36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
55 |
|
#include "math/Vector3.hpp" |
56 |
|
#include "primitives/Molecule.hpp" |
57 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 |
– |
#include "UseTheForce/doForces_interface.h" |
58 |
|
#include "utils/MemoryUtils.hpp" |
59 |
|
#include "utils/simError.h" |
60 |
|
#include "selection/SelectionManager.hpp" |
61 |
|
#include "io/ForceFieldOptions.hpp" |
62 |
|
#include "UseTheForce/ForceField.hpp" |
63 |
|
#include "nonbonded/SwitchingFunction.hpp" |
65 |
– |
|
64 |
|
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
69 |
< |
#endif |
65 |
> |
#include <mpi.h> |
66 |
> |
#endif |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
75 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
76 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
78 |
> |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
79 |
|
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
|
81 |
|
MoleculeStamp* molStamp; |
129 |
|
//equal to the total number of atoms minus number of atoms belong to |
130 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
|
//groups defined in meta-data file |
135 |
– |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
136 |
– |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
137 |
– |
std::cerr << "nG = " << nGroups << "\n"; |
132 |
|
|
133 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
140 |
– |
|
141 |
– |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
134 |
|
|
135 |
|
//every free atom (atom does not belong to rigid bodies) is an |
136 |
|
//integrable object therefore the total number of integrable objects |
273 |
|
#endif |
274 |
|
return fdf_; |
275 |
|
} |
276 |
+ |
|
277 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
278 |
+ |
int nLocalCutoffAtoms = 0; |
279 |
+ |
Molecule* mol; |
280 |
+ |
MoleculeIterator mi; |
281 |
+ |
CutoffGroup* cg; |
282 |
+ |
Molecule::CutoffGroupIterator ci; |
283 |
|
|
284 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
285 |
+ |
|
286 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
287 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
288 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
289 |
+ |
|
290 |
+ |
} |
291 |
+ |
} |
292 |
+ |
|
293 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
294 |
+ |
} |
295 |
+ |
|
296 |
|
void SimInfo::calcNdfRaw() { |
297 |
|
int ndfRaw_local; |
298 |
|
|
698 |
|
Atom* atom; |
699 |
|
set<AtomType*> atomTypes; |
700 |
|
|
701 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
702 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
701 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
702 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
703 |
> |
atom = mol->nextAtom(ai)) { |
704 |
|
atomTypes.insert(atom->getAtomType()); |
705 |
|
} |
706 |
|
} |
707 |
< |
|
707 |
> |
|
708 |
|
#ifdef IS_MPI |
709 |
|
|
710 |
|
// loop over the found atom types on this processor, and add their |
711 |
|
// numerical idents to a vector: |
712 |
< |
|
712 |
> |
|
713 |
|
vector<int> foundTypes; |
714 |
|
set<AtomType*>::iterator i; |
715 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
718 |
|
// count_local holds the number of found types on this processor |
719 |
|
int count_local = foundTypes.size(); |
720 |
|
|
709 |
– |
// count holds the total number of found types on all processors |
710 |
– |
// (some will be redundant with the ones found locally): |
711 |
– |
int count; |
712 |
– |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
713 |
– |
|
714 |
– |
// create a vector to hold the globally found types, and resize it: |
715 |
– |
vector<int> ftGlobal; |
716 |
– |
ftGlobal.resize(count); |
717 |
– |
vector<int> counts; |
718 |
– |
|
721 |
|
int nproc = MPI::COMM_WORLD.Get_size(); |
720 |
– |
counts.resize(nproc); |
721 |
– |
vector<int> disps; |
722 |
– |
disps.resize(nproc); |
722 |
|
|
723 |
< |
// now spray out the foundTypes to all the other processors: |
723 |
> |
// we need arrays to hold the counts and displacement vectors for |
724 |
> |
// all processors |
725 |
> |
vector<int> counts(nproc, 0); |
726 |
> |
vector<int> disps(nproc, 0); |
727 |
> |
|
728 |
> |
// fill the counts array |
729 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
730 |
> |
1, MPI::INT); |
731 |
> |
|
732 |
> |
// use the processor counts to compute the displacement array |
733 |
> |
disps[0] = 0; |
734 |
> |
int totalCount = counts[0]; |
735 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
736 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
737 |
> |
totalCount += counts[iproc]; |
738 |
> |
} |
739 |
> |
|
740 |
> |
// we need a (possibly redundant) set of all found types: |
741 |
> |
vector<int> ftGlobal(totalCount); |
742 |
|
|
743 |
+ |
// now spray out the foundTypes to all the other processors: |
744 |
|
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
745 |
< |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
745 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
746 |
> |
MPI::INT); |
747 |
|
|
748 |
+ |
vector<int>::iterator j; |
749 |
+ |
|
750 |
|
// foundIdents is a stl set, so inserting an already found ident |
751 |
|
// will have no effect. |
752 |
|
set<int> foundIdents; |
753 |
< |
vector<int>::iterator j; |
753 |
> |
|
754 |
|
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
755 |
|
foundIdents.insert((*j)); |
756 |
|
|
757 |
|
// now iterate over the foundIdents and get the actual atom types |
758 |
|
// that correspond to these: |
759 |
|
set<int>::iterator it; |
760 |
< |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
760 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
761 |
|
atomTypes.insert( forceField_->getAtomType((*it)) ); |
762 |
|
|
763 |
|
#endif |
764 |
< |
|
764 |
> |
|
765 |
|
return atomTypes; |
766 |
|
} |
767 |
|
|
773 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
774 |
|
calcBoxDipole_ = true; |
775 |
|
} |
776 |
< |
|
776 |
> |
|
777 |
|
set<AtomType*>::iterator i; |
778 |
|
set<AtomType*> atomTypes; |
779 |
|
atomTypes = getSimulatedAtomTypes(); |
786 |
|
usesMetallic |= (*i)->isMetal(); |
787 |
|
usesDirectional |= (*i)->isDirectional(); |
788 |
|
} |
789 |
< |
|
789 |
> |
|
790 |
|
#ifdef IS_MPI |
791 |
|
int temp; |
792 |
|
temp = usesDirectional; |
793 |
|
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
794 |
< |
|
794 |
> |
|
795 |
|
temp = usesMetallic; |
796 |
|
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
797 |
< |
|
797 |
> |
|
798 |
|
temp = usesElectrostatic; |
799 |
|
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
800 |
+ |
#else |
801 |
+ |
|
802 |
+ |
usesDirectionalAtoms_ = usesDirectional; |
803 |
+ |
usesMetallicAtoms_ = usesMetallic; |
804 |
+ |
usesElectrostaticAtoms_ = usesElectrostatic; |
805 |
+ |
|
806 |
|
#endif |
807 |
< |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
808 |
< |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
809 |
< |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
810 |
< |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
784 |
< |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
785 |
< |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
807 |
> |
|
808 |
> |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
809 |
> |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
810 |
> |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
811 |
|
} |
812 |
|
|
813 |
|
|
850 |
|
} |
851 |
|
|
852 |
|
|
853 |
< |
void SimInfo::setupFortran() { |
829 |
< |
int isError; |
853 |
> |
void SimInfo::prepareTopology() { |
854 |
|
int nExclude, nOneTwo, nOneThree, nOneFour; |
831 |
– |
vector<int> fortranGlobalGroupMembership; |
832 |
– |
|
833 |
– |
isError = 0; |
855 |
|
|
835 |
– |
//globalGroupMembership_ is filled by SimCreator |
836 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
837 |
– |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
838 |
– |
} |
839 |
– |
|
856 |
|
//calculate mass ratio of cutoff group |
841 |
– |
vector<RealType> mfact; |
857 |
|
SimInfo::MoleculeIterator mi; |
858 |
|
Molecule* mol; |
859 |
|
Molecule::CutoffGroupIterator ci; |
862 |
|
Atom* atom; |
863 |
|
RealType totalMass; |
864 |
|
|
865 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
866 |
< |
mfact.reserve(getNCutoffGroups()); |
865 |
> |
/** |
866 |
> |
* The mass factor is the relative mass of an atom to the total |
867 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
868 |
> |
* are their own cutoff groups, and therefore have mass factors of |
869 |
> |
* 1. We need some special handling for massless atoms, which |
870 |
> |
* will be treated as carrying the entire mass of the cutoff |
871 |
> |
* group. |
872 |
> |
*/ |
873 |
> |
massFactors_.clear(); |
874 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
875 |
|
|
876 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
877 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
877 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
878 |
> |
cg = mol->nextCutoffGroup(ci)) { |
879 |
|
|
880 |
|
totalMass = cg->getMass(); |
881 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
882 |
|
// Check for massless groups - set mfact to 1 if true |
883 |
< |
if (totalMass != 0) |
884 |
< |
mfact.push_back(atom->getMass()/totalMass); |
883 |
> |
if (totalMass != 0) |
884 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
885 |
|
else |
886 |
< |
mfact.push_back( 1.0 ); |
886 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
887 |
|
} |
888 |
|
} |
889 |
|
} |
897 |
|
identArray_.push_back(atom->getIdent()); |
898 |
|
} |
899 |
|
} |
876 |
– |
|
877 |
– |
//fill molMembershipArray |
878 |
– |
//molMembershipArray is filled by SimCreator |
879 |
– |
vector<int> molMembershipArray(nGlobalAtoms_); |
880 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
881 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
882 |
– |
} |
900 |
|
|
901 |
< |
//setup fortran simulation |
901 |
> |
//scan topology |
902 |
|
|
903 |
|
nExclude = excludedInteractions_.getSize(); |
904 |
|
nOneTwo = oneTwoInteractions_.getSize(); |
910 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
911 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
912 |
|
|
913 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
897 |
< |
&nExclude, excludeList, |
898 |
< |
&nOneTwo, oneTwoList, |
899 |
< |
&nOneThree, oneThreeList, |
900 |
< |
&nOneFour, oneFourList, |
901 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
902 |
< |
&fortranGlobalGroupMembership[0], &isError); |
903 |
< |
|
904 |
< |
if( isError ){ |
905 |
< |
|
906 |
< |
sprintf( painCave.errMsg, |
907 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
908 |
< |
painCave.isFatal = 1; |
909 |
< |
painCave.severity = OPENMD_ERROR; |
910 |
< |
simError(); |
911 |
< |
} |
912 |
< |
|
913 |
< |
|
914 |
< |
sprintf( checkPointMsg, |
915 |
< |
"succesfully sent the simulation information to fortran.\n"); |
916 |
< |
|
917 |
< |
errorCheckPoint(); |
918 |
< |
|
919 |
< |
// Setup number of neighbors in neighbor list if present |
920 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
921 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
922 |
< |
setNeighbors(&nlistNeighbors); |
923 |
< |
} |
924 |
< |
|
925 |
< |
#ifdef IS_MPI |
926 |
< |
mpiSimData parallelData; |
927 |
< |
|
928 |
< |
//fill up mpiSimData struct |
929 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
930 |
< |
parallelData.nMolLocal = getNMolecules(); |
931 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
932 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
933 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
934 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
935 |
< |
parallelData.myNode = worldRank; |
936 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
937 |
< |
|
938 |
< |
//pass mpiSimData struct and index arrays to fortran |
939 |
< |
//setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
940 |
< |
// &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
941 |
< |
// &localToGlobalCutoffGroupIndex[0], &isError); |
942 |
< |
|
943 |
< |
if (isError) { |
944 |
< |
sprintf(painCave.errMsg, |
945 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
946 |
< |
painCave.isFatal = 1; |
947 |
< |
simError(); |
948 |
< |
} |
949 |
< |
|
950 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
951 |
< |
errorCheckPoint(); |
952 |
< |
#endif |
953 |
< |
|
954 |
< |
initFortranFF(&isError); |
955 |
< |
if (isError) { |
956 |
< |
sprintf(painCave.errMsg, |
957 |
< |
"initFortranFF errror: fortran didn't like something we gave it.\n"); |
958 |
< |
painCave.isFatal = 1; |
959 |
< |
simError(); |
960 |
< |
} |
961 |
< |
fortranInitialized_ = true; |
913 |
> |
topologyDone_ = true; |
914 |
|
} |
915 |
|
|
916 |
|
void SimInfo::addProperty(GenericData* genData) { |