60 |
|
#include "io/ForceFieldOptions.hpp" |
61 |
|
#include "UseTheForce/ForceField.hpp" |
62 |
|
#include "nonbonded/SwitchingFunction.hpp" |
63 |
+ |
#ifdef IS_MPI |
64 |
+ |
#include <mpi.h> |
65 |
+ |
#endif |
66 |
|
|
67 |
|
using namespace std; |
68 |
|
namespace OpenMD { |
697 |
|
Atom* atom; |
698 |
|
set<AtomType*> atomTypes; |
699 |
|
|
700 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
701 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
700 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
701 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
702 |
> |
atom = mol->nextAtom(ai)) { |
703 |
|
atomTypes.insert(atom->getAtomType()); |
704 |
|
} |
705 |
|
} |
706 |
< |
|
706 |
> |
|
707 |
|
#ifdef IS_MPI |
708 |
|
|
709 |
|
// loop over the found atom types on this processor, and add their |
710 |
|
// numerical idents to a vector: |
711 |
< |
|
711 |
> |
|
712 |
|
vector<int> foundTypes; |
713 |
|
set<AtomType*>::iterator i; |
714 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
716 |
|
|
717 |
|
// count_local holds the number of found types on this processor |
718 |
|
int count_local = foundTypes.size(); |
715 |
– |
|
716 |
– |
// count holds the total number of found types on all processors |
717 |
– |
// (some will be redundant with the ones found locally): |
718 |
– |
int count; |
719 |
– |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
719 |
|
|
721 |
– |
// create a vector to hold the globally found types, and resize it: |
722 |
– |
vector<int> ftGlobal; |
723 |
– |
ftGlobal.resize(count); |
724 |
– |
vector<int> counts; |
725 |
– |
|
720 |
|
int nproc = MPI::COMM_WORLD.Get_size(); |
727 |
– |
counts.resize(nproc); |
728 |
– |
vector<int> disps; |
729 |
– |
disps.resize(nproc); |
721 |
|
|
722 |
< |
// now spray out the foundTypes to all the other processors: |
722 |
> |
// we need arrays to hold the counts and displacement vectors for |
723 |
> |
// all processors |
724 |
> |
vector<int> counts(nproc, 0); |
725 |
> |
vector<int> disps(nproc, 0); |
726 |
> |
|
727 |
> |
// fill the counts array |
728 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
729 |
> |
1, MPI::INT); |
730 |
> |
|
731 |
> |
// use the processor counts to compute the displacement array |
732 |
> |
disps[0] = 0; |
733 |
> |
int totalCount = counts[0]; |
734 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
735 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
736 |
> |
totalCount += counts[iproc]; |
737 |
> |
} |
738 |
> |
|
739 |
> |
// we need a (possibly redundant) set of all found types: |
740 |
> |
vector<int> ftGlobal(totalCount); |
741 |
|
|
742 |
+ |
// now spray out the foundTypes to all the other processors: |
743 |
|
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
744 |
< |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
744 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
745 |
> |
MPI::INT); |
746 |
|
|
747 |
+ |
vector<int>::iterator j; |
748 |
+ |
|
749 |
|
// foundIdents is a stl set, so inserting an already found ident |
750 |
|
// will have no effect. |
751 |
|
set<int> foundIdents; |
752 |
< |
vector<int>::iterator j; |
752 |
> |
|
753 |
|
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
754 |
|
foundIdents.insert((*j)); |
755 |
|
|
756 |
|
// now iterate over the foundIdents and get the actual atom types |
757 |
|
// that correspond to these: |
758 |
|
set<int>::iterator it; |
759 |
< |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
759 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
760 |
|
atomTypes.insert( forceField_->getAtomType((*it)) ); |
761 |
|
|
762 |
|
#endif |
763 |
< |
|
763 |
> |
|
764 |
|
return atomTypes; |
765 |
|
} |
766 |
|
|
772 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
773 |
|
calcBoxDipole_ = true; |
774 |
|
} |
775 |
< |
|
775 |
> |
|
776 |
|
set<AtomType*>::iterator i; |
777 |
|
set<AtomType*> atomTypes; |
778 |
|
atomTypes = getSimulatedAtomTypes(); |
785 |
|
usesMetallic |= (*i)->isMetal(); |
786 |
|
usesDirectional |= (*i)->isDirectional(); |
787 |
|
} |
788 |
< |
|
788 |
> |
|
789 |
|
#ifdef IS_MPI |
790 |
|
int temp; |
791 |
|
temp = usesDirectional; |
792 |
|
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
793 |
< |
|
793 |
> |
|
794 |
|
temp = usesMetallic; |
795 |
|
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
796 |
< |
|
796 |
> |
|
797 |
|
temp = usesElectrostatic; |
798 |
|
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
799 |
+ |
#else |
800 |
+ |
|
801 |
+ |
usesDirectionalAtoms_ = usesDirectional; |
802 |
+ |
usesMetallicAtoms_ = usesMetallic; |
803 |
+ |
usesElectrostaticAtoms_ = usesElectrostatic; |
804 |
+ |
|
805 |
|
#endif |
806 |
+ |
|
807 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
808 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
809 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
810 |
|
} |
811 |
|
|
812 |
|
|
861 |
|
Atom* atom; |
862 |
|
RealType totalMass; |
863 |
|
|
864 |
< |
//to avoid memory reallocation, reserve enough space for massFactors_ |
864 |
> |
/** |
865 |
> |
* The mass factor is the relative mass of an atom to the total |
866 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
867 |
> |
* are their own cutoff groups, and therefore have mass factors of |
868 |
> |
* 1. We need some special handling for massless atoms, which |
869 |
> |
* will be treated as carrying the entire mass of the cutoff |
870 |
> |
* group. |
871 |
> |
*/ |
872 |
|
massFactors_.clear(); |
873 |
< |
massFactors_.reserve(getNCutoffGroups()); |
873 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
874 |
|
|
875 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
876 |
|
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
879 |
|
totalMass = cg->getMass(); |
880 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
881 |
|
// Check for massless groups - set mfact to 1 if true |
882 |
< |
if (totalMass != 0) |
883 |
< |
massFactors_.push_back(atom->getMass()/totalMass); |
882 |
> |
if (totalMass != 0) |
883 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
884 |
|
else |
885 |
< |
massFactors_.push_back( 1.0 ); |
885 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
886 |
|
} |
887 |
|
} |
888 |
|
} |
909 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
910 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
911 |
|
|
882 |
– |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
883 |
– |
// &nExclude, excludeList, |
884 |
– |
// &nOneTwo, oneTwoList, |
885 |
– |
// &nOneThree, oneThreeList, |
886 |
– |
// &nOneFour, oneFourList, |
887 |
– |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
888 |
– |
// &fortranGlobalGroupMembership[0], &isError); |
889 |
– |
|
912 |
|
topologyDone_ = true; |
913 |
|
} |
914 |
|
|