ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1597 by gezelter, Tue Jul 26 15:49:24 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/doForces_interface.h"
56 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
70 <
71 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                                ForceField* ff, Globals* simParams) :
73 <                                forceField_(ff), simParams_(simParams),
74 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
75 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
76 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
74 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
75 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
76 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
77 <
78 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77      MoleculeStamp* molStamp;
78      int nMolWithSameStamp;
79      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81      CutoffGroupStamp* cgStamp;    
82      RigidBodyStamp* rbStamp;
83      int nRigidAtoms = 0;
84      
85 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
86 <        molStamp = i->first;
87 <        nMolWithSameStamp = i->second;
88 <        
89 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
90 <
91 <        //calculate atoms in molecules
92 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
93 <
94 <
95 <        //calculate atoms in cutoff groups
96 <        int nAtomsInGroups = 0;
97 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
98 <        
99 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
100 <            cgStamp = molStamp->getCutoffGroup(j);
101 <            nAtomsInGroups += cgStamp->getNMembers();
102 <        }
103 <
104 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
105 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
106 <
107 <        //calculate atoms in rigid bodies
108 <        int nAtomsInRigidBodies = 0;
109 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
110 <        
111 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
112 <            rbStamp = molStamp->getRigidBody(j);
113 <            nAtomsInRigidBodies += rbStamp->getNMembers();
114 <        }
115 <
116 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
117 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
118 <        
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103 >      }
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
129      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 <
131 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
132 <    //therefore the total number of  integrable objects in the system is equal to
133 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
134 <    //file plus the number of  rigid bodies defined in meta-data file
135 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
136 <
130 >    
131 >    //every free atom (atom does not belong to rigid bodies) is an
132 >    //integrable object therefore the total number of integrable objects
133 >    //in the system is equal to the total number of atoms minus number of
134 >    //atoms belong to rigid body defined in meta-data file plus the number
135 >    //of rigid bodies defined in meta-data file
136 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 >      + nGlobalRigidBodies_;
138 >    
139      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
140      molToProcMap_.resize(nGlobalMols_);
141 < #endif
142 <
143 <    selectMan_ = new SelectionManager(this);
144 <    selectMan_->selectAll();
145 < }
146 <
147 < SimInfo::~SimInfo() {
148 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
149 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
141 >  }
142 >  
143 >  SimInfo::~SimInfo() {
144 >    map<int, Molecule*>::iterator i;
145 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146 >      delete i->second;
147 >    }
148 >    molecules_.clear();
149 >      
150      delete sman_;
151      delete simParams_;
152      delete forceField_;
153 <    delete selectMan_;
155 < }
153 >  }
154  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
155  
156 < bool SimInfo::addMolecule(Molecule* mol) {
156 >  bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
164 <        nAtoms_ += mol->getNAtoms();
165 <        nBonds_ += mol->getNBonds();
166 <        nBends_ += mol->getNBends();
167 <        nTorsions_ += mol->getNTorsions();
168 <        nRigidBodies_ += mol->getNRigidBodies();
169 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
170 <        nCutoffGroups_ += mol->getNCutoffGroups();
171 <        nConstraints_ += mol->getNConstraintPairs();
172 <
173 <        addExcludePairs(mol);
174 <        
175 <        return true;
176 <    } else {
177 <        return false;
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164 >      nAtoms_ += mol->getNAtoms();
165 >      nBonds_ += mol->getNBonds();
166 >      nBends_ += mol->getNBends();
167 >      nTorsions_ += mol->getNTorsions();
168 >      nInversions_ += mol->getNInversions();
169 >      nRigidBodies_ += mol->getNRigidBodies();
170 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
171 >      nCutoffGroups_ += mol->getNCutoffGroups();
172 >      nConstraints_ += mol->getNConstraintPairs();
173 >      
174 >      addInteractionPairs(mol);
175 >      
176 >      return true;
177 >    } else {
178 >      return false;
179      }
180 < }
181 <
182 < bool SimInfo::removeMolecule(Molecule* mol) {
180 >  }
181 >  
182 >  bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
185  
186      if (i != molecules_.end() ) {
187  
188 <        assert(mol == i->second);
188 >      assert(mol == i->second);
189          
190 <        nAtoms_ -= mol->getNAtoms();
191 <        nBonds_ -= mol->getNBonds();
192 <        nBends_ -= mol->getNBends();
193 <        nTorsions_ -= mol->getNTorsions();
194 <        nRigidBodies_ -= mol->getNRigidBodies();
195 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
196 <        nCutoffGroups_ -= mol->getNCutoffGroups();
197 <        nConstraints_ -= mol->getNConstraintPairs();
190 >      nAtoms_ -= mol->getNAtoms();
191 >      nBonds_ -= mol->getNBonds();
192 >      nBends_ -= mol->getNBends();
193 >      nTorsions_ -= mol->getNTorsions();
194 >      nInversions_ -= mol->getNInversions();
195 >      nRigidBodies_ -= mol->getNRigidBodies();
196 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
197 >      nCutoffGroups_ -= mol->getNCutoffGroups();
198 >      nConstraints_ -= mol->getNConstraintPairs();
199  
200 <        removeExcludePairs(mol);
201 <        molecules_.erase(mol->getGlobalIndex());
200 >      removeInteractionPairs(mol);
201 >      molecules_.erase(mol->getGlobalIndex());
202  
203 <        delete mol;
203 >      delete mol;
204          
205 <        return true;
205 >      return true;
206      } else {
207 <        return false;
207 >      return false;
208      }
209 +  }    
210  
220
221 }    
222
211          
212 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
212 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
213      i = molecules_.begin();
214      return i == molecules_.end() ? NULL : i->second;
215 < }    
215 >  }    
216  
217 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
217 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
218      ++i;
219      return i == molecules_.end() ? NULL : i->second;    
220 < }
220 >  }
221  
222  
223 < void SimInfo::calcNdf() {
223 >  void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
230      ndf_local = 0;
231      
232      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
233 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234 <               integrableObject = mol->nextIntegrableObject(j)) {
233 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234 >           integrableObject = mol->nextIntegrableObject(j)) {
235  
236 <            ndf_local += 3;
236 >        ndf_local += 3;
237  
238 <            if (integrableObject->isDirectional()) {
239 <                if (integrableObject->isLinear()) {
240 <                    ndf_local += 2;
241 <                } else {
242 <                    ndf_local += 3;
243 <                }
244 <            }
238 >        if (integrableObject->isDirectional()) {
239 >          if (integrableObject->isLinear()) {
240 >            ndf_local += 2;
241 >          } else {
242 >            ndf_local += 3;
243 >          }
244 >        }
245              
246 <        }//end for (integrableObject)
247 <    }// end for (mol)
246 >      }
247 >    }
248      
249      // n_constraints is local, so subtract them on each processor
250      ndf_local -= nConstraints_;
# Line 271 | Line 259 | void SimInfo::calcNdf() {
259      // entire system:
260      ndf_ = ndf_ - 3 - nZconstraint_;
261  
262 < }
262 >  }
263  
264 < void SimInfo::calcNdfRaw() {
264 >  int SimInfo::getFdf() {
265 > #ifdef IS_MPI
266 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 > #else
268 >    fdf_ = fdf_local;
269 > #endif
270 >    return fdf_;
271 >  }
272 >  
273 >  unsigned int SimInfo::getNLocalCutoffGroups(){
274 >    int nLocalCutoffAtoms = 0;
275 >    Molecule* mol;
276 >    MoleculeIterator mi;
277 >    CutoffGroup* cg;
278 >    Molecule::CutoffGroupIterator ci;
279 >    
280 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 >      
282 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 >           cg = mol->nextCutoffGroup(ci)) {
284 >        nLocalCutoffAtoms += cg->getNumAtom();
285 >        
286 >      }        
287 >    }
288 >    
289 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 >  }
291 >    
292 >  void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 285 | Line 301 | void SimInfo::calcNdfRaw() {
301      ndfRaw_local = 0;
302      
303      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
304 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 <               integrableObject = mol->nextIntegrableObject(j)) {
304 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 >           integrableObject = mol->nextIntegrableObject(j)) {
306  
307 <            ndfRaw_local += 3;
307 >        ndfRaw_local += 3;
308  
309 <            if (integrableObject->isDirectional()) {
310 <                if (integrableObject->isLinear()) {
311 <                    ndfRaw_local += 2;
312 <                } else {
313 <                    ndfRaw_local += 3;
314 <                }
315 <            }
309 >        if (integrableObject->isDirectional()) {
310 >          if (integrableObject->isLinear()) {
311 >            ndfRaw_local += 2;
312 >          } else {
313 >            ndfRaw_local += 3;
314 >          }
315 >        }
316              
317 <        }
317 >      }
318      }
319      
320   #ifdef IS_MPI
# Line 306 | Line 322 | void SimInfo::calcNdfRaw() {
322   #else
323      ndfRaw_ = ndfRaw_local;
324   #endif
325 < }
325 >  }
326  
327 < void SimInfo::calcNdfTrans() {
327 >  void SimInfo::calcNdfTrans() {
328      int ndfTrans_local;
329  
330      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 338 | void SimInfo::calcNdfTrans() {
338  
339      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
340  
341 < }
341 >  }
342  
343 < void SimInfo::addExcludePairs(Molecule* mol) {
344 <    std::vector<Bond*>::iterator bondIter;
345 <    std::vector<Bend*>::iterator bendIter;
346 <    std::vector<Torsion*>::iterator torsionIter;
343 >  void SimInfo::addInteractionPairs(Molecule* mol) {
344 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
352 +    Inversion* inversion;
353      int a;
354      int b;
355      int c;
356      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
357  
358 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
359 <        a = bend->getAtomA()->getGlobalIndex();
360 <        b = bend->getAtomB()->getGlobalIndex();        
361 <        c = bend->getAtomC()->getGlobalIndex();
358 >    // atomGroups can be used to add special interaction maps between
359 >    // groups of atoms that are in two separate rigid bodies.
360 >    // However, most site-site interactions between two rigid bodies
361 >    // are probably not special, just the ones between the physically
362 >    // bonded atoms.  Interactions *within* a single rigid body should
363 >    // always be excluded.  These are done at the bottom of this
364 >    // function.
365  
366 <        exclude_.addPair(a, b);
367 <        exclude_.addPair(a, c);
368 <        exclude_.addPair(b, c);        
369 <    }
370 <
371 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
372 <        a = torsion->getAtomA()->getGlobalIndex();
373 <        b = torsion->getAtomB()->getGlobalIndex();        
374 <        c = torsion->getAtomC()->getGlobalIndex();        
375 <        d = torsion->getAtomD()->getGlobalIndex();        
366 >    map<int, set<int> > atomGroups;
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii);
373 >         integrableObject != NULL;
374 >         integrableObject = mol->nextIntegrableObject(ii)) {
375 >      
376 >      if (integrableObject->isRigidBody()) {
377 >        rb = static_cast<RigidBody*>(integrableObject);
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >        }
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >        }      
386 >      } else {
387 >        set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 >      }
391 >    }  
392 >          
393 >    for (bond= mol->beginBond(bondIter); bond != NULL;
394 >         bond = mol->nextBond(bondIter)) {
395  
396 <        exclude_.addPair(a, b);
397 <        exclude_.addPair(a, c);
398 <        exclude_.addPair(a, d);
399 <        exclude_.addPair(b, c);
400 <        exclude_.addPair(b, d);
401 <        exclude_.addPair(c, d);        
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();  
398 >    
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);
401 >      } else {
402 >        excludedInteractions_.addPair(a, b);
403 >      }
404      }
405  
406 <    
407 < }
406 >    for (bend= mol->beginBend(bendIter); bend != NULL;
407 >         bend = mol->nextBend(bendIter)) {
408  
409 < void SimInfo::removeExcludePairs(Molecule* mol) {
410 <    std::vector<Bond*>::iterator bondIter;
411 <    std::vector<Bend*>::iterator bendIter;
412 <    std::vector<Torsion*>::iterator torsionIter;
409 >      a = bend->getAtomA()->getGlobalIndex();
410 >      b = bend->getAtomB()->getGlobalIndex();        
411 >      c = bend->getAtomC()->getGlobalIndex();
412 >      
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);      
415 >        oneTwoInteractions_.addPair(b, c);
416 >      } else {
417 >        excludedInteractions_.addPair(a, b);
418 >        excludedInteractions_.addPair(b, c);
419 >      }
420 >
421 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 >        oneThreeInteractions_.addPair(a, c);      
423 >      } else {
424 >        excludedInteractions_.addPair(a, c);
425 >      }
426 >    }
427 >
428 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 >         torsion = mol->nextTorsion(torsionIter)) {
430 >
431 >      a = torsion->getAtomA()->getGlobalIndex();
432 >      b = torsion->getAtomB()->getGlobalIndex();        
433 >      c = torsion->getAtomC()->getGlobalIndex();        
434 >      d = torsion->getAtomD()->getGlobalIndex();      
435 >
436 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 >        oneTwoInteractions_.addPair(a, b);      
438 >        oneTwoInteractions_.addPair(b, c);
439 >        oneTwoInteractions_.addPair(c, d);
440 >      } else {
441 >        excludedInteractions_.addPair(a, b);
442 >        excludedInteractions_.addPair(b, c);
443 >        excludedInteractions_.addPair(c, d);
444 >      }
445 >
446 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 >        oneThreeInteractions_.addPair(a, c);      
448 >        oneThreeInteractions_.addPair(b, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, c);
451 >        excludedInteractions_.addPair(b, d);
452 >      }
453 >
454 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 >        oneFourInteractions_.addPair(a, d);      
456 >      } else {
457 >        excludedInteractions_.addPair(a, d);
458 >      }
459 >    }
460 >
461 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 >         inversion = mol->nextInversion(inversionIter)) {
463 >
464 >      a = inversion->getAtomA()->getGlobalIndex();
465 >      b = inversion->getAtomB()->getGlobalIndex();        
466 >      c = inversion->getAtomC()->getGlobalIndex();        
467 >      d = inversion->getAtomD()->getGlobalIndex();        
468 >
469 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 >        oneTwoInteractions_.addPair(a, b);      
471 >        oneTwoInteractions_.addPair(a, c);
472 >        oneTwoInteractions_.addPair(a, d);
473 >      } else {
474 >        excludedInteractions_.addPair(a, b);
475 >        excludedInteractions_.addPair(a, c);
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478 >
479 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 >        oneThreeInteractions_.addPair(b, c);    
481 >        oneThreeInteractions_.addPair(b, d);    
482 >        oneThreeInteractions_.addPair(c, d);      
483 >      } else {
484 >        excludedInteractions_.addPair(b, c);
485 >        excludedInteractions_.addPair(b, d);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488 >    }
489 >
490 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >         rb = mol->nextRigidBody(rbIter)) {
492 >      vector<Atom*> atoms = rb->getAtoms();
493 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495 >          a = atoms[i]->getGlobalIndex();
496 >          b = atoms[j]->getGlobalIndex();
497 >          excludedInteractions_.addPair(a, b);
498 >        }
499 >      }
500 >    }        
501 >
502 >  }
503 >
504 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
505 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
513 +    Inversion* inversion;
514      int a;
515      int b;
516      int c;
517      int d;
518 +
519 +    map<int, set<int> > atomGroups;
520 +    Molecule::RigidBodyIterator rbIter;
521 +    RigidBody* rb;
522 +    Molecule::IntegrableObjectIterator ii;
523 +    StuntDouble* integrableObject;
524      
525 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
526 <        a = bond->getAtomA()->getGlobalIndex();
527 <        b = bond->getAtomB()->getGlobalIndex();        
528 <        exclude_.removePair(a, b);
525 >    for (integrableObject = mol->beginIntegrableObject(ii);
526 >         integrableObject != NULL;
527 >         integrableObject = mol->nextIntegrableObject(ii)) {
528 >      
529 >      if (integrableObject->isRigidBody()) {
530 >        rb = static_cast<RigidBody*>(integrableObject);
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 >        }
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 >        }      
539 >      } else {
540 >        set<int> oneAtomSet;
541 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543 >      }
544 >    }  
545 >
546 >    for (bond= mol->beginBond(bondIter); bond != NULL;
547 >         bond = mol->nextBond(bondIter)) {
548 >      
549 >      a = bond->getAtomA()->getGlobalIndex();
550 >      b = bond->getAtomB()->getGlobalIndex();  
551 >    
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);
554 >      } else {
555 >        excludedInteractions_.removePair(a, b);
556 >      }
557      }
558  
559 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
560 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
559 >    for (bend= mol->beginBend(bendIter); bend != NULL;
560 >         bend = mol->nextBend(bendIter)) {
561  
562 <        exclude_.removePair(a, b);
563 <        exclude_.removePair(a, c);
564 <        exclude_.removePair(b, c);        
562 >      a = bend->getAtomA()->getGlobalIndex();
563 >      b = bend->getAtomB()->getGlobalIndex();        
564 >      c = bend->getAtomC()->getGlobalIndex();
565 >      
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);      
568 >        oneTwoInteractions_.removePair(b, c);
569 >      } else {
570 >        excludedInteractions_.removePair(a, b);
571 >        excludedInteractions_.removePair(b, c);
572 >      }
573 >
574 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 >        oneThreeInteractions_.removePair(a, c);      
576 >      } else {
577 >        excludedInteractions_.removePair(a, c);
578 >      }
579      }
580  
581 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
582 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
581 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 >         torsion = mol->nextTorsion(torsionIter)) {
583  
584 <        exclude_.removePair(a, b);
585 <        exclude_.removePair(a, c);
586 <        exclude_.removePair(a, d);
587 <        exclude_.removePair(b, c);
588 <        exclude_.removePair(b, d);
589 <        exclude_.removePair(c, d);        
584 >      a = torsion->getAtomA()->getGlobalIndex();
585 >      b = torsion->getAtomB()->getGlobalIndex();        
586 >      c = torsion->getAtomC()->getGlobalIndex();        
587 >      d = torsion->getAtomD()->getGlobalIndex();      
588 >  
589 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 >        oneTwoInteractions_.removePair(a, b);      
591 >        oneTwoInteractions_.removePair(b, c);
592 >        oneTwoInteractions_.removePair(c, d);
593 >      } else {
594 >        excludedInteractions_.removePair(a, b);
595 >        excludedInteractions_.removePair(b, c);
596 >        excludedInteractions_.removePair(c, d);
597 >      }
598 >
599 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 >        oneThreeInteractions_.removePair(a, c);      
601 >        oneThreeInteractions_.removePair(b, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, c);
604 >        excludedInteractions_.removePair(b, d);
605 >      }
606 >
607 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 >        oneFourInteractions_.removePair(a, d);      
609 >      } else {
610 >        excludedInteractions_.removePair(a, d);
611 >      }
612      }
613  
614 < }
614 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 >         inversion = mol->nextInversion(inversionIter)) {
616  
617 +      a = inversion->getAtomA()->getGlobalIndex();
618 +      b = inversion->getAtomB()->getGlobalIndex();        
619 +      c = inversion->getAtomC()->getGlobalIndex();        
620 +      d = inversion->getAtomD()->getGlobalIndex();        
621  
622 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
623 <    int curStampId;
622 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 >        oneTwoInteractions_.removePair(a, b);      
624 >        oneTwoInteractions_.removePair(a, c);
625 >        oneTwoInteractions_.removePair(a, d);
626 >      } else {
627 >        excludedInteractions_.removePair(a, b);
628 >        excludedInteractions_.removePair(a, c);
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631  
632 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 +        oneThreeInteractions_.removePair(b, c);    
634 +        oneThreeInteractions_.removePair(b, d);    
635 +        oneThreeInteractions_.removePair(c, d);      
636 +      } else {
637 +        excludedInteractions_.removePair(b, c);
638 +        excludedInteractions_.removePair(b, d);
639 +        excludedInteractions_.removePair(c, d);
640 +      }
641 +    }
642 +
643 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 +         rb = mol->nextRigidBody(rbIter)) {
645 +      vector<Atom*> atoms = rb->getAtoms();
646 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648 +          a = atoms[i]->getGlobalIndex();
649 +          b = atoms[j]->getGlobalIndex();
650 +          excludedInteractions_.removePair(a, b);
651 +        }
652 +      }
653 +    }        
654 +    
655 +  }
656 +  
657 +  
658 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659 +    int curStampId;
660 +    
661      //index from 0
662      curStampId = moleculeStamps_.size();
663  
664      moleculeStamps_.push_back(molStamp);
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666 < }
666 >  }
667  
427 void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
438 <    /** @deprecate */    
439 <    int isError = 0;
440 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441 <    if(isError){
442 <        sprintf( painCave.errMsg,
443 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <  
448 <    
449 <    setupCutoff();
450 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
681 <
682 <    fortranInitialized_ = true;
683 < }
684 <
685 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
681 >  }
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
695 >    set<AtomType*> atomTypes;
696 >    
697      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 +      for(atom = mol->beginAtom(ai); atom != NULL;
699 +          atom = mol->nextAtom(ai)) {
700 +        atomTypes.insert(atom->getAtomType());
701 +      }      
702 +    }    
703 +    
704 + #ifdef IS_MPI
705  
706 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
707 <            atomTypes.insert(atom->getAtomType());
708 <        }
709 <        
706 >    // loop over the found atom types on this processor, and add their
707 >    // numerical idents to a vector:
708 >    
709 >    vector<int> foundTypes;
710 >    set<AtomType*>::iterator i;
711 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
712 >      foundTypes.push_back( (*i)->getIdent() );
713 >
714 >    // count_local holds the number of found types on this processor
715 >    int count_local = foundTypes.size();
716 >
717 >    int nproc = MPI::COMM_WORLD.Get_size();
718 >
719 >    // we need arrays to hold the counts and displacement vectors for
720 >    // all processors
721 >    vector<int> counts(nproc, 0);
722 >    vector<int> disps(nproc, 0);
723 >
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734      }
735  
736 <    return atomTypes;        
737 < }
736 >    // we need a (possibly redundant) set of all found types:
737 >    vector<int> ftGlobal(totalCount);
738 >    
739 >    // now spray out the foundTypes to all the other processors:    
740 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 < void SimInfo::setupSimType() {
745 <    std::set<AtomType*>::iterator i;
746 <    std::set<AtomType*> atomTypes;
747 <    atomTypes = getUniqueAtomTypes();
744 >    vector<int>::iterator j;
745 >
746 >    // foundIdents is a stl set, so inserting an already found ident
747 >    // will have no effect.
748 >    set<int> foundIdents;
749 >
750 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751 >      foundIdents.insert((*j));
752      
753 <    int useLennardJones = 0;
754 <    int useElectrostatic = 0;
755 <    int useEAM = 0;
756 <    int useCharge = 0;
757 <    int useDirectional = 0;
758 <    int useDipole = 0;
759 <    int useGayBerne = 0;
488 <    int useSticky = 0;
489 <    int useShape = 0;
490 <    int useFLARB = 0; //it is not in AtomType yet
491 <    int useDirectionalAtom = 0;    
492 <    int useElectrostatics = 0;
493 <    //usePBC and useRF are from simParams
494 <    int usePBC = simParams_->getPBC();
495 <    int useRF = simParams_->getUseRF();
753 >    // now iterate over the foundIdents and get the actual atom types
754 >    // that correspond to these:
755 >    set<int>::iterator it;
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757 >      atomTypes.insert( forceField_->getAtomType((*it)) );
758 >
759 > #endif
760  
761 +    return atomTypes;        
762 +  }
763 +
764 +  void SimInfo::setupSimVariables() {
765 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
766 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
767 +    calcBoxDipole_ = false;
768 +    if ( simParams_->haveAccumulateBoxDipole() )
769 +      if ( simParams_->getAccumulateBoxDipole() ) {
770 +        calcBoxDipole_ = true;      
771 +      }
772 +    
773 +    set<AtomType*>::iterator i;
774 +    set<AtomType*> atomTypes;
775 +    atomTypes = getSimulatedAtomTypes();    
776 +    int usesElectrostatic = 0;
777 +    int usesMetallic = 0;
778 +    int usesDirectional = 0;
779      //loop over all of the atom types
780      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
781 <        useLennardJones |= (*i)->isLennardJones();
782 <        useElectrostatic |= (*i)->isElectrostatic();
783 <        useEAM |= (*i)->isEAM();
502 <        useCharge |= (*i)->isCharge();
503 <        useDirectional |= (*i)->isDirectional();
504 <        useDipole |= (*i)->isDipole();
505 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
781 >      usesElectrostatic |= (*i)->isElectrostatic();
782 >      usesMetallic |= (*i)->isMetal();
783 >      usesDirectional |= (*i)->isDirectional();
784      }
785 <
510 <    if (useSticky || useDipole || useGayBerne || useShape) {
511 <        useDirectionalAtom = 1;
512 <    }
513 <
514 <    if (useCharge || useDipole) {
515 <        useElectrostatics = 1;
516 <    }
517 <
785 >    
786   #ifdef IS_MPI    
787      int temp;
788 +    temp = usesDirectional;
789 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 +    
791 +    temp = usesMetallic;
792 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 +    
794 +    temp = usesElectrostatic;
795 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 + #else
797  
798 <    temp = usePBC;
799 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    usesDirectionalAtoms_ = usesDirectional;
799 >    usesMetallicAtoms_ = usesMetallic;
800 >    usesElectrostaticAtoms_ = usesElectrostatic;
801  
802 <    temp = useDirectionalAtom;
803 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 > #endif
803 >    
804 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807 >  }
808  
527    temp = useLennardJones;
528    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809  
810 <    temp = useElectrostatics;
811 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >  vector<int> SimInfo::getGlobalAtomIndices() {
811 >    SimInfo::MoleculeIterator mi;
812 >    Molecule* mol;
813 >    Molecule::AtomIterator ai;
814 >    Atom* atom;
815  
816 <    temp = useCharge;
534 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
535 <
536 <    temp = useDipole;
537 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
817      
818 < #endif
818 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
819 >      
820 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 >        cerr << "LI = " << atom->getLocalIndex() << "GAI = " << GlobalAtomIndices[atom->getLocalIndex()] << "\n";
823 >      }
824 >    }
825 >    return GlobalAtomIndices;
826 >  }
827  
559    fInfo_.SIM_uses_PBC = usePBC;    
560    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561    fInfo_.SIM_uses_LennardJones = useLennardJones;
562    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563    fInfo_.SIM_uses_Charges = useCharge;
564    fInfo_.SIM_uses_Dipoles = useDipole;
565    fInfo_.SIM_uses_Sticky = useSticky;
566    fInfo_.SIM_uses_GayBerne = useGayBerne;
567    fInfo_.SIM_uses_EAM = useEAM;
568    fInfo_.SIM_uses_Shapes = useShape;
569    fInfo_.SIM_uses_FLARB = useFLARB;
570    fInfo_.SIM_uses_RF = useRF;
828  
829 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
829 >  vector<int> SimInfo::getGlobalGroupIndices() {
830 >    SimInfo::MoleculeIterator mi;
831 >    Molecule* mol;
832 >    Molecule::CutoffGroupIterator ci;
833 >    CutoffGroup* cg;
834  
835 <        if (simParams_->haveDielectric()) {
836 <            fInfo_.dielect = simParams_->getDielectric();
837 <        } else {
838 <            sprintf(painCave.errMsg,
839 <                    "SimSetup Error: No Dielectric constant was set.\n"
840 <                    "\tYou are trying to use Reaction Field without"
841 <                    "\tsetting a dielectric constant!\n");
842 <            painCave.isFatal = 1;
843 <            simError();
844 <        }
845 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
835 >    vector<int> GlobalGroupIndices;
836 >    
837 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
838 >      
839 >      //local index of cutoff group is trivial, it only depends on the
840 >      //order of travesing
841 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
842 >           cg = mol->nextCutoffGroup(ci)) {
843 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
844 >        cerr << "LI, GGI = " << GlobalGroupIndices.size() << " " << cg->getGlobalIndex() << "\n";
845 >      }        
846      }
847 +    return GlobalGroupIndices;
848 +  }
849  
589 }
850  
851 < void SimInfo::setupFortranSim() {
852 <    int isError;
593 <    int nExclude;
594 <    std::vector<int> fortranGlobalGroupMembership;
595 <    
596 <    nExclude = exclude_.getSize();
597 <    isError = 0;
851 >  void SimInfo::prepareTopology() {
852 >    int nExclude, nOneTwo, nOneThree, nOneFour;
853  
599    //globalGroupMembership_ is filled by SimCreator    
600    for (int i = 0; i < nGlobalAtoms_; i++) {
601        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
602    }
603
854      //calculate mass ratio of cutoff group
605    std::vector<double> mfact;
855      SimInfo::MoleculeIterator mi;
856      Molecule* mol;
857      Molecule::CutoffGroupIterator ci;
858      CutoffGroup* cg;
859      Molecule::AtomIterator ai;
860      Atom* atom;
861 <    double totalMass;
861 >    RealType totalMass;
862  
863 <    //to avoid memory reallocation, reserve enough space for mfact
864 <    mfact.reserve(getNCutoffGroups());
863 >    /**
864 >     * The mass factor is the relative mass of an atom to the total
865 >     * mass of the cutoff group it belongs to.  By default, all atoms
866 >     * are their own cutoff groups, and therefore have mass factors of
867 >     * 1.  We need some special handling for massless atoms, which
868 >     * will be treated as carrying the entire mass of the cutoff
869 >     * group.
870 >     */
871 >    massFactors_.clear();
872 >    massFactors_.resize(getNAtoms(), 1.0);
873      
874      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
875 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
875 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
876 >           cg = mol->nextCutoffGroup(ci)) {
877  
878 <            totalMass = cg->getMass();
879 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
880 <                        mfact.push_back(atom->getMass()/totalMass);
881 <            }
882 <
883 <        }      
878 >        totalMass = cg->getMass();
879 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
880 >          // Check for massless groups - set mfact to 1 if true
881 >          if (totalMass != 0)
882 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
883 >          else
884 >            massFactors_[atom->getLocalIndex()] = 1.0;
885 >        }
886 >      }      
887      }
888  
889 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629 <    std::vector<int> identArray;
889 >    // Build the identArray_
890  
891 <    //to avoid memory reallocation, reserve enough space identArray
892 <    identArray.reserve(getNAtoms());
633 <    
891 >    identArray_.clear();
892 >    identArray_.reserve(getNAtoms());    
893      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
894 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
895 <            identArray.push_back(atom->getIdent());
896 <        }
894 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
895 >        identArray_.push_back(atom->getIdent());
896 >      }
897      }    
639
640    //fill molMembershipArray
641    //molMembershipArray is filled by SimCreator    
642    std::vector<int> molMembershipArray(nGlobalAtoms_);
643    for (int i = 0; i < nGlobalAtoms_; i++) {
644        molMembershipArray[i] = globalMolMembership_[i] + 1;
645    }
898      
899 <    //setup fortran simulation
648 <    //gloalExcludes and molMembershipArray should go away (They are never used)
649 <    //why the hell fortran need to know molecule?
650 <    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651 <    int nGlobalExcludes = 0;
652 <    int* globalExcludes = NULL;
653 <    int* excludeList = exclude_.getExcludeList();
654 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
899 >    //scan topology
900  
901 <    if( isError ){
901 >    nExclude = excludedInteractions_.getSize();
902 >    nOneTwo = oneTwoInteractions_.getSize();
903 >    nOneThree = oneThreeInteractions_.getSize();
904 >    nOneFour = oneFourInteractions_.getSize();
905  
906 <        sprintf( painCave.errMsg,
907 <                 "There was an error setting the simulation information in fortran.\n" );
908 <        painCave.isFatal = 1;
909 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
906 >    int* excludeList = excludedInteractions_.getPairList();
907 >    int* oneTwoList = oneTwoInteractions_.getPairList();
908 >    int* oneThreeList = oneThreeInteractions_.getPairList();
909 >    int* oneFourList = oneFourInteractions_.getPairList();
910  
911 < #ifdef IS_MPI
912 <    sprintf( checkPointMsg,
669 <       "succesfully sent the simulation information to fortran.\n");
670 <    MPIcheckPoint();
671 < #endif // is_mpi
672 < }
911 >    topologyDone_ = true;
912 >  }
913  
914 +  void SimInfo::addProperty(GenericData* genData) {
915 +    properties_.addProperty(genData);  
916 +  }
917  
918 < #ifdef IS_MPI
919 < void SimInfo::setupFortranParallel() {
920 <    
678 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
679 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
680 <    std::vector<int> localToGlobalCutoffGroupIndex;
681 <    SimInfo::MoleculeIterator mi;
682 <    Molecule::AtomIterator ai;
683 <    Molecule::CutoffGroupIterator ci;
684 <    Molecule* mol;
685 <    Atom* atom;
686 <    CutoffGroup* cg;
687 <    mpiSimData parallelData;
688 <    int isError;
918 >  void SimInfo::removeProperty(const string& propName) {
919 >    properties_.removeProperty(propName);  
920 >  }
921  
922 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
922 >  void SimInfo::clearProperties() {
923 >    properties_.clearProperties();
924 >  }
925  
926 <        //local index(index in DataStorge) of atom is important
927 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
928 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
929 <        }
926 >  vector<string> SimInfo::getPropertyNames() {
927 >    return properties_.getPropertyNames();  
928 >  }
929 >      
930 >  vector<GenericData*> SimInfo::getProperties() {
931 >    return properties_.getProperties();
932 >  }
933  
934 <        //local index of cutoff group is trivial, it only depends on the order of travesing
935 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
936 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700 <        }        
701 <        
702 <    }
703 <
704 <    //fill up mpiSimData struct
705 <    parallelData.nMolGlobal = getNGlobalMolecules();
706 <    parallelData.nMolLocal = getNMolecules();
707 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
708 <    parallelData.nAtomsLocal = getNAtoms();
709 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
710 <    parallelData.nGroupsLocal = getNCutoffGroups();
711 <    parallelData.myNode = worldRank;
712 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
713 <
714 <    //pass mpiSimData struct and index arrays to fortran
715 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
716 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
717 <                    &localToGlobalCutoffGroupIndex[0], &isError);
718 <
719 <    if (isError) {
720 <        sprintf(painCave.errMsg,
721 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
722 <        painCave.isFatal = 1;
723 <        simError();
724 <    }
725 <
726 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
727 <    MPIcheckPoint();
728 <
729 <
730 < }
731 <
732 < #endif
733 <
734 < double SimInfo::calcMaxCutoffRadius() {
735 <
736 <
737 <    std::set<AtomType*> atomTypes;
738 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
740 <
741 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
748 <
749 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
750 < #ifdef IS_MPI
751 <    //pick the max cutoff radius among the processors
752 < #endif
753 <
754 <    return maxCutoffRadius;
755 < }
934 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
935 >    return properties_.getPropertyByName(propName);
936 >  }
937  
938 < void SimInfo::getCutoff(double& rcut, double& rsw) {
939 <    
940 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
941 <        
942 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
814 <    properties_.addProperty(genData);  
815 < }
816 <
817 < void SimInfo::removeProperty(const std::string& propName) {
818 <    properties_.removeProperty(propName);  
819 < }
820 <
821 < void SimInfo::clearProperties() {
822 <    properties_.clearProperties();
823 < }
824 <
825 < std::vector<std::string> SimInfo::getPropertyNames() {
826 <    return properties_.getPropertyNames();  
827 < }
828 <      
829 < std::vector<GenericData*> SimInfo::getProperties() {
830 <    return properties_.getProperties();
831 < }
832 <
833 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
834 <    return properties_.getPropertyByName(propName);
835 < }
836 <
837 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
938 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
939 >    if (sman_ == sman) {
940 >      return;
941 >    }    
942 >    delete sman_;
943      sman_ = sman;
944  
945      Molecule* mol;
946      RigidBody* rb;
947      Atom* atom;
948 +    CutoffGroup* cg;
949      SimInfo::MoleculeIterator mi;
950      Molecule::RigidBodyIterator rbIter;
951 <    Molecule::AtomIterator atomIter;;
951 >    Molecule::AtomIterator atomIter;
952 >    Molecule::CutoffGroupIterator cgIter;
953  
954      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
955          
956 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
957 <            atom->setSnapshotManager(sman_);
958 <        }
956 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
957 >        atom->setSnapshotManager(sman_);
958 >      }
959          
960 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
961 <            rb->setSnapshotManager(sman_);
962 <        }
960 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
961 >        rb->setSnapshotManager(sman_);
962 >      }
963 >
964 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
965 >        cg->setSnapshotManager(sman_);
966 >      }
967      }    
968      
969 < }
969 >  }
970  
971 < Vector3d SimInfo::getComVel(){
971 >  Vector3d SimInfo::getComVel(){
972      SimInfo::MoleculeIterator i;
973      Molecule* mol;
974  
975      Vector3d comVel(0.0);
976 <    double totalMass = 0.0;
976 >    RealType totalMass = 0.0;
977      
978  
979      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
980 <        double mass = mol->getMass();
981 <        totalMass += mass;
982 <        comVel += mass * mol->getComVel();
980 >      RealType mass = mol->getMass();
981 >      totalMass += mass;
982 >      comVel += mass * mol->getComVel();
983      }  
984  
985   #ifdef IS_MPI
986 <    double tmpMass = totalMass;
986 >    RealType tmpMass = totalMass;
987      Vector3d tmpComVel(comVel);    
988 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
989 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
988 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
989 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
990   #endif
991  
992      comVel /= totalMass;
993  
994      return comVel;
995 < }
995 >  }
996  
997 < Vector3d SimInfo::getCom(){
997 >  Vector3d SimInfo::getCom(){
998      SimInfo::MoleculeIterator i;
999      Molecule* mol;
1000  
1001      Vector3d com(0.0);
1002 <    double totalMass = 0.0;
1002 >    RealType totalMass = 0.0;
1003      
1004      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1005 <        double mass = mol->getMass();
1006 <        totalMass += mass;
1007 <        com += mass * mol->getCom();
1005 >      RealType mass = mol->getMass();
1006 >      totalMass += mass;
1007 >      com += mass * mol->getCom();
1008      }  
1009  
1010   #ifdef IS_MPI
1011 <    double tmpMass = totalMass;
1011 >    RealType tmpMass = totalMass;
1012      Vector3d tmpCom(com);    
1013 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1014 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1013 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1014 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1015   #endif
1016  
1017      com /= totalMass;
1018  
1019      return com;
1020  
1021 < }        
1021 >  }        
1022  
1023 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1023 >  ostream& operator <<(ostream& o, SimInfo& info) {
1024  
1025      return o;
1026 < }
1026 >  }
1027 >  
1028 >  
1029 >   /*
1030 >   Returns center of mass and center of mass velocity in one function call.
1031 >   */
1032 >  
1033 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1034 >      SimInfo::MoleculeIterator i;
1035 >      Molecule* mol;
1036 >      
1037 >    
1038 >      RealType totalMass = 0.0;
1039 >    
1040  
1041 < }//end namespace oopse
1041 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1042 >         RealType mass = mol->getMass();
1043 >         totalMass += mass;
1044 >         com += mass * mol->getCom();
1045 >         comVel += mass * mol->getComVel();          
1046 >      }  
1047 >      
1048 > #ifdef IS_MPI
1049 >      RealType tmpMass = totalMass;
1050 >      Vector3d tmpCom(com);  
1051 >      Vector3d tmpComVel(comVel);
1052 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1053 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1054 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1055 > #endif
1056 >      
1057 >      com /= totalMass;
1058 >      comVel /= totalMass;
1059 >   }        
1060 >  
1061 >   /*
1062 >   Return intertia tensor for entire system and angular momentum Vector.
1063  
1064 +
1065 +       [  Ixx -Ixy  -Ixz ]
1066 +    J =| -Iyx  Iyy  -Iyz |
1067 +       [ -Izx -Iyz   Izz ]
1068 +    */
1069 +
1070 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1071 +      
1072 +
1073 +      RealType xx = 0.0;
1074 +      RealType yy = 0.0;
1075 +      RealType zz = 0.0;
1076 +      RealType xy = 0.0;
1077 +      RealType xz = 0.0;
1078 +      RealType yz = 0.0;
1079 +      Vector3d com(0.0);
1080 +      Vector3d comVel(0.0);
1081 +      
1082 +      getComAll(com, comVel);
1083 +      
1084 +      SimInfo::MoleculeIterator i;
1085 +      Molecule* mol;
1086 +      
1087 +      Vector3d thisq(0.0);
1088 +      Vector3d thisv(0.0);
1089 +
1090 +      RealType thisMass = 0.0;
1091 +    
1092 +      
1093 +      
1094 +  
1095 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1096 +        
1097 +         thisq = mol->getCom()-com;
1098 +         thisv = mol->getComVel()-comVel;
1099 +         thisMass = mol->getMass();
1100 +         // Compute moment of intertia coefficients.
1101 +         xx += thisq[0]*thisq[0]*thisMass;
1102 +         yy += thisq[1]*thisq[1]*thisMass;
1103 +         zz += thisq[2]*thisq[2]*thisMass;
1104 +        
1105 +         // compute products of intertia
1106 +         xy += thisq[0]*thisq[1]*thisMass;
1107 +         xz += thisq[0]*thisq[2]*thisMass;
1108 +         yz += thisq[1]*thisq[2]*thisMass;
1109 +            
1110 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1111 +            
1112 +      }  
1113 +      
1114 +      
1115 +      inertiaTensor(0,0) = yy + zz;
1116 +      inertiaTensor(0,1) = -xy;
1117 +      inertiaTensor(0,2) = -xz;
1118 +      inertiaTensor(1,0) = -xy;
1119 +      inertiaTensor(1,1) = xx + zz;
1120 +      inertiaTensor(1,2) = -yz;
1121 +      inertiaTensor(2,0) = -xz;
1122 +      inertiaTensor(2,1) = -yz;
1123 +      inertiaTensor(2,2) = xx + yy;
1124 +      
1125 + #ifdef IS_MPI
1126 +      Mat3x3d tmpI(inertiaTensor);
1127 +      Vector3d tmpAngMom;
1128 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1129 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1130 + #endif
1131 +              
1132 +      return;
1133 +   }
1134 +
1135 +   //Returns the angular momentum of the system
1136 +   Vector3d SimInfo::getAngularMomentum(){
1137 +      
1138 +      Vector3d com(0.0);
1139 +      Vector3d comVel(0.0);
1140 +      Vector3d angularMomentum(0.0);
1141 +      
1142 +      getComAll(com,comVel);
1143 +      
1144 +      SimInfo::MoleculeIterator i;
1145 +      Molecule* mol;
1146 +      
1147 +      Vector3d thisr(0.0);
1148 +      Vector3d thisp(0.0);
1149 +      
1150 +      RealType thisMass;
1151 +      
1152 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1153 +        thisMass = mol->getMass();
1154 +        thisr = mol->getCom()-com;
1155 +        thisp = (mol->getComVel()-comVel)*thisMass;
1156 +        
1157 +        angularMomentum += cross( thisr, thisp );
1158 +        
1159 +      }  
1160 +      
1161 + #ifdef IS_MPI
1162 +      Vector3d tmpAngMom;
1163 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 + #endif
1165 +      
1166 +      return angularMomentum;
1167 +   }
1168 +  
1169 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1170 +    return IOIndexToIntegrableObject.at(index);
1171 +  }
1172 +  
1173 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1174 +    IOIndexToIntegrableObject= v;
1175 +  }
1176 +
1177 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1178 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1179 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1180 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1181 +  */
1182 +  void SimInfo::getGyrationalVolume(RealType &volume){
1183 +    Mat3x3d intTensor;
1184 +    RealType det;
1185 +    Vector3d dummyAngMom;
1186 +    RealType sysconstants;
1187 +    RealType geomCnst;
1188 +
1189 +    geomCnst = 3.0/2.0;
1190 +    /* Get the inertial tensor and angular momentum for free*/
1191 +    getInertiaTensor(intTensor,dummyAngMom);
1192 +    
1193 +    det = intTensor.determinant();
1194 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1195 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1196 +    return;
1197 +  }
1198 +
1199 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1200 +    Mat3x3d intTensor;
1201 +    Vector3d dummyAngMom;
1202 +    RealType sysconstants;
1203 +    RealType geomCnst;
1204 +
1205 +    geomCnst = 3.0/2.0;
1206 +    /* Get the inertial tensor and angular momentum for free*/
1207 +    getInertiaTensor(intTensor,dummyAngMom);
1208 +    
1209 +    detI = intTensor.determinant();
1210 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1211 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1212 +    return;
1213 +  }
1214 + /*
1215 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1216 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1217 +      sdByGlobalIndex_ = v;
1218 +    }
1219 +
1220 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1221 +      //assert(index < nAtoms_ + nRigidBodies_);
1222 +      return sdByGlobalIndex_.at(index);
1223 +    }  
1224 + */  
1225 +  int SimInfo::getNGlobalConstraints() {
1226 +    int nGlobalConstraints;
1227 + #ifdef IS_MPI
1228 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1229 +                  MPI_COMM_WORLD);    
1230 + #else
1231 +    nGlobalConstraints =  nConstraints_;
1232 + #endif
1233 +    return nGlobalConstraints;
1234 +  }
1235 +
1236 + }//end namespace OpenMD
1237 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1597 by gezelter, Tue Jul 26 15:49:24 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines