36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
|
#include "io/ForceFieldOptions.hpp" |
62 |
< |
#include "UseTheForce/ForceField.hpp" |
62 |
> |
#include "brains/ForceField.hpp" |
63 |
|
#include "nonbonded/SwitchingFunction.hpp" |
64 |
– |
|
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
68 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
72 |
|
forceField_(ff), simParams_(simParams), |
73 |
|
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
78 |
> |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
|
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
|
MoleculeStamp* molStamp; |
129 |
|
//equal to the total number of atoms minus number of atoms belong to |
130 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
|
//groups defined in meta-data file |
132 |
+ |
|
133 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 |
|
|
135 |
|
//every free atom (atom does not belong to rigid bodies) is an |
225 |
|
|
226 |
|
|
227 |
|
void SimInfo::calcNdf() { |
228 |
< |
int ndf_local; |
228 |
> |
int ndf_local, nfq_local; |
229 |
|
MoleculeIterator i; |
230 |
|
vector<StuntDouble*>::iterator j; |
231 |
+ |
vector<Atom*>::iterator k; |
232 |
+ |
|
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
+ |
Atom* atom; |
236 |
|
|
237 |
|
ndf_local = 0; |
238 |
+ |
nfq_local = 0; |
239 |
|
|
240 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
250 |
|
ndf_local += 3; |
251 |
|
} |
252 |
|
} |
250 |
– |
|
253 |
|
} |
254 |
+ |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 |
+ |
atom = mol->nextFluctuatingCharge(k)) { |
256 |
+ |
if (atom->isFluctuatingCharge()) { |
257 |
+ |
nfq_local++; |
258 |
+ |
} |
259 |
+ |
} |
260 |
|
} |
261 |
|
|
262 |
|
// n_constraints is local, so subtract them on each processor |
264 |
|
|
265 |
|
#ifdef IS_MPI |
266 |
|
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
267 |
+ |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
268 |
|
#else |
269 |
|
ndf_ = ndf_local; |
270 |
+ |
nGlobalFluctuatingCharges_ = nfq_local; |
271 |
|
#endif |
272 |
|
|
273 |
|
// nZconstraints_ is global, as are the 3 COM translations for the |
283 |
|
fdf_ = fdf_local; |
284 |
|
#endif |
285 |
|
return fdf_; |
286 |
+ |
} |
287 |
+ |
|
288 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
289 |
+ |
int nLocalCutoffAtoms = 0; |
290 |
+ |
Molecule* mol; |
291 |
+ |
MoleculeIterator mi; |
292 |
+ |
CutoffGroup* cg; |
293 |
+ |
Molecule::CutoffGroupIterator ci; |
294 |
+ |
|
295 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
296 |
+ |
|
297 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
298 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
299 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
300 |
+ |
|
301 |
+ |
} |
302 |
+ |
} |
303 |
+ |
|
304 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
305 |
|
} |
306 |
|
|
307 |
|
void SimInfo::calcNdfRaw() { |
709 |
|
Atom* atom; |
710 |
|
set<AtomType*> atomTypes; |
711 |
|
|
712 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
713 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
712 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
713 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
714 |
> |
atom = mol->nextAtom(ai)) { |
715 |
|
atomTypes.insert(atom->getAtomType()); |
716 |
|
} |
717 |
|
} |
718 |
< |
|
718 |
> |
|
719 |
|
#ifdef IS_MPI |
720 |
|
|
721 |
|
// loop over the found atom types on this processor, and add their |
722 |
|
// numerical idents to a vector: |
723 |
< |
|
723 |
> |
|
724 |
|
vector<int> foundTypes; |
725 |
|
set<AtomType*>::iterator i; |
726 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
729 |
|
// count_local holds the number of found types on this processor |
730 |
|
int count_local = foundTypes.size(); |
731 |
|
|
732 |
< |
// count holds the total number of found types on all processors |
703 |
< |
// (some will be redundant with the ones found locally): |
704 |
< |
int count; |
705 |
< |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
732 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
733 |
|
|
734 |
< |
// create a vector to hold the globally found types, and resize it: |
735 |
< |
vector<int> ftGlobal; |
736 |
< |
ftGlobal.resize(count); |
737 |
< |
vector<int> counts; |
734 |
> |
// we need arrays to hold the counts and displacement vectors for |
735 |
> |
// all processors |
736 |
> |
vector<int> counts(nproc, 0); |
737 |
> |
vector<int> disps(nproc, 0); |
738 |
|
|
739 |
< |
int nproc = MPI::COMM_WORLD.Get_size(); |
740 |
< |
counts.resize(nproc); |
741 |
< |
vector<int> disps; |
742 |
< |
disps.resize(nproc); |
739 |
> |
// fill the counts array |
740 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
741 |
> |
1, MPI::INT); |
742 |
> |
|
743 |
> |
// use the processor counts to compute the displacement array |
744 |
> |
disps[0] = 0; |
745 |
> |
int totalCount = counts[0]; |
746 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
747 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
748 |
> |
totalCount += counts[iproc]; |
749 |
> |
} |
750 |
|
|
751 |
< |
// now spray out the foundTypes to all the other processors: |
751 |
> |
// we need a (possibly redundant) set of all found types: |
752 |
> |
vector<int> ftGlobal(totalCount); |
753 |
|
|
754 |
+ |
// now spray out the foundTypes to all the other processors: |
755 |
|
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
756 |
< |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
756 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
757 |
> |
MPI::INT); |
758 |
|
|
759 |
+ |
vector<int>::iterator j; |
760 |
+ |
|
761 |
|
// foundIdents is a stl set, so inserting an already found ident |
762 |
|
// will have no effect. |
763 |
|
set<int> foundIdents; |
764 |
< |
vector<int>::iterator j; |
764 |
> |
|
765 |
|
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
766 |
|
foundIdents.insert((*j)); |
767 |
|
|
768 |
|
// now iterate over the foundIdents and get the actual atom types |
769 |
|
// that correspond to these: |
770 |
|
set<int>::iterator it; |
771 |
< |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
771 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
772 |
|
atomTypes.insert( forceField_->getAtomType((*it)) ); |
773 |
|
|
774 |
|
#endif |
775 |
< |
|
775 |
> |
|
776 |
|
return atomTypes; |
777 |
|
} |
778 |
|
|
784 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
785 |
|
calcBoxDipole_ = true; |
786 |
|
} |
787 |
< |
|
787 |
> |
|
788 |
|
set<AtomType*>::iterator i; |
789 |
|
set<AtomType*> atomTypes; |
790 |
|
atomTypes = getSimulatedAtomTypes(); |
791 |
|
int usesElectrostatic = 0; |
792 |
|
int usesMetallic = 0; |
793 |
|
int usesDirectional = 0; |
794 |
+ |
int usesFluctuatingCharges = 0; |
795 |
|
//loop over all of the atom types |
796 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
797 |
|
usesElectrostatic |= (*i)->isElectrostatic(); |
798 |
|
usesMetallic |= (*i)->isMetal(); |
799 |
|
usesDirectional |= (*i)->isDirectional(); |
800 |
+ |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
801 |
|
} |
802 |
< |
|
802 |
> |
|
803 |
|
#ifdef IS_MPI |
804 |
|
int temp; |
805 |
|
temp = usesDirectional; |
806 |
|
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
807 |
< |
|
807 |
> |
|
808 |
|
temp = usesMetallic; |
809 |
|
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 |
< |
|
810 |
> |
|
811 |
|
temp = usesElectrostatic; |
812 |
|
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
+ |
|
814 |
+ |
temp = usesFluctuatingCharges; |
815 |
+ |
MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
+ |
#else |
817 |
+ |
|
818 |
+ |
usesDirectionalAtoms_ = usesDirectional; |
819 |
+ |
usesMetallicAtoms_ = usesMetallic; |
820 |
+ |
usesElectrostaticAtoms_ = usesElectrostatic; |
821 |
+ |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
822 |
+ |
|
823 |
|
#endif |
824 |
< |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
825 |
< |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
826 |
< |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
827 |
< |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
777 |
< |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
778 |
< |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
824 |
> |
|
825 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
826 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
827 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
828 |
|
} |
829 |
|
|
830 |
< |
void SimInfo::setupFortran() { |
831 |
< |
int isError; |
832 |
< |
int nExclude, nOneTwo, nOneThree, nOneFour; |
833 |
< |
vector<int> fortranGlobalGroupMembership; |
830 |
> |
|
831 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
832 |
> |
SimInfo::MoleculeIterator mi; |
833 |
> |
Molecule* mol; |
834 |
> |
Molecule::AtomIterator ai; |
835 |
> |
Atom* atom; |
836 |
> |
|
837 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
838 |
|
|
839 |
< |
isError = 0; |
839 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 |
> |
|
841 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
842 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
843 |
> |
} |
844 |
> |
} |
845 |
> |
return GlobalAtomIndices; |
846 |
> |
} |
847 |
|
|
848 |
< |
//globalGroupMembership_ is filled by SimCreator |
849 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
850 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
848 |
> |
|
849 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
850 |
> |
SimInfo::MoleculeIterator mi; |
851 |
> |
Molecule* mol; |
852 |
> |
Molecule::CutoffGroupIterator ci; |
853 |
> |
CutoffGroup* cg; |
854 |
> |
|
855 |
> |
vector<int> GlobalGroupIndices; |
856 |
> |
|
857 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
858 |
> |
|
859 |
> |
//local index of cutoff group is trivial, it only depends on the |
860 |
> |
//order of travesing |
861 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
862 |
> |
cg = mol->nextCutoffGroup(ci)) { |
863 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
864 |
> |
} |
865 |
|
} |
866 |
+ |
return GlobalGroupIndices; |
867 |
+ |
} |
868 |
|
|
869 |
+ |
|
870 |
+ |
void SimInfo::prepareTopology() { |
871 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
872 |
+ |
|
873 |
|
//calculate mass ratio of cutoff group |
794 |
– |
vector<RealType> mfact; |
874 |
|
SimInfo::MoleculeIterator mi; |
875 |
|
Molecule* mol; |
876 |
|
Molecule::CutoffGroupIterator ci; |
879 |
|
Atom* atom; |
880 |
|
RealType totalMass; |
881 |
|
|
882 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
883 |
< |
mfact.reserve(getNCutoffGroups()); |
882 |
> |
/** |
883 |
> |
* The mass factor is the relative mass of an atom to the total |
884 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
885 |
> |
* are their own cutoff groups, and therefore have mass factors of |
886 |
> |
* 1. We need some special handling for massless atoms, which |
887 |
> |
* will be treated as carrying the entire mass of the cutoff |
888 |
> |
* group. |
889 |
> |
*/ |
890 |
> |
massFactors_.clear(); |
891 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
892 |
|
|
893 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
894 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
894 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
895 |
> |
cg = mol->nextCutoffGroup(ci)) { |
896 |
|
|
897 |
|
totalMass = cg->getMass(); |
898 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
899 |
|
// Check for massless groups - set mfact to 1 if true |
900 |
< |
if (totalMass != 0) |
901 |
< |
mfact.push_back(atom->getMass()/totalMass); |
900 |
> |
if (totalMass != 0) |
901 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
902 |
|
else |
903 |
< |
mfact.push_back( 1.0 ); |
903 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
904 |
|
} |
905 |
|
} |
906 |
|
} |
907 |
|
|
908 |
< |
//fill ident array of local atoms (it is actually ident of |
821 |
< |
//AtomType, it is so confusing !!!) |
822 |
< |
vector<int> identArray; |
908 |
> |
// Build the identArray_ |
909 |
|
|
910 |
< |
//to avoid memory reallocation, reserve enough space identArray |
911 |
< |
identArray.reserve(getNAtoms()); |
826 |
< |
|
910 |
> |
identArray_.clear(); |
911 |
> |
identArray_.reserve(getNAtoms()); |
912 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
913 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
914 |
< |
identArray.push_back(atom->getIdent()); |
914 |
> |
identArray_.push_back(atom->getIdent()); |
915 |
|
} |
916 |
|
} |
832 |
– |
|
833 |
– |
//fill molMembershipArray |
834 |
– |
//molMembershipArray is filled by SimCreator |
835 |
– |
vector<int> molMembershipArray(nGlobalAtoms_); |
836 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
837 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
838 |
– |
} |
917 |
|
|
918 |
< |
//setup fortran simulation |
918 |
> |
//scan topology |
919 |
|
|
920 |
|
nExclude = excludedInteractions_.getSize(); |
921 |
|
nOneTwo = oneTwoInteractions_.getSize(); |
927 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
928 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
929 |
|
|
930 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
853 |
< |
&nExclude, excludeList, |
854 |
< |
&nOneTwo, oneTwoList, |
855 |
< |
&nOneThree, oneThreeList, |
856 |
< |
&nOneFour, oneFourList, |
857 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
858 |
< |
&fortranGlobalGroupMembership[0], &isError); |
859 |
< |
|
860 |
< |
if( isError ){ |
861 |
< |
|
862 |
< |
sprintf( painCave.errMsg, |
863 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
864 |
< |
painCave.isFatal = 1; |
865 |
< |
painCave.severity = OPENMD_ERROR; |
866 |
< |
simError(); |
867 |
< |
} |
868 |
< |
|
869 |
< |
|
870 |
< |
sprintf( checkPointMsg, |
871 |
< |
"succesfully sent the simulation information to fortran.\n"); |
872 |
< |
|
873 |
< |
errorCheckPoint(); |
874 |
< |
|
875 |
< |
// Setup number of neighbors in neighbor list if present |
876 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
877 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
878 |
< |
setNeighbors(&nlistNeighbors); |
879 |
< |
} |
880 |
< |
|
881 |
< |
#ifdef IS_MPI |
882 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and |
883 |
< |
//localToGlobalGroupIndex |
884 |
< |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
885 |
< |
vector<int> localToGlobalCutoffGroupIndex; |
886 |
< |
mpiSimData parallelData; |
887 |
< |
|
888 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
889 |
< |
|
890 |
< |
//local index(index in DataStorge) of atom is important |
891 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
892 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
893 |
< |
} |
894 |
< |
|
895 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
896 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
897 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
898 |
< |
} |
899 |
< |
|
900 |
< |
} |
901 |
< |
|
902 |
< |
//fill up mpiSimData struct |
903 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
904 |
< |
parallelData.nMolLocal = getNMolecules(); |
905 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
906 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
907 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
908 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
909 |
< |
parallelData.myNode = worldRank; |
910 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
911 |
< |
|
912 |
< |
//pass mpiSimData struct and index arrays to fortran |
913 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
914 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
915 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
916 |
< |
|
917 |
< |
if (isError) { |
918 |
< |
sprintf(painCave.errMsg, |
919 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
920 |
< |
painCave.isFatal = 1; |
921 |
< |
simError(); |
922 |
< |
} |
923 |
< |
|
924 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
925 |
< |
errorCheckPoint(); |
926 |
< |
#endif |
927 |
< |
fortranInitialized_ = true; |
930 |
> |
topologyDone_ = true; |
931 |
|
} |
932 |
|
|
933 |
|
void SimInfo::addProperty(GenericData* genData) { |
964 |
|
Molecule* mol; |
965 |
|
RigidBody* rb; |
966 |
|
Atom* atom; |
967 |
+ |
CutoffGroup* cg; |
968 |
|
SimInfo::MoleculeIterator mi; |
969 |
|
Molecule::RigidBodyIterator rbIter; |
970 |
< |
Molecule::AtomIterator atomIter;; |
970 |
> |
Molecule::AtomIterator atomIter; |
971 |
> |
Molecule::CutoffGroupIterator cgIter; |
972 |
|
|
973 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
974 |
|
|
978 |
|
|
979 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
980 |
|
rb->setSnapshotManager(sman_); |
981 |
+ |
} |
982 |
+ |
|
983 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
984 |
+ |
cg->setSnapshotManager(sman_); |
985 |
|
} |
986 |
|
} |
987 |
|
|
1211 |
|
|
1212 |
|
det = intTensor.determinant(); |
1213 |
|
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1214 |
< |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1214 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1215 |
|
return; |
1216 |
|
} |
1217 |
|
|
1227 |
|
|
1228 |
|
detI = intTensor.determinant(); |
1229 |
|
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1230 |
< |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1230 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1231 |
|
return; |
1232 |
|
} |
1233 |
|
/* |