs(Molecule* mol) {
462 <    std::vector<Bond*>::iterator bondIter;
463 <    std::vector<Bend*>::iterator bendIter;
464 <    std::vector<Torsion*>::iterator torsionIter;
461 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
462 >        oneThreeInteractions_.addPair(a, c);      
463 >        oneThreeInteractions_.addPair(b, d);      
464 >      } else {
465 >        excludedInteractions_.addPair(a, c);
466 >        excludedInteractions_.addPair(b, d);
467 >      }
468 >
469 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
470 >        oneFourInteractions_.addPair(a, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(a, d);
473 >      }
474 >    }
475 >
476 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
477 >         inversion = mol->nextInversion(inversionIter)) {
478 >
479 >      a = inversion->getAtomA()->getGlobalIndex();
480 >      b = inversion->getAtomB()->getGlobalIndex();        
481 >      c = inversion->getAtomC()->getGlobalIndex();        
482 >      d = inversion->getAtomD()->getGlobalIndex();        
483 >
484 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
485 >        oneTwoInteractions_.addPair(a, b);      
486 >        oneTwoInteractions_.addPair(a, c);
487 >        oneTwoInteractions_.addPair(a, d);
488 >      } else {
489 >        excludedInteractions_.addPair(a, b);
490 >        excludedInteractions_.addPair(a, c);
491 >        excludedInteractions_.addPair(a, d);
492 >      }
493 >
494 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
495 >        oneThreeInteractions_.addPair(b, c);    
496 >        oneThreeInteractions_.addPair(b, d);    
497 >        oneThreeInteractions_.addPair(c, d);      
498 >      } else {
499 >        excludedInteractions_.addPair(b, c);
500 >        excludedInteractions_.addPair(b, d);
501 >        excludedInteractions_.addPair(c, d);
502 >      }
503 >    }
504 >
505 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
506 >         rb = mol->nextRigidBody(rbIter)) {
507 >      vector<Atom*> atoms = rb->getAtoms();
508 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
509 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
510 >          a = atoms[i]->getGlobalIndex();
511 >          b = atoms[j]->getGlobalIndex();
512 >          excludedInteractions_.addPair(a, b);
513 >        }
514 >      }
515 >    }        
516 >
517 >  }
518 >
519 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
520 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
521 >    vector<Bond*>::iterator bondIter;
522 >    vector<Bend*>::iterator bendIter;
523 >    vector<Torsion*>::iterator torsionIter;
524 >    vector<Inversion*>::iterator inversionIter;
525      Bond* bond;
526      Bend* bend;
527      Torsion* torsion;
528 +    Inversion* inversion;
529      int a;
530      int b;
531      int c;
532      int d;
533 +
534 +    map<int, set<int> > atomGroups;
535 +    Molecule::RigidBodyIterator rbIter;
536 +    RigidBody* rb;
537 +    Molecule::IntegrableObjectIterator ii;
538 +    StuntDouble* integrableObject;
539      
540 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
541 <        a = bond->getAtomA()->getGlobalIndex();
542 <        b = bond->getAtomB()->getGlobalIndex();        
543 <        exclude_.removePair(a, b);
540 >    for (integrableObject = mol->beginIntegrableObject(ii);
541 >         integrableObject != NULL;
542 >         integrableObject = mol->nextIntegrableObject(ii)) {
543 >      
544 >      if (integrableObject->isRigidBody()) {
545 >        rb = static_cast<RigidBody*>(integrableObject);
546 >        vector<Atom*> atoms = rb->getAtoms();
547 >        set<int> rigidAtoms;
548 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
549 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
550 >        }
551 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
552 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
553 >        }      
554 >      } else {
555 >        set<int> oneAtomSet;
556 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
557 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
558 >      }
559 >    }  
560 >
561 >    for (bond= mol->beginBond(bondIter); bond != NULL;
562 >         bond = mol->nextBond(bondIter)) {
563 >      
564 >      a = bond->getAtomA()->getGlobalIndex();
565 >      b = bond->getAtomB()->getGlobalIndex();  
566 >    
567 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
568 >        oneTwoInteractions_.removePair(a, b);
569 >      } else {
570 >        excludedInteractions_.removePair(a, b);
571 >      }
572      }
573  
574 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
575 <        a = bend->getAtomA()->getGlobalIndex();
418 <        b = bend->getAtomB()->getGlobalIndex();        
419 <        c = bend->getAtomC()->getGlobalIndex();
574 >    for (bend= mol->beginBend(bendIter); bend != NULL;
575 >         bend = mol->nextBend(bendIter)) {
576  
577 <        exclude_.removePair(a, b);
578 <        exclude_.removePair(a, c);
579 <        exclude_.removePair(b, c);        
577 >      a = bend->getAtomA()->getGlobalIndex();
578 >      b = bend->getAtomB()->getGlobalIndex();        
579 >      c = bend->getAtomC()->getGlobalIndex();
580 >      
581 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
582 >        oneTwoInteractions_.removePair(a, b);      
583 >        oneTwoInteractions_.removePair(b, c);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >      }
588 >
589 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
590 >        oneThreeInteractions_.removePair(a, c);      
591 >      } else {
592 >        excludedInteractions_.removePair(a, c);
593 >      }
594      }
595  
596 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
597 <        a = torsion->getAtomA()->getGlobalIndex();
428 <        b = torsion->getAtomB()->getGlobalIndex();        
429 <        c = torsion->getAtomC()->getGlobalIndex();        
430 <        d = torsion->getAtomD()->getGlobalIndex();        
596 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
597 >         torsion = mol->nextTorsion(torsionIter)) {
598  
599 <        exclude_.removePair(a, b);
600 <        exclude_.removePair(a, c);
601 <        exclude_.removePair(a, d);
602 <        exclude_.removePair(b, c);
603 <        exclude_.removePair(b, d);
604 <        exclude_.removePair(c, d);        
599 >      a = torsion->getAtomA()->getGlobalIndex();
600 >      b = torsion->getAtomB()->getGlobalIndex();        
601 >      c = torsion->getAtomC()->getGlobalIndex();        
602 >      d = torsion->getAtomD()->getGlobalIndex();      
603 >  
604 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
605 >        oneTwoInteractions_.removePair(a, b);      
606 >        oneTwoInteractions_.removePair(b, c);
607 >        oneTwoInteractions_.removePair(c, d);
608 >      } else {
609 >        excludedInteractions_.removePair(a, b);
610 >        excludedInteractions_.removePair(b, c);
611 >        excludedInteractions_.removePair(c, d);
612 >      }
613 >
614 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
615 >        oneThreeInteractions_.removePair(a, c);      
616 >        oneThreeInteractions_.removePair(b, d);      
617 >      } else {
618 >        excludedInteractions_.removePair(a, c);
619 >        excludedInteractions_.removePair(b, d);
620 >      }
621 >
622 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
623 >        oneFourInteractions_.removePair(a, d);      
624 >      } else {
625 >        excludedInteractions_.removePair(a, d);
626 >      }
627      }
628  
629 <    Molecule::RigidBodyIterator rbIter;
630 <    RigidBody* rb;
442 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
443 <        std::vector<Atom*> atoms = rb->getAtoms();
444 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
445 <            for (int j = i + 1; j < atoms.size(); ++j) {
446 <                a = atoms[i]->getGlobalIndex();
447 <                b = atoms[j]->getGlobalIndex();
448 <                exclude_.removePair(a, b);
449 <            }
450 <        }
451 <    }        
629 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
630 >         inversion = mol->nextInversion(inversionIter)) {
631  
632 <    Molecule::CutoffGroupIterator cgIter;
633 <    CutoffGroup* cg;
634 <    for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
635 <        std::vector<Atom*> atoms = cg->getAtoms();
457 <        for (int i = 0; i < atoms.size() -1 ; ++i) {
458 <            for (int j = i + 1; j < atoms.size(); ++j) {
459 <                a = atoms[i]->getGlobalIndex();
460 <                b = atoms[j]->getGlobalIndex();
461 <                exclude_.removePair(a, b);
462 <            }
463 <        }
464 <    }  
632 >      a = inversion->getAtomA()->getGlobalIndex();
633 >      b = inversion->getAtomB()->getGlobalIndex();        
634 >      c = inversion->getAtomC()->getGlobalIndex();        
635 >      d = inversion->getAtomD()->getGlobalIndex();        
636  
637 < }
637 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
638 >        oneTwoInteractions_.removePair(a, b);      
639 >        oneTwoInteractions_.removePair(a, c);
640 >        oneTwoInteractions_.removePair(a, d);
641 >      } else {
642 >        excludedInteractions_.removePair(a, b);
643 >        excludedInteractions_.removePair(a, c);
644 >        excludedInteractions_.removePair(a, d);
645 >      }
646  
647 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
648 +        oneThreeInteractions_.removePair(b, c);    
649 +        oneThreeInteractions_.removePair(b, d);    
650 +        oneThreeInteractions_.removePair(c, d);      
651 +      } else {
652 +        excludedInteractions_.removePair(b, c);
653 +        excludedInteractions_.removePair(b, d);
654 +        excludedInteractions_.removePair(c, d);
655 +      }
656 +    }
657  
658 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
658 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
659 >         rb = mol->nextRigidBody(rbIter)) {
660 >      vector<Atom*> atoms = rb->getAtoms();
661 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
662 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
663 >          a = atoms[i]->getGlobalIndex();
664 >          b = atoms[j]->getGlobalIndex();
665 >          excludedInteractions_.removePair(a, b);
666 >        }
667 >      }
668 >    }        
669 >    
670 >  }
671 >  
672 >  
673 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
674      int curStampId;
675 <
675 >    
676      //index from 0
677      curStampId = moleculeStamps_.size();
678  
679      moleculeStamps_.push_back(molStamp);
680      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
681 < }
681 >  }
682  
479 void SimInfo::update() {
683  
684 <    setupSimType();
685 <
686 < #ifdef IS_MPI
687 <    setupFortranParallel();
688 < #endif
689 <
690 <    setupFortranSim();
691 <
692 <    //setup fortran force field
490 <    /** @deprecate */    
491 <    int isError = 0;
492 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
493 <    if(isError){
494 <        sprintf( painCave.errMsg,
495 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
496 <        painCave.isFatal = 1;
497 <        simError();
498 <    }
499 <  
500 <    
501 <    setupCutoff();
502 <
684 >  /**
685 >   * update
686 >   *
687 >   *  Performs the global checks and variable settings after the
688 >   *  objects have been created.
689 >   *
690 >   */
691 >  void SimInfo::update() {  
692 >    setupSimVariables();
693      calcNdf();
694      calcNdfRaw();
695      calcNdfTrans();
696 <
697 <    fortranInitialized_ = true;
698 < }
699 <
700 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
696 >  }
697 >  
698 >  /**
699 >   * getSimulatedAtomTypes
700 >   *
701 >   * Returns an STL set of AtomType* that are actually present in this
702 >   * simulation.  Must query all processors to assemble this information.
703 >   *
704 >   */
705 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
706      SimInfo::MoleculeIterator mi;
707      Molecule* mol;
708      Molecule::AtomIterator ai;
709      Atom* atom;
710 <    std::set<AtomType*> atomTypes;
711 <
710 >    set<AtomType*> atomTypes;
711 >    
712      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
713 +      for(atom = mol->beginAtom(ai); atom != NULL;
714 +          atom = mol->nextAtom(ai)) {
715 +        atomTypes.insert(atom->getAtomType());
716 +      }      
717 +    }    
718 +    
719 + #ifdef IS_MPI
720  
721 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
722 <            atomTypes.insert(atom->getAtomType());
723 <        }
724 <        
721 >    // loop over the found atom types on this processor, and add their
722 >    // numerical idents to a vector:
723 >    
724 >    vector<int> foundTypes;
725 >    set<AtomType*>::iterator i;
726 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
727 >      foundTypes.push_back( (*i)->getIdent() );
728 >
729 >    // count_local holds the number of found types on this processor
730 >    int count_local = foundTypes.size();
731 >
732 >    int nproc = MPI::COMM_WORLD.Get_size();
733 >
734 >    // we need arrays to hold the counts and displacement vectors for
735 >    // all processors
736 >    vector<int> counts(nproc, 0);
737 >    vector<int> disps(nproc, 0);
738 >
739 >    // fill the counts array
740 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
741 >                              1, MPI::INT);
742 >  
743 >    // use the processor counts to compute the displacement array
744 >    disps[0] = 0;    
745 >    int totalCount = counts[0];
746 >    for (int iproc = 1; iproc < nproc; iproc++) {
747 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
748 >      totalCount += counts[iproc];
749      }
750  
751 <    return atomTypes;        
752 < }
751 >    // we need a (possibly redundant) set of all found types:
752 >    vector<int> ftGlobal(totalCount);
753 >    
754 >    // now spray out the foundTypes to all the other processors:    
755 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
756 >                               &ftGlobal[0], &counts[0], &disps[0],
757 >                               MPI::INT);
758  
759 < void SimInfo::setupSimType() {
760 <    std::set<AtomType*>::iterator i;
761 <    std::set<AtomType*> atomTypes;
762 <    atomTypes = getUniqueAtomTypes();
759 >    vector<int>::iterator j;
760 >
761 >    // foundIdents is a stl set, so inserting an already found ident
762 >    // will have no effect.
763 >    set<int> foundIdents;
764 >
765 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
766 >      foundIdents.insert((*j));
767      
768 <    int useLennardJones = 0;
769 <    int useElectrostatic = 0;
770 <    int useEAM = 0;
771 <    int useCharge = 0;
772 <    int useDirectional = 0;
773 <    int useDipole = 0;
774 <    int useGayBerne = 0;
540 <    int useSticky = 0;
541 <    int useShape = 0;
542 <    int useFLARB = 0; //it is not in AtomType yet
543 <    int useDirectionalAtom = 0;    
544 <    int useElectrostatics = 0;
545 <    //usePBC and useRF are from simParams
546 <    int usePBC = simParams_->getPBC();
547 <    int useRF = simParams_->getUseRF();
768 >    // now iterate over the foundIdents and get the actual atom types
769 >    // that correspond to these:
770 >    set<int>::iterator it;
771 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
772 >      atomTypes.insert( forceField_->getAtomType((*it)) );
773 >
774 > #endif
775  
776 +    return atomTypes;        
777 +  }
778 +
779 +  void SimInfo::setupSimVariables() {
780 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
781 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
782 +    calcBoxDipole_ = false;
783 +    if ( simParams_->haveAccumulateBoxDipole() )
784 +      if ( simParams_->getAccumulateBoxDipole() ) {
785 +        calcBoxDipole_ = true;      
786 +      }
787 +    
788 +    set<AtomType*>::iterator i;
789 +    set<AtomType*> atomTypes;
790 +    atomTypes = getSimulatedAtomTypes();    
791 +    int usesElectrostatic = 0;
792 +    int usesMetallic = 0;
793 +    int usesDirectional = 0;
794 +    int usesFluctuatingCharges =  0;
795      //loop over all of the atom types
796      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
797 <        useLennardJones |= (*i)->isLennardJones();
798 <        useElectrostatic |= (*i)->isElectrostatic();
799 <        useEAM |= (*i)->isEAM();
800 <        useCharge |= (*i)->isCharge();
555 <        useDirectional |= (*i)->isDirectional();
556 <        useDipole |= (*i)->isDipole();
557 <        useGayBerne |= (*i)->isGayBerne();
558 <        useSticky |= (*i)->isSticky();
559 <        useShape |= (*i)->isShape();
797 >      usesElectrostatic |= (*i)->isElectrostatic();
798 >      usesMetallic |= (*i)->isMetal();
799 >      usesDirectional |= (*i)->isDirectional();
800 >      usesFluctuatingCharges |= (*i)->isFluctuatingCharge();
801      }
802 <
562 <    if (useSticky || useDipole || useGayBerne || useShape) {
563 <        useDirectionalAtom = 1;
564 <    }
565 <
566 <    if (useCharge || useDipole) {
567 <        useElectrostatics = 1;
568 <    }
569 <
802 >    
803   #ifdef IS_MPI    
804      int temp;
805 +    temp = usesDirectional;
806 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
807 +    
808 +    temp = usesMetallic;
809 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 +    
811 +    temp = usesElectrostatic;
812 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
813  
814 <    temp = usePBC;
815 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >    temp = usesFluctuatingCharges;
815 >    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816 > #else
817  
818 <    temp = useDirectionalAtom;
819 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    usesDirectionalAtoms_ = usesDirectional;
819 >    usesMetallicAtoms_ = usesMetallic;
820 >    usesElectrostaticAtoms_ = usesElectrostatic;
821 >    usesFluctuatingCharges_ = usesFluctuatingCharges;
822  
823 <    temp = useLennardJones;
824 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
823 > #endif
824 >    
825 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
826 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
827 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
828 >  }
829  
582    temp = useElectrostatics;
583    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830  
831 <    temp = useCharge;
832 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
831 >  vector<int> SimInfo::getGlobalAtomIndices() {
832 >    SimInfo::MoleculeIterator mi;
833 >    Molecule* mol;
834 >    Molecule::AtomIterator ai;
835 >    Atom* atom;
836  
837 <    temp = useDipole;
589 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
590 <
591 <    temp = useSticky;
592 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
593 <
594 <    temp = useGayBerne;
595 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
596 <
597 <    temp = useEAM;
598 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
599 <
600 <    temp = useShape;
601 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
602 <
603 <    temp = useFLARB;
604 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
605 <
606 <    temp = useRF;
607 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
838      
839 < #endif
839 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
840 >      
841 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
842 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
843 >      }
844 >    }
845 >    return GlobalAtomIndices;
846 >  }
847  
611    fInfo_.SIM_uses_PBC = usePBC;    
612    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
613    fInfo_.SIM_uses_LennardJones = useLennardJones;
614    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
615    fInfo_.SIM_uses_Charges = useCharge;
616    fInfo_.SIM_uses_Dipoles = useDipole;
617    fInfo_.SIM_uses_Sticky = useSticky;
618    fInfo_.SIM_uses_GayBerne = useGayBerne;
619    fInfo_.SIM_uses_EAM = useEAM;
620    fInfo_.SIM_uses_Shapes = useShape;
621    fInfo_.SIM_uses_FLARB = useFLARB;
622    fInfo_.SIM_uses_RF = useRF;
848  
849 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
849 >  vector<int> SimInfo::getGlobalGroupIndices() {
850 >    SimInfo::MoleculeIterator mi;
851 >    Molecule* mol;
852 >    Molecule::CutoffGroupIterator ci;
853 >    CutoffGroup* cg;
854  
855 <        if (simParams_->haveDielectric()) {
856 <            fInfo_.dielect = simParams_->getDielectric();
857 <        } else {
858 <            sprintf(painCave.errMsg,
859 <                    "SimSetup Error: No Dielectric constant was set.\n"
860 <                    "\tYou are trying to use Reaction Field without"
861 <                    "\tsetting a dielectric constant!\n");
862 <            painCave.isFatal = 1;
863 <            simError();
864 <        }
636 <        
637 <    } else {
638 <        fInfo_.dielect = 0.0;
855 >    vector<int> GlobalGroupIndices;
856 >    
857 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
858 >      
859 >      //local index of cutoff group is trivial, it only depends on the
860 >      //order of travesing
861 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
862 >           cg = mol->nextCutoffGroup(ci)) {
863 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
864 >      }        
865      }
866 +    return GlobalGroupIndices;
867 +  }
868  
641 }
869  
870 < void SimInfo::setupFortranSim() {
871 <    int isError;
645 <    int nExclude;
646 <    std::vector<int> fortranGlobalGroupMembership;
647 <    
648 <    nExclude = exclude_.getSize();
649 <    isError = 0;
870 >  void SimInfo::prepareTopology() {
871 >    int nExclude, nOneTwo, nOneThree, nOneFour;
872  
651    //globalGroupMembership_ is filled by SimCreator    
652    for (int i = 0; i < nGlobalAtoms_; i++) {
653        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
654    }
655
873      //calculate mass ratio of cutoff group
657    std::vector<double> mfact;
874      SimInfo::MoleculeIterator mi;
875      Molecule* mol;
876      Molecule::CutoffGroupIterator ci;
877      CutoffGroup* cg;
878      Molecule::AtomIterator ai;
879      Atom* atom;
880 <    double totalMass;
880 >    RealType totalMass;
881  
882 <    //to avoid memory reallocation, reserve enough space for mfact
883 <    mfact.reserve(getNCutoffGroups());
882 >    /**
883 >     * The mass factor is the relative mass of an atom to the total
884 >     * mass of the cutoff group it belongs to.  By default, all atoms
885 >     * are their own cutoff groups, and therefore have mass factors of
886 >     * 1.  We need some special handling for massless atoms, which
887 >     * will be treated as carrying the entire mass of the cutoff
888 >     * group.
889 >     */
890 >    massFactors_.clear();
891 >    massFactors_.resize(getNAtoms(), 1.0);
892      
893      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
894 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
894 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
895 >           cg = mol->nextCutoffGroup(ci)) {
896  
897 <            totalMass = cg->getMass();
898 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
899 <                        mfact.push_back(atom->getMass()/totalMass);
900 <            }
901 <
902 <        }      
897 >        totalMass = cg->getMass();
898 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
899 >          // Check for massless groups - set mfact to 1 if true
900 >          if (totalMass != 0)
901 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
902 >          else
903 >            massFactors_[atom->getLocalIndex()] = 1.0;
904 >        }
905 >      }      
906      }
907  
908 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
681 <    std::vector<int> identArray;
908 >    // Build the identArray_
909  
910 <    //to avoid memory reallocation, reserve enough space identArray
911 <    identArray.reserve(getNAtoms());
685 <    
910 >    identArray_.clear();
911 >    identArray_.reserve(getNAtoms());    
912      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
913 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
914 <            identArray.push_back(atom->getIdent());
915 <        }
913 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
914 >        identArray_.push_back(atom->getIdent());
915 >      }
916      }    
691
692    //fill molMembershipArray
693    //molMembershipArray is filled by SimCreator    
694    std::vector<int> molMembershipArray(nGlobalAtoms_);
695    for (int i = 0; i < nGlobalAtoms_; i++) {
696        molMembershipArray[i] = globalMolMembership_[i] + 1;
697    }
917      
918 <    //setup fortran simulation
700 <    int nGlobalExcludes = 0;
701 <    int* globalExcludes = NULL;
702 <    int* excludeList = exclude_.getExcludeList();
703 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
704 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
705 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
918 >    //scan topology
919  
920 <    if( isError ){
920 >    nExclude = excludedInteractions_.getSize();
921 >    nOneTwo = oneTwoInteractions_.getSize();
922 >    nOneThree = oneThreeInteractions_.getSize();
923 >    nOneFour = oneFourInteractions_.getSize();
924  
925 <        sprintf( painCave.errMsg,
926 <                 "There was an error setting the simulation information in fortran.\n" );
927 <        painCave.isFatal = 1;
928 <        painCave.severity = OOPSE_ERROR;
713 <        simError();
714 <    }
925 >    int* excludeList = excludedInteractions_.getPairList();
926 >    int* oneTwoList = oneTwoInteractions_.getPairList();
927 >    int* oneThreeList = oneThreeInteractions_.getPairList();
928 >    int* oneFourList = oneFourInteractions_.getPairList();
929  
930 < #ifdef IS_MPI
931 <    sprintf( checkPointMsg,
718 <       "succesfully sent the simulation information to fortran.\n");
719 <    MPIcheckPoint();
720 < #endif // is_mpi
721 < }
930 >    topologyDone_ = true;
931 >  }
932  
933 +  void SimInfo::addProperty(GenericData* genData) {
934 +    properties_.addProperty(genData);  
935 +  }
936  
937 < #ifdef IS_MPI
938 < void SimInfo::setupFortranParallel() {
939 <    
727 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
728 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
729 <    std::vector<int> localToGlobalCutoffGroupIndex;
730 <    SimInfo::MoleculeIterator mi;
731 <    Molecule::AtomIterator ai;
732 <    Molecule::CutoffGroupIterator ci;
733 <    Molecule* mol;
734 <    Atom* atom;
735 <    CutoffGroup* cg;
736 <    mpiSimData parallelData;
737 <    int isError;
937 >  void SimInfo::removeProperty(const string& propName) {
938 >    properties_.removeProperty(propName);  
939 >  }
940  
941 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
941 >  void SimInfo::clearProperties() {
942 >    properties_.clearProperties();
943 >  }
944  
945 <        //local index(index in DataStorge) of atom is important
946 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
947 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
948 <        }
945 >  vector<string> SimInfo::getPropertyNames() {
946 >    return properties_.getPropertyNames();  
947 >  }
948 >      
949 >  vector<GenericData*> SimInfo::getProperties() {
950 >    return properties_.getProperties();
951 >  }
952  
953 <        //local index of cutoff group is trivial, it only depends on the order of travesing
954 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
955 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
749 <        }        
750 <        
751 <    }
752 <
753 <    //fill up mpiSimData struct
754 <    parallelData.nMolGlobal = getNGlobalMolecules();
755 <    parallelData.nMolLocal = getNMolecules();
756 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
757 <    parallelData.nAtomsLocal = getNAtoms();
758 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
759 <    parallelData.nGroupsLocal = getNCutoffGroups();
760 <    parallelData.myNode = worldRank;
761 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
762 <
763 <    //pass mpiSimData struct and index arrays to fortran
764 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
765 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
766 <                    &localToGlobalCutoffGroupIndex[0], &isError);
767 <
768 <    if (isError) {
769 <        sprintf(painCave.errMsg,
770 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
771 <        painCave.isFatal = 1;
772 <        simError();
773 <    }
774 <
775 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
776 <    MPIcheckPoint();
777 <
778 <
779 < }
780 <
781 < #endif
782 <
783 < double SimInfo::calcMaxCutoffRadius() {
784 <
785 <
786 <    std::set<AtomType*> atomTypes;
787 <    std::set<AtomType*>::iterator i;
788 <    std::vector<double> cutoffRadius;
789 <
790 <    //get the unique atom types
791 <    atomTypes = getUniqueAtomTypes();
953 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
954 >    return properties_.getPropertyByName(propName);
955 >  }
956  
957 <    //query the max cutoff radius among these atom types
794 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
795 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
796 <    }
797 <
798 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
799 < #ifdef IS_MPI
800 <    //pick the max cutoff radius among the processors
801 < #endif
802 <
803 <    return maxCutoffRadius;
804 < }
805 <
806 < void SimInfo::getCutoff(double& rcut, double& rsw) {
807 <    
808 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
809 <        
810 <        if (!simParams_->haveRcut()){
811 <            sprintf(painCave.errMsg,
812 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
813 <                "\tOOPSE will use a default value of 15.0 angstroms"
814 <                "\tfor the cutoffRadius.\n");
815 <            painCave.isFatal = 0;
816 <            simError();
817 <            rcut = 15.0;
818 <        } else{
819 <            rcut = simParams_->getRcut();
820 <        }
821 <
822 <        if (!simParams_->haveRsw()){
823 <            sprintf(painCave.errMsg,
824 <                "SimCreator Warning: No value was set for switchingRadius.\n"
825 <                "\tOOPSE will use a default value of\n"
826 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
827 <            painCave.isFatal = 0;
828 <            simError();
829 <            rsw = 0.95 * rcut;
830 <        } else{
831 <            rsw = simParams_->getRsw();
832 <        }
833 <
834 <    } else {
835 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
836 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
837 <        
838 <        if (simParams_->haveRcut()) {
839 <            rcut = simParams_->getRcut();
840 <        } else {
841 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
842 <            rcut = calcMaxCutoffRadius();
843 <        }
844 <
845 <        if (simParams_->haveRsw()) {
846 <            rsw  = simParams_->getRsw();
847 <        } else {
848 <            rsw = rcut;
849 <        }
850 <    
851 <    }
852 < }
853 <
854 < void SimInfo::setupCutoff() {
855 <    getCutoff(rcut_, rsw_);    
856 <    double rnblist = rcut_ + 1; // skin of neighbor list
857 <
858 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
859 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
860 < }
861 <
862 < void SimInfo::addProperty(GenericData* genData) {
863 <    properties_.addProperty(genData);  
864 < }
865 <
866 < void SimInfo::removeProperty(const std::string& propName) {
867 <    properties_.removeProperty(propName);  
868 < }
869 <
870 < void SimInfo::clearProperties() {
871 <    properties_.clearProperties();
872 < }
873 <
874 < std::vector<std::string> SimInfo::getPropertyNames() {
875 <    return properties_.getPropertyNames();  
876 < }
877 <      
878 < std::vector<GenericData*> SimInfo::getProperties() {
879 <    return properties_.getProperties();
880 < }
881 <
882 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
883 <    return properties_.getPropertyByName(propName);
884 < }
885 <
886 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
957 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
958      if (sman_ == sman) {
959 <        return;
959 >      return;
960      }    
961      delete sman_;
962      sman_ = sman;
# Line 893 | Line 964 | void SimInfo::setSnapshotManager(SnapshotManager* sman
964      Molecule* mol;
965      RigidBody* rb;
966      Atom* atom;
967 +    CutoffGroup* cg;
968      SimInfo::MoleculeIterator mi;
969      Molecule::RigidBodyIterator rbIter;
970 <    Molecule::AtomIterator atomIter;;
970 >    Molecule::AtomIterator atomIter;
971 >    Molecule::CutoffGroupIterator cgIter;
972  
973      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
974          
975 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
976 <            atom->setSnapshotManager(sman_);
977 <        }
975 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
976 >        atom->setSnapshotManager(sman_);
977 >      }
978          
979 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
980 <            rb->setSnapshotManager(sman_);
981 <        }
979 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
980 >        rb->setSnapshotManager(sman_);
981 >      }
982 >
983 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
984 >        cg->setSnapshotManager(sman_);
985 >      }
986      }    
987      
988 < }
988 >  }
989  
990 < Vector3d SimInfo::getComVel(){
990 >  Vector3d SimInfo::getComVel(){
991      SimInfo::MoleculeIterator i;
992      Molecule* mol;
993  
994      Vector3d comVel(0.0);
995 <    double totalMass = 0.0;
995 >    RealType totalMass = 0.0;
996      
997  
998      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 <        double mass = mol->getMass();
1000 <        totalMass += mass;
1001 <        comVel += mass * mol->getComVel();
999 >      RealType mass = mol->getMass();
1000 >      totalMass += mass;
1001 >      comVel += mass * mol->getComVel();
1002      }  
1003  
1004   #ifdef IS_MPI
1005 <    double tmpMass = totalMass;
1005 >    RealType tmpMass = totalMass;
1006      Vector3d tmpComVel(comVel);    
1007 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1008 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009   #endif
1010  
1011      comVel /= totalMass;
1012  
1013      return comVel;
1014 < }
1014 >  }
1015  
1016 < Vector3d SimInfo::getCom(){
1016 >  Vector3d SimInfo::getCom(){
1017      SimInfo::MoleculeIterator i;
1018      Molecule* mol;
1019  
1020      Vector3d com(0.0);
1021 <    double totalMass = 0.0;
1021 >    RealType totalMass = 0.0;
1022      
1023      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 <        double mass = mol->getMass();
1025 <        totalMass += mass;
1026 <        com += mass * mol->getCom();
1024 >      RealType mass = mol->getMass();
1025 >      totalMass += mass;
1026 >      com += mass * mol->getCom();
1027      }  
1028  
1029   #ifdef IS_MPI
1030 <    double tmpMass = totalMass;
1030 >    RealType tmpMass = totalMass;
1031      Vector3d tmpCom(com);    
1032 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1033 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1032 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034   #endif
1035  
1036      com /= totalMass;
1037  
1038      return com;
1039  
1040 < }        
1040 >  }        
1041  
1042 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043  
1044      return o;
1045 < }
1045 >  }
1046 >  
1047 >  
1048 >   /*
1049 >   Returns center of mass and center of mass velocity in one function call.
1050 >   */
1051 >  
1052 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1053 >      SimInfo::MoleculeIterator i;
1054 >      Molecule* mol;
1055 >      
1056 >    
1057 >      RealType totalMass = 0.0;
1058 >    
1059  
1060 < }//end namespace oopse
1060 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 >         RealType mass = mol->getMass();
1062 >         totalMass += mass;
1063 >         com += mass * mol->getCom();
1064 >         comVel += mass * mol->getComVel();          
1065 >      }  
1066 >      
1067 > #ifdef IS_MPI
1068 >      RealType tmpMass = totalMass;
1069 >      Vector3d tmpCom(com);  
1070 >      Vector3d tmpComVel(comVel);
1071 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 > #endif
1075 >      
1076 >      com /= totalMass;
1077 >      comVel /= totalMass;
1078 >   }        
1079 >  
1080 >   /*
1081 >   Return intertia tensor for entire system and angular momentum Vector.
1082  
1083 +
1084 +       [  Ixx -Ixy  -Ixz ]
1085 +    J =| -Iyx  Iyy  -Iyz |
1086 +       [ -Izx -Iyz   Izz ]
1087 +    */
1088 +
1089 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090 +      
1091 +
1092 +      RealType xx = 0.0;
1093 +      RealType yy = 0.0;
1094 +      RealType zz = 0.0;
1095 +      RealType xy = 0.0;
1096 +      RealType xz = 0.0;
1097 +      RealType yz = 0.0;
1098 +      Vector3d com(0.0);
1099 +      Vector3d comVel(0.0);
1100 +      
1101 +      getComAll(com, comVel);
1102 +      
1103 +      SimInfo::MoleculeIterator i;
1104 +      Molecule* mol;
1105 +      
1106 +      Vector3d thisq(0.0);
1107 +      Vector3d thisv(0.0);
1108 +
1109 +      RealType thisMass = 0.0;
1110 +    
1111 +      
1112 +      
1113 +  
1114 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 +        
1116 +         thisq = mol->getCom()-com;
1117 +         thisv = mol->getComVel()-comVel;
1118 +         thisMass = mol->getMass();
1119 +         // Compute moment of intertia coefficients.
1120 +         xx += thisq[0]*thisq[0]*thisMass;
1121 +         yy += thisq[1]*thisq[1]*thisMass;
1122 +         zz += thisq[2]*thisq[2]*thisMass;
1123 +        
1124 +         // compute products of intertia
1125 +         xy += thisq[0]*thisq[1]*thisMass;
1126 +         xz += thisq[0]*thisq[2]*thisMass;
1127 +         yz += thisq[1]*thisq[2]*thisMass;
1128 +            
1129 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1130 +            
1131 +      }  
1132 +      
1133 +      
1134 +      inertiaTensor(0,0) = yy + zz;
1135 +      inertiaTensor(0,1) = -xy;
1136 +      inertiaTensor(0,2) = -xz;
1137 +      inertiaTensor(1,0) = -xy;
1138 +      inertiaTensor(1,1) = xx + zz;
1139 +      inertiaTensor(1,2) = -yz;
1140 +      inertiaTensor(2,0) = -xz;
1141 +      inertiaTensor(2,1) = -yz;
1142 +      inertiaTensor(2,2) = xx + yy;
1143 +      
1144 + #ifdef IS_MPI
1145 +      Mat3x3d tmpI(inertiaTensor);
1146 +      Vector3d tmpAngMom;
1147 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 + #endif
1150 +              
1151 +      return;
1152 +   }
1153 +
1154 +   //Returns the angular momentum of the system
1155 +   Vector3d SimInfo::getAngularMomentum(){
1156 +      
1157 +      Vector3d com(0.0);
1158 +      Vector3d comVel(0.0);
1159 +      Vector3d angularMomentum(0.0);
1160 +      
1161 +      getComAll(com,comVel);
1162 +      
1163 +      SimInfo::MoleculeIterator i;
1164 +      Molecule* mol;
1165 +      
1166 +      Vector3d thisr(0.0);
1167 +      Vector3d thisp(0.0);
1168 +      
1169 +      RealType thisMass;
1170 +      
1171 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172 +        thisMass = mol->getMass();
1173 +        thisr = mol->getCom()-com;
1174 +        thisp = (mol->getComVel()-comVel)*thisMass;
1175 +        
1176 +        angularMomentum += cross( thisr, thisp );
1177 +        
1178 +      }  
1179 +      
1180 + #ifdef IS_MPI
1181 +      Vector3d tmpAngMom;
1182 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183 + #endif
1184 +      
1185 +      return angularMomentum;
1186 +   }
1187 +  
1188 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 +    return IOIndexToIntegrableObject.at(index);
1190 +  }
1191 +  
1192 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 +    IOIndexToIntegrableObject= v;
1194 +  }
1195 +
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237 +    }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253 +  }
1254 +
1255 + }//end namespace OpenMD
1256 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 432 by tim, Fri Mar 11 15:00:20 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1725 by gezelter, Sat May 26 18:13:43 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines